
Data Center Ethernet

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at:

http://www.cse.wustl.edu/~jain/cse570-13/

- 1. Residential vs. Data Center Ethernet
- 2. Review of Ethernet Addresses, devices, speeds, algorithms
- 3. Enhancements to Spanning Tree Protocol
- 4. Virtual LANs
- 5. Data Center Bridging Extensions

Quiz: True or False?

Which of the following statements are generally true?			
TF			
	Ethernet is a local area network (Local ≤ 2km)		
	Token ring, Token Bus, and CSMA/CD are the three most mmon LAN access methods.		
	Ethernet uses CSMA/CD.		
	Ethernet bridges use spanning tree for packet forwarding.		
	Ethernet frames are 1518 bytes.		
	Ethernet does not provide any delay guarantees.		
	Ethernet has no congestion control.		
	Ethernet has strict priorities.		

Residential vs. Data Center Ethernet

Residential	Data Center		
□ Distance: up to 200m	□ No limit		
□ Scale:			
Few MAC addresses	Millions of MAC Addresses		
> 4096 VLANs	Millions of VLANs Q-in-Q		
Protection: Spanning tree	Rapid spanning tree,		
	(Gives 1s, need 50ms)		
Path determined by	Traffic engineered path		
spanning tree			
Simple service	Service Level Agreement.		
	Rate Control.		
Priority	Need per-flow/per-class QoS		
⇒ Aggregate QoS			
No performance/Error	Need performance/BER		
monitoring (OAM)	_		
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-13/ ©2013 Raj Jain			

IEEE 802 Address Format

□ 48-bit:1000 0000 : 0000 0001 : 0100 0011

: 0000 0000 : 1000 0000 : 0000 1100

= 80:01:43:00:80:0C

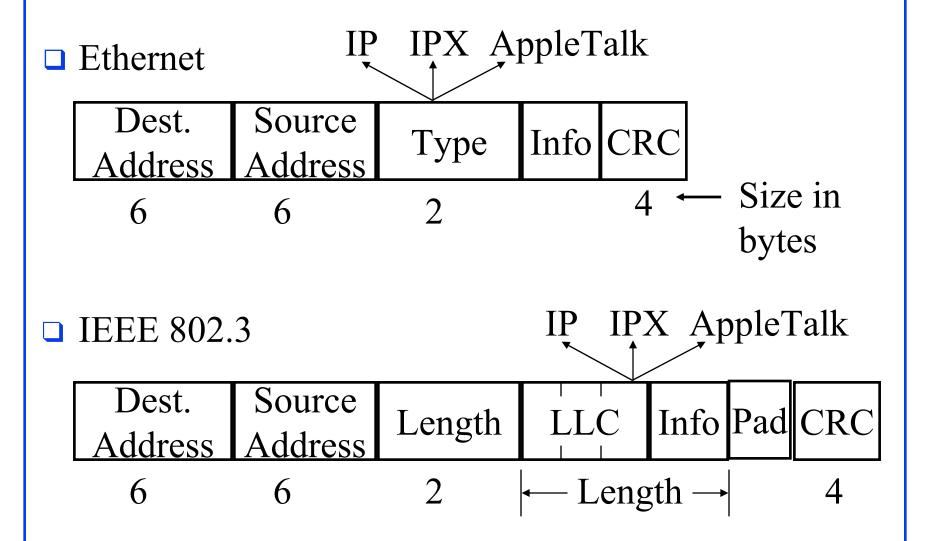
	nizationally Identifier (Universal/ Local	OUI)	24 bits assigned by OUI Owner
1	1	22	24

- □ Multicast = "To all bridges on this LAN"
- Broadcast = "To all stations"

