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Abstract 
With the increase in parallel computing applications, there has been a need to construct libraries 
which support said applications. MERCATOR is a framework running on NVIDIA CUDA 
which aims to make constructing applications for GPUs more easy. This study examines the 
overhead incurred from MERCATOR in MERCATOR applications and how they effect 
execution time. We found that changing the topology of the MERCATOR application does 
indeed effect the execution time of the application. 
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With the ever increasing amount of data in the world, applications need to be able to sift through 
information to determine what is and is not important. One such route developers have taken is 
to utilize parallelism to acquire relevant data or calculate meaningful information from vast 
quantities of data. In particular, the use of parallel computing platforms such as GPUs have 
become a popular means of utilizing big data [NVIDIA17a]. In this experiment, we explore the 
usage of NVIDIA GPUs with CUDA using the MERCATOR framework and how the overhead 
of said framework effects performance.  

2. Background 
Parallel computing can take many paradigms including MISD, MIMD, and SIMD [Ghosh06].  

2.1. SIMD Parallelism 

SIMD stands for Single Instruction Multiple Data. By definition, SIMD processors apply a single 
instruction to multiple data points at once [Ghosh06]. For example, a processor wants to 
increment all data points in an array by 1. If the processor uses the SIMD paradigm, then the 
processor only needs to execute a single instruction, an addition of 1, which will apply to all 
entries in the array. By comparison, most modern day consumer processors are SISD processors, 
or single instruction single data, perform a single instruction on a single entry at a time. In the 
previous example, the SISD processors would need to increment each entry by 1 individually. 
The difference in execution is shown in Figure 1. In this experiment, we utilize a SIMD 
processor in the form of NVIDIA GPUs.  

 
Figure 1: SISD vs. SIMD Processor Model  
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GPUs, or Graphics Processing Units, are designed for graphics applications as the name would 
imply and use a SIMD processing model. These processors have multiple cores working on 
different entries at the same time using the same instruction. For our tests, we used the CUDA 
architecture, a group of libraries for implementing general purpose applications for NVIDIA 
GPUs [NVIDIA17b].  

2.2. MERCATOR 

MERCATOR is a framework for building applications on the GPU using CUDA developed by 
Dr. Stephen Cole. The framework is designed for creating an easy way for developers to 
construct efficient implementations of irregular data applications, which are not commonly well 
supported on GPUs. Irregular data applications as defined by Dr. Cole are ,"... applications that 
exhibit some form of divergent control flow, unbalanced workloads, unpredictable memory 
accesses, input-dependent dataflow, and complicated data structure requirements," [Cole 17].  

To represent these types of applications, MERCATOR uses Data Flow Graphs. A graph of a 
typical application is shown in Figure 2.  

 
Figure 2: MERCATOR Data Flow Graph  

These graphs represent the application through nodes, modules, and edges. Nodes are parts of the 
application where operations are performed by the GPU. The code each node executes is dictated 
by what module they are. In the example above, the first node is of type Module A, the second 
and fifth are of type Module B, the third is of type Module C, and the fourth is also of type 
Module A. All the nodes of the same module run the same code, but may have different inputs 
depending on where they exist in the graph. Finally, the edges connect the nodes together and 
define what kind of and how much data travels across it.  

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html


http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html  4 

2.3. BLAST 

BLAST, or Basic Local Alignment Search Tool, is an application developed for DNA sequence 
comparison [Altschul90]. Many implementations have been made of this application due to its 
high impact in the field of Genomics, the most notable being NCBI-BLASTN. Various other 
groups have used GPUs to accelerate BLAST such as GPU-BLAST with a speedup from NCBI-
BLAST ranging from 3 to 4 on average [Vouzis11].  

However, many of the GPU accelerated implementations for BLAST are only built for BLAST. 
That is, many of the same design ideas utilized in the construction of BLAST could be used to 
develop other irregular data flow applications. This is why we would like to see the viability of 
MERCATOR as a general purpose framework for producing efficient high impact applications 
such as BLAST on GPUs.  