= 1111111....111 = FF:FF:FF:FF:FF

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/


IEEE Standards Numbering System

- □ IEEE 802.* and IEEE 802.1* standards (e.g., IEEE 802.1Q-2011) apply to all IEEE 802 technologies:
 - > IEEE 802.3 Ethernet
 - > IEEE 802.11 WiFi
 - > IEEE 802.16 WiMAX
- IEEE 802.3* standards apply only to Ethernet, e.g., IEEE802.3ba-2010
- Standards with all upper case letters are base standards E.g., IEEE 802.1AB-2009
- □ Standards with lower case are additions/extensions/revisions. Merged with the base standard in its next revision. e.g., IEEE 802.1w-2001 was merged with IEEE 802.1D-2004
- □ Standards used to be numbered, sequentially, e.g., IEEE 802.1a, ..., 802.1z, 802.1aa, 802.1ab, ...
- Recently they started showing base standards in the additions, e.g., IEEE 802.1Qau-2010

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

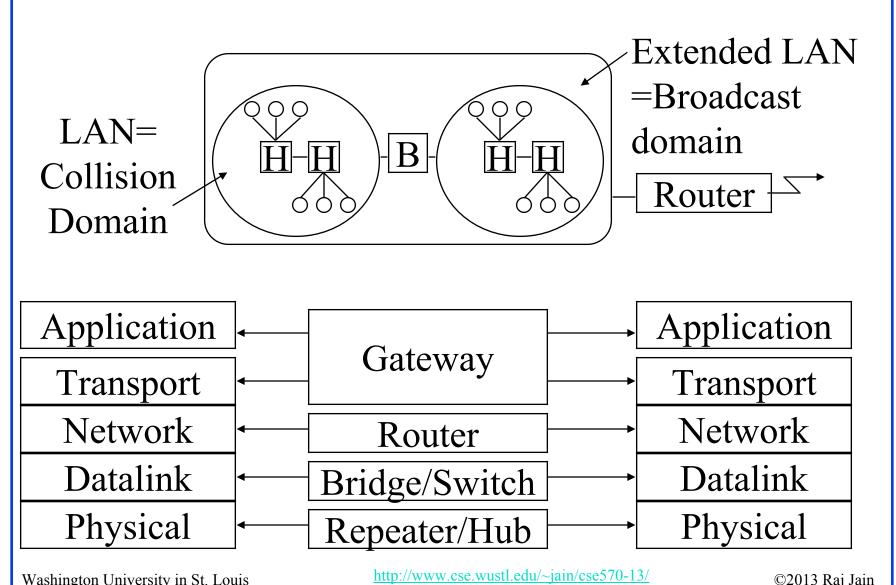
Ethernet vs IEEE 802.3

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

Names, IDs, Locators

Name: John Smith


ID: 012-34-5678

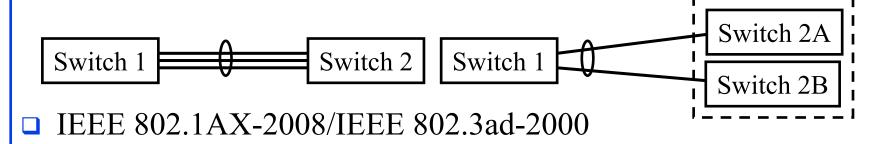
Locator:

1234 Main Street Big City, MO 12345 USA

- □ Locator changes as you move, ID and Names remain the same.
- **Examples**:
 - Names: Company names, DNS names (Microsoft.com)
 - > IDs: Cell phone numbers, 800-numbers, Ethernet addresses, Skype ID, VOIP Phone number
 - > Locators: Wired phone numbers, IP addresses

Interconnection Devices

Interconnection Devices


- Repeater: PHY device that restores data and collision signals
- □ **Hub**: Multiport repeater + fault detection and recovery
- Bridge: Datalink layer device connecting two or more collision domains. MAC multicasts are propagated throughout "extended LAN."
- Router: Network layer device. IP, IPX, AppleTalk. Does not propagate MAC multicasts.
- □ Switch: Multiport bridge with parallel paths
- □ These are functions. Packaging varies.

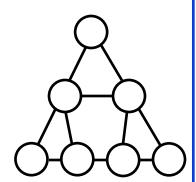
Ethernet Speeds

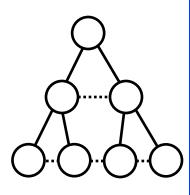
- □ IEEE 802.3ba-2010 (40G/100G) standard
- □ 10Mbps, 100 Mbps, 1 Gbps versions have both CSMA/CD and Full-duplex versions
- □ No CSMA/CD in 10G and up
- No CSMA/CD in practice now even at home or at 10 Mbps
- □ 1 Gbps in residential, enterprise offices
- □ 1 Gbps in Data centers, moving to 10 Gbps and 40 Gbps
- 100G in some carrier core networks 100G is still more expensive than 10×10G
- Note: only decimal bit rates are used in networking
 No cheating like binary byte values used in storage
 1 Gbps = 10⁹ b/s, Buy 256 GB Disk = 238.4 GB storage

Ref: http://en.wikipedia.org/wiki/100_Gigabit_Ethernet

Link Aggregation Control Protocol (LACP)

- Allows several parallel links to be combined as one link $3 \times 1 \text{Gbps} = 3 \text{ Gbps}$
- Allows any speed links to be formed
- Allows fault tolerance
 - ⇒ Combined Link remains connected even if one of the member links fails
- Several proprietary extensions. E.g., aggregate links to two switches which act as one switch.

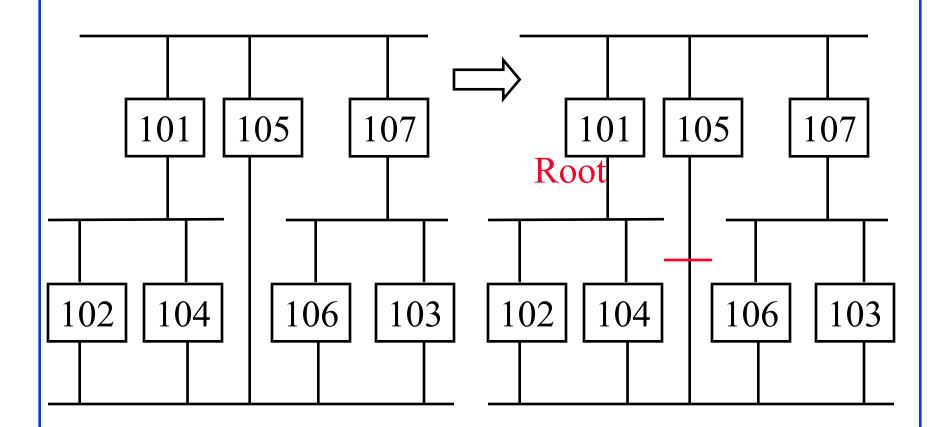

Ref: Enterasys, "Enterasys Design Center Networking – Connectivity and Topology Design Guide," 2013, http://www.enterasys.com/company/literature/datacenter-design-guide-wp.pdf


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

Spanning Tree Algorithm

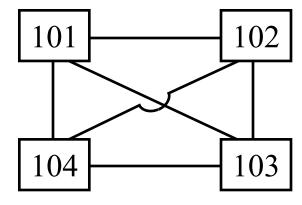
- ☐ Helps form a tree out of a mesh topology
- All bridges multicast to "All bridges"
 - > My ID. 64-bit ID = 16-bit priority + 48-bit MAC address.
 - > Root ID
 - > My cost to root
- □ The bridges update their info using Dijkstra's algorithm and rebroadcast
- ☐ Initially all bridges are roots but eventually converge to one root as they find out the lowest Bridge ID.
- □ On each LAN, the bridge with minimum cost to the root becomes the Designated bridge
- All ports of all non-designated bridges are blocked.



Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

Spanning Tree Example



Ref: Cisco, "Understanding Spanning-Tree Protocol Topology Changes,"

http://www.cisco.com/en/US/tech/tk389/tk621/technologies_tech_note09186a0080094797.shtml Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-13/

Homework 4

■ Which links in the following diagram will be blocked by spanning tree? Justify your answer.

Enhancements to STP

- □ A topology change can result in 1 minute of traffic loss with $STP \Rightarrow All\ TCP$ connections break
- □ Rapid Spanning Tree Protocol (RSTP)
 IEEE 802.1w-2001 incorporated in IEEE 802.1D-2004
- \square One tree for all VLANs \Rightarrow Common spanning tree
- Many trees ⇒ Multiple spanning tree (MST) protocol IEEE 802.1s-2002 incorporated in IEEE 802.1Q-2005
- One or more VLANs per tree.

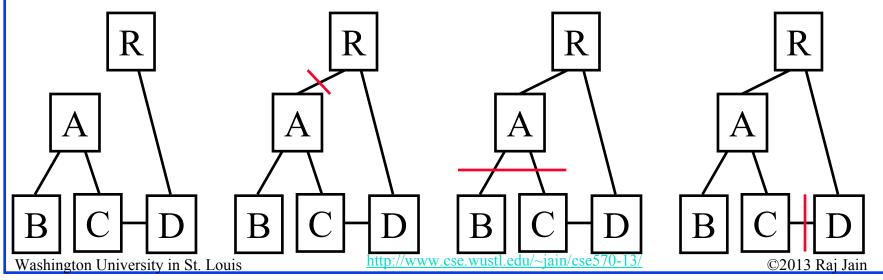
Rapid Spanning Tree

- □ IEEE 802.1w-2001 incorporated in IEEE 802.1D-2004
- Normal spanning tree takes a few minutes to stabilize after a topology change ⇒ All traffic interrupted for this time
- RSTP fixes this by:
 - 1. Being time + event driven instead of just event driven
 - Once converged, STP sends BPDUs only on change
 - RSTP sends Hellos every 2 seconds. Quick failure detection.
 - 2. Differentiating between edge ports (servers) and non-edge ports (switches). No loops ever on edge ports
 - Differentiating between point-to-point links (full duplex) and shared links (half-duplex). RSTP only on full-duplex

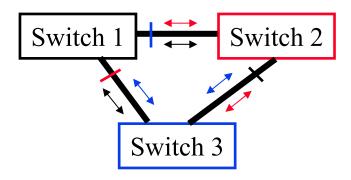
Ref: Cisco, Understanding Rapid Spanning Tree Protocol (802.1w),

http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09186a0080094cfa.shtml

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse570-13/

RSTP (Cont)

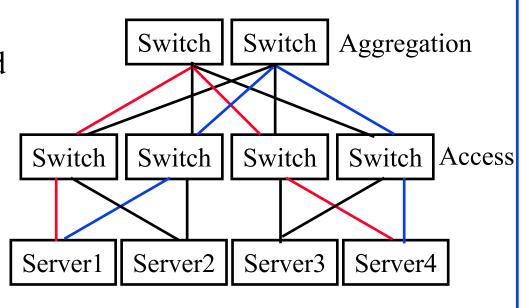

- 4. Merging three port states (Disabled, blocking, listening) in to one (discarding).
- Adding 4 new flags in BPDU, that allow sending a proposal and accepting or not accepting the received proposal
- RSTP is backward compatible with STP.
 RSTP-unaware bridge drop RSTP and RSTP is not used.

RSTP Example

- A new link is added between R and A. The link comes up in discarding state.
- R and A exchange proposal.A realizes that it has a shorter path to the root.
- A unblocks the R-A link and blocks A-B, A-C links and sends proposal.
- B is edge port, it always accepts. C accepts and blocks C-D

MSTP (Multiple Spanning Tree)

- MSTP (Multiple STP)
 IEEE 802.1s-2002 incorporated in IEEE 802.1Q-2005
- Each tree serves a group of VLANs.
- A bridge port could be in forwarding state for some VLANs and blocked state for others.