BLAST can be partitioned into 4 modules in MERCATOR: Seed Matching, Seed Enumeration, 
Small Extension, and Ungapped Extension. The application graph for MERCATOR is shown in 
Figure 3 below.  

 
Figure 3: BLAST application graph in MERCATOR  

First, the Seed Matching module takes multiple database strings, in this case 8 DNA bases, and 
compares them to a hash table of the query string. This stage determines whether or not the 
database sequence exists anywhere in the query sequence.  

Second, the Seed Enumeration module takes the database sequences that exist in the query and 
determines how many instances of the match exists between the two. For example, a database 
string exists in two places in the query. This stage will know that the match exists from the prior 
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stage and will iterate over all the instances where the match occurs. All the matches found will 
then be sent off to the next stage as points, with starting positions in the query and database.  

Next, the Small Extension module extends the points found earlier to include the next 3 bases to 
first the left, then the right. If either side of the extension matches, then the match passes to the 
following stage.  

Finally, the Ungapped Extension module performs a user defined window size extension on the 
match. This extension is the same as the previous module, but extends for however long the user 
defines, in our case 64 bases to the left and 64 bases to the right. Matches are given a score of +1 
and mismatches a score of -3. The module then determines if the maximal score at any point in 
the matching process is greater than a user defined value and either discards the match, or stores 
the match to be returned to the CPU side of the application for further processing.  

From domain knowledge, we know that as the data moves through the BLAST pipeline of 
execution, the amount of data shrinks and the execution time increases [Cole17]. Thus, it should 
be advantageous to separate all the stages assuming there is no overhead. For our tests, we would 
like to see whether or not the overhead of MERCATOR is worth splitting all the stages into 
separate modules, or if a unified module containing all the separate module code or some mix of 
the two is most optimal for execution time.  

3. Experimental Design 
In this section, we will discuss the design of the experiment. We will first explore the system 
definition and then describe the services, metrics, and parameters of the system. We then will 
explore which factors we wish to learn more about.  

3.1. System Definition 

The system under exploration is a MERCATOR application implementing the BLAST pipeline 
described in section 2.3. The study will examine the performance implications of MERCATOR 
overhead in the BLAST pipeline.  

3.2. Services 

The system described offers a single service, finding matches between query and database strings 
of DNA bases. As outlined in section 2.3, the BLAST pipeline takes a query string and database 
string of DNA bases, and provides the user with the points in the files which match the best.  

3.3. Metrics 

For this study, we will examine 2 factors:  

• Model Type 
• Workloads 
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Model Type will have 3 levels:  

• Unified 
• Separate 
• Mixed 

Workloads will have 2 levels:  

• Small 
• Large 

3.3.1. Model Type 

The Model Type describes the topology of the current experiment. As described in section 2.3, 
there are 4 modules that exist in the BLAST pipeline. To determine how to properly combine 
modules to minimize execution time, we will examine 3 types of application topologies for 
BLAST.  

The first topology is Unified. This topology has all of the modules combined into one module. 
The application graph is shown below in Figure 4. We expect this model type to have the worst 
performance for this application.  

 
Figure 4: Unified Model Type of BLAST application  

The third and final topology is Mixed. Given that we know from domain knowledge that the 
Seed Matching stage filters out almost all non-matches, as well as has the shortest execution 
time, we will keep Seed matching in a separate node. The rest of the pipeline will remain 

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html


http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html  7 

combined as one node in the application graph as shown in Figure 5. We expect this model type 
to potentially have performance gains over the Separate model type due to having less overhead 
from infrequently executed later pipeline stages.  

 
Figure 5: Mixed application graph  

3.3.2. Workloads 

The workloads are two text files containing DNA bases for the application. The application is 
built to use 2-bit data representations for the database string and a FASTA format (ASCII 
Characters) for the query string. The Small workload uses a 2KB portion of the salmonella 
genome as a query and a 2-bit representation of the human chromosome 1 for the database. The 
Large workload uses a 100KB portion of the salmonella genome as a query and a 2-bit 
representation of the human chromosome 1 for the database.  