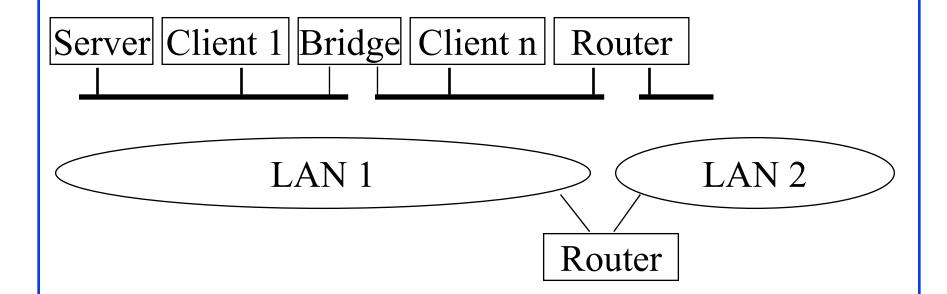

IS-IS Protocol

- □ Intermediate System to Intermediate System (IS-IS) is a protocol to build routing tables. Link-State routing protocol => Each nodes sends its connectivity (link state) information to all nodes in the network
- □ Dijkstra's algorithm is then used by each node to build its routing table.
- □ Similar to OSPF (Open Shortest Path First).
- □ OSPF is designed for IPv4 and then extended for IPv6. IS-IS is general enough to be used with any type of addresses
- □ OSPF is designed to run on the top of IP
 IS-IS is general enough to be used on any transport
 ⇒ Adopted by Ethernet

Ref: http://en.wikipedia.org/wiki/IS-IS

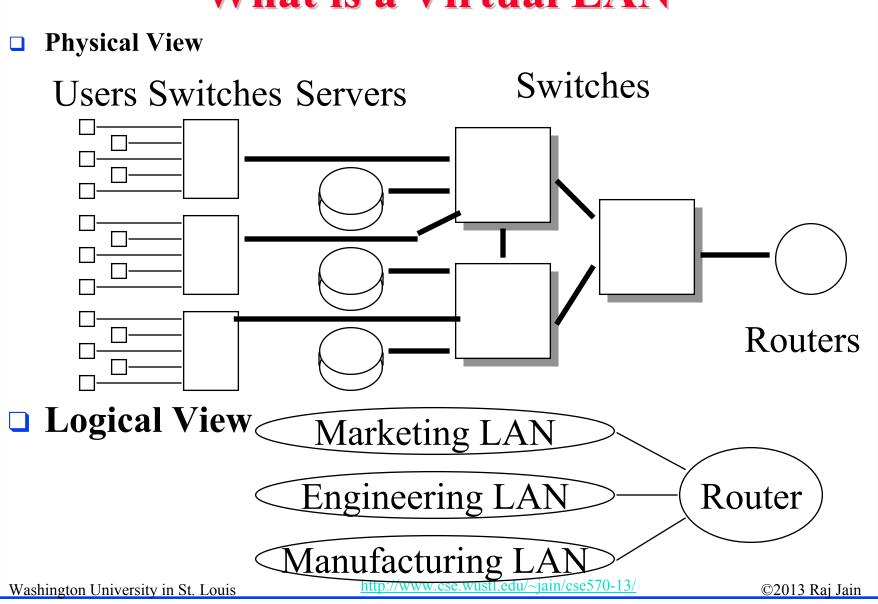
Shortest Path Bridging

- □ IEEE 802.1aq-2012
- Allows all links to be used \Rightarrow Better CapEx
- □ IS-IS link state protocol (similar to OSPF) is used to build shortest path trees for each node to every other node within the SPB domain
- Equal-cost multi-path (ECMP) used to distribute load

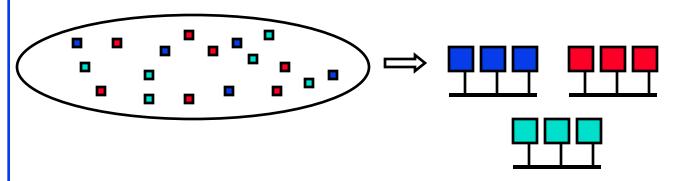


Ref: http://en.wikipedia.org/wiki/Shortest Path Bridging

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse570-13/

What is a LAN?