3.4. System Parameters 

Parameters that could effect the system include:  

• Model Type 
• Workload 
• GPU Architecture 
• Graphics Card Specifications 
• Thread to Work Mapping 

For the purposes of this experiment, we can ignore the Graphics Card Specifications and Thread 
to Work Mapping. The first can be ignored since we will only be using a single GTX980Ti 
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graphics card for testing. In addition, we can ignore the Thread to Work Mapping as we will only 
be testing work mapped 1 to 1. This means each thread in the GPU will only be performing 
operations on a single data entry at a time. We will also ignore the GPU Architecture as the 
application has been developed independent of the architecture.  

4. Evaluation Technique 
We define our experiment as a Two Factor Full Factorial Design with Replications. This design 
will utilize the two factors described in section 3.3, with Factor A being the Model Type and 
Factor B being the Workload. We will be using 5 replications of each combination to bring the 
total number of experiments to 30. We will be looking at the total execution time on the GPU of 
each combination. In addition, since we are examining execution time, we know that the model 
is multiplicative, and thus must perform a log transformation to attain accurate results [Jain91].  

5. Performance Study 
In this section, we will discuss our results and analysis of the execution times for the BLAST 
pipeline in relation to Model Type (A) and Workload (B).  

5.1. Results 

For the results we found each replication measured in Milliseconds (ms) to be as follows in 
Table 1:  

Data Size Unified Separate Mixed 
Small 984.41 604.6 470.26 

 986.35 610.4 474.5 

 983.89 616.61 473.68 

 987.1 598.61 484.06 

 989.15 610.04 482.04 
Large 1133.2 2497.75 1281.07 

 1124.53 2493 1284.57 

 1135.93 2490.08 1278.25 

 1129.5 2501.46 1275.3 

 1136.8 2497.21 1264.81 

Table 1: Measured Results  

We then perform a log transformation on the dataset since we are examining execution times 
[Jain91]. Table 2 shows the results after the log base 10 transformation.:  
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Data Size Unified Separate Mixed 
Small 2.993176 2.781468 2.672338 

 2.994031 2.785615 2.676236 

 2.992947 2.790011 2.675485 

 2.994361 2.777144 2.684899 

 2.995262 2.785358 2.683083 
Large 3.054307 3.397549 3.107573 

 3.040971 3.396722 3.108758 

 3.055352 3.396213 3.106616 

 3.052886 3.398194 3.105612 

 3.055684 3.397455 3.102025 

Table 2: Log Base 10 Transformation on Measured Data  

Next, we determine the effects of the Model Types and Workloads in Table 3:  

Log10  Models       

  Unified Separate Mixed  
Row 
Sum 

Row 
Mean 

Row 
Effect 

Workloads Small 2.993955 2.783919 2.678408  8.456283 2.818761 -0.183483 

 Large 3.05384 3.397227 3.106117  9.557183 3.185728 0.183483 
         
 Column Sum 6.047795 6.181146 5.784525  18.01347   

 Column Mean 3.023898 3.090573 2.892263   3.002244  

 
Column 
Effect 0.021653 0.088329 -

0.109982     

Table 3: Effects of Model Types and Workloads  

Now, we must calculate the effects of the interactions between the Model Types and Workloads 
in Table 4:  

Interactions Unified Separate Mixed 
Small 0.153541 -0.12317 -0.03037 
Large -0.153541 0.12317 0.03037 

Table 4: Interactions between Model Types and Workloads  

Then, we construct the ANOVA Table for the experiment:  