- □ LAN = Single broadcast domain = Subnet
- No routing between members of a LAN
- Routing required between LANs

What is a Virtual LAN

Virtual LAN

- □ Virtual LAN = Broadcasts and multicast goes only to the nodes in the virtual LAN
- LAN membership defined by the network manager ⇒ Virtual

Types of Virtual LANs

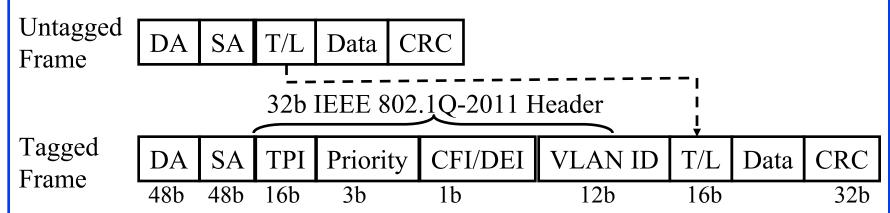
- □ Layer-1 VLAN = Group of Physical ports
- □ Layer-2 VLAN = Group of MAC addresses
- □ Layer-3 VLAN = IP subnet

Switch	VL	AN
Port	1	2
A 1		
A2		$\sqrt{}$
A3		
B1		$\sqrt{}$
B2		
Washington University in St. Louis		

VLAN1 VLAN2

A1B234565600	21B234565600
D34578923434	634578923434
1345678903333	8345678903333
3438473450555	9438473450555
4387434304343	5387434304343
4780357056135	6780357056135
4153953470641	9153953470641
3473436374133	0473436374133
3403847333412	8403847333412
3483434343143	8483434343143
4343134134234	0343134134234

VLAN1

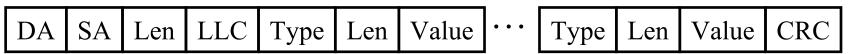

23.45.6

VLAN2

IPX

IEEE 802.1Q-2011 Tag

- □ Tag Protocol Identifier (TPI)
- □ Priority Code Point (PCP): 3 bits = 8 priorities 0..7 (High)
- □ Canonical Format Indicator (CFI): $0 \Rightarrow$ Standard Ethernet, $1 \Rightarrow$ IBM Token Ring format (non-canonical or non-standard)
- □ CFI now replaced by Drop Eligibility Indicator (DEI)
- □ VLAN Identifier (12 bits \Rightarrow 4095 VLANs)
- Switches forward based on MAC address + VLAN ID Unknown addresses are flooded.


Ref: Canonical vs. MSB Addresses, http://support.lexmark.com/index?page=content&id=HO1299&locale=en&userlocale=EN_US

Ref: C. Santana, "Data Cantan Virtualization Fundamentals," Ciaca Press, 2014, ISBN 1587142240.

Ref: G. Santana, "Data Center Virtualization Fundamentals," Cisco Press, 2014, ISBN:1587143240 Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-13/

Link Layer Discovery Protocol (LLDP)

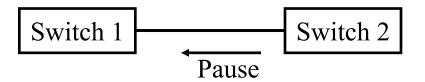
- □ IEEE 802.1AB-2009
- Neighbor discovery by periodic advertisements
- Every minute a LLC frame is sent on every port to neighbors
- LLDP frame contains information in the form of Type-Length-Value (TLV)
- □ Types: My Chassis ID, My Port ID, Time-to-live, Port description (Manufacturer, product name, version), Administratively assigned system name, capabilities, MAC address, IP Address, Power-via-MDI, Link aggregation, maximum frame size, ...