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html


http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html  10 

Component Sum 
Squared 

% 
Variation 

Degrees of 
Freedom 

Mean 
Squared 

F-
Computed 

F-Table 
(,24) 

y 272.0147  30    
ybar... 270.4041  1    

y - ybar... 1.61059 100 29    
Model Type 

(A) 0.203668 12.64554 2 0.101834 9572.51 2.54 

Workload (B) 1.009985 62.709 1 1.009985 94939.79 2.93 
Interaction 

(AB) 0.396682 24.62961 2 0.198341 18644.3 2.54 

Error (e) 0.000255 0.015852 24 0.000011   

Table 5: ANOVA Table  

Next, we determine the 90% confidence intervals for the Model Types and Workloads in Table 
6:  

90% CIs Alpha    90% CIs Beta   
Alpha Number Lower Bound Upper Bound  Beta Number Lower Bound Upper Bound 

1 0.020212 0.023094  1 -0.1845 -0.1825 
2 0.086888 0.89769  2 0.182465 0.184502 
3 -0.11142 -0.10854     

Table 6: 90% Confidence Intervals of Model Types (Alpha) and Workloads (Beta)  

Likewise, we determine the 90% confidence intervals for the interactions between the Model 
Types and Workloads in Table 7:  

90% CIs 
Interactions A1  A2  A3  

 
Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

Lower 
Bound 

Upper 
Bound 

B1 0.1521 0.1550 -0.12461 -0.12173 -0.03181 -0.02893 
B2 -0.15498 -0.1521 0.121729 0.1246113 0.02893 0.031812 

Table 7: 90% Confidence Intervals of Interactions  

Finally, we utilize visual tests to ensure that ensure that our experimental model is valid. We first 
verify if the errors are normally distributed with a QQ-plot in Figure 6:  
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Figure 6: Quantile Quantile Plot  

Lastly, we determine if the errors are independent with a plot of Residuals versus Predicted 
Responses in Figure 7:  

http://www.cse.wustl.edu/%7Ejain/cse567-17/ftp/stmerc/index.html


http://www.cse.wustl.edu/~jain/cse567-17/ftp/stmerc/index.html  12 

 
Figure 7: Residuals Vs Predicted Response  

5.2. Analysis 

From looking at the results, we can see that our hypothesis that the Mixed model type performed 
the best for the Small workload. For the Large workload however, we expected a result similar to 
what we achieved. Since the Large workload would contain the most number of matches 
between the database and query, the model with the least overhead would perform the fastest, 
hence why the Unified model runs the fastest [Cole17]. We have also determined that the 
Workloads and Model Type are significant factors at 90% Confidence, and our experiments pass 
the F-Test. From Figure 6, we can see that our data is normally distributed and from Figure 7 we 
see that the errors are independent. We have also determined that the Workload explains most of 
the variation in the model, and is thus the most important factor in the study. The Model type 
could also be considered important, but is nowhere near the importance of the Workload.  

6. Conclusion 
Through this study, we explored the effects of the overhead incurred when using MERCATOR. 
We found that in the Small case that our hypothesis of the Mixed implementation performing the 
best was true. However, the Large test case resulted in the opposite conclusion, showing the 
Unified implementation having the greatest performance. As mentioned before, this was the 
expected result, as almost all of the data would not be filtered by each filter, making the 
sparseness of the data in the final filters irrelevant to performance.  
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7. Future Work 
Looking forward, we would like to determine where the threshold of the MERCATOR 
framework becomes detrimental to performance. Although we may have obtained a 
contradictory result between the Small and Large data sets, it still gives insight into what could 
be tested for future overhead in applications such as BLAST in the MERCATOR framework. It 
would be interesting to see if one could determine the overhead costs in relation to the total 
execution time to allow users to properly reconfigure their code, potentially automatically, to 
minimize total execution time for most cases.  
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BLAST: Basic Local Alignment Search Tool  
CUDA: Compute Unified Device Architecture  
MERCATOR: Mapping Enumerator  
GPU: Graphics Processing Unit  
CPU: Central Processing Unit  
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SISD: Single Instruction Single Data  
SIMD: Single Instruction Multiple Data  
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