Ref: Extreme Networks, "Link Layer Discovery Protocol (LLDP)," http://www.extremenetworks.com/libraries/products/LLDP TB.pdg

Ref: M. Srinivasan, "Tutorial on LLDP," http://www.eetimes.com/document.asp?doc_id=1272069

Ref: http://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

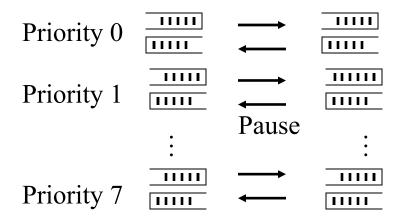
Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse570-13/

Data Center Bridging

- □ Goal: To enable storage traffic over Ethernet
- Four Standards:
 - Priority-based Flow Control (IEEE 802.1Qbb-2011)
 - > Enhanced Transmission Selection (IEEE 802.1Qaz-2011)
 - > Congestion Control (IEEE 802.1Qau-2010)
 - > Data Center Bridging Exchange (IEEE 802.1Qaz-2011)

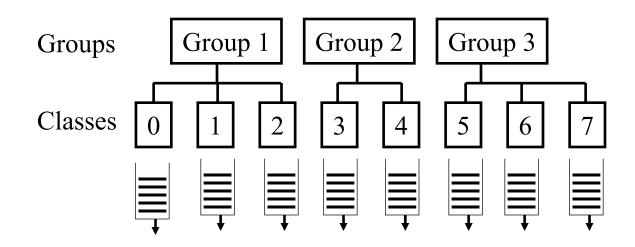
Ref: M. Hagen, "Data Center Bridging Tutorial," http://www.iol.unh.edu/services/testing/dcb/training/DCB-Tutorial.pdf


Ethernet Flow Control: Pause Frame

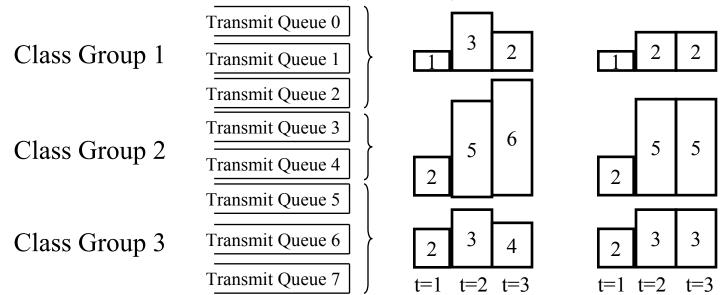
- □ Defined in IEEE 802.3x-1997. A form of on-off flow control.
- A receiving switch can stop the adjoining sending switch by sending a "Pause" frame.
 - Stops the sender from sending any further information for a time specified in the pause frame.
- □ The frame is addressed to a standard (well-known) multicast address. This address is acted upon but not forwarded.
- Stops all traffic. Causes congestion backup.

Ref: http://en.wikipedia.org/wiki/Ethernet_flow_control

Priority-based Flow Control (PFC)


- IEEE 802.1Qbb-2011
- IEEE 802.1Qbb-2011 allows any single priority to be stopped. Others keep sending

Ref: J. L. White, "Technical Overview of Data Center Networks," SNIA, 2013, http://www.snia.org/sites/default/education/ tutorials/2012/fall/networking/JosephWhite Technical%20Overview%20of%20Data%20Center%20Networks.pdf http://www.cse.wustl.edu/~jain/cse570-13/

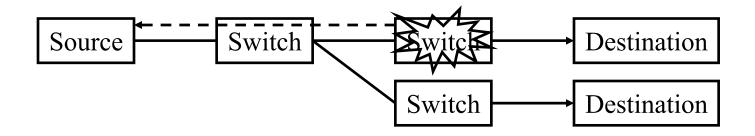

Enhanced Transmission Selection

- □ IEEE 802.1Qaz-2011
- □ Goal: Guarantee bandwidth for applications sharing a link
- □ Traffic is divided in to 8 classes (not priorities)
- ☐ The classes are grouped

Washington University in St. Louis

ETS (Cont)

- □ Fairness within a group
- □ 3-8 classes.


At least 3: 1 with PFC, 1 W/O PFC, 1 Strict Priority

- Bandwidth allocated per class group
- Bandwidth unused by a class group is consumed by others
- Example: Group 3=3, Group 2=5

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

Quantized Congestion Notification (QCN)

- □ IEEE 802.1Qau-2010 Dynamic Congestion Notification
- A source quench message is sent by the congested switch direct to the source. The source reduces its rate for that flow.
- □ Sources need to keep per-flow states and control mechanisms
- \square Easy for switch manufacturers but complex for hosts. Implemented in switches but not in hosts \Rightarrow Not effective.
- □ The source may be a router in a subnet and not the real source
 ⇒ Router will drop the traffic. QCN does not help in this case.

Ref: *I. Pepelnjak*, "DCB Congestion Notification (802.1Qau)," http://blog.ipspace.net/2010/11/data-center-bridging-dcb-congestion.html
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/
©2013 Raj Jain

DCBX

- Data Center Bridging eXchange, IEEE 802.1Qaz-2011
- Uses LLDP to negotiate quality metrics and capabilities for Priority-based Flow Control, Enhanced Transmission Selection, and Quantized Congestion Notification
- □ New TLV's
 - > Priority group definition
 - Group bandwidth allocation
 - > PFC enablement per priority
 - > QCN enablement
 - > DCB protocol profiles
 - > FCoE and iSCSI profiles

- 1. Ethernet's use of IDs as addresses makes it very easy to move systems in the data center \Rightarrow Keep traffic on the same Ethernet
- 2. Spanning tree is wasteful of resources and slow. Ethernet now uses shortest path bridging (similar to OSPF)
- 3. VLANs allow different non-trusting entities to share an Ethernet network
- 4. Data center bridging extensions reduce the packet loss by enhanced transmission selection and Priority-based flow control

Washington University in St. Louis

List of Acronyms

■ BPDU Bridge Protocol Data Unit

☐ CFI Canonical Format Indicator

CSMA Carrier Sense Multiple Access with Collision Detection

DCB Data Center Bridging

DCBX Data Center Bridging eXtension

DEI Drop Eligibility Indicator

DNS Domain Name System

□ ECMP Equal-cost multi-path

□ ETS Enhanced Transmission Selection

□ GB Giga Byte

□ ID Identifier

□ IS-IS Intermediate System to Intermediate System

□ iSCSI Internet Small Computer System Interface

http://www.cse.wustl.edu/~jain/cse570-13/

List of Acronyms (Cont)

□ LACP Link Aggregation Control Protocol

□ LAN Local Area Network

LLC Logical Link Control

□ LLDP Link Layer Discovery Protocol

MAC Media Access Control

MDI Medium Dependent Interface

MSTP Multiple Spanning Tree

OAM Operations, Administration, and Management

OSPFOpen Shortest Path First

□ PCP Priority Code Point

□ PFC Priority-based Flow Control

□ PHY Physical layer

QCN Quantized Congestion Notification

QoS Quality of Service

□ RSTP Rapid Spanning Tree Protocol

SPB Shortest Path Bridging

List of Acronyms (Cont)

STP Spanning Tree Protocol

□ TLV Type-Length-Value

□ TPI Tag Protocol Identifier

VLAN Virtual Local Area Network

■ VM Virtual machine

□ VOIP Voice over IP

□ WAN Wide Area Network

Reading List

- □ G. Santana, "Data Center Virtualization Fundamentals," Cisco Press, 2014, ISBN:1587143240
- Enterasys, "Enterasys Design Center Networking Connectivity and Topology Design Guide," 2013, http://www.enterasys.com/company/literature/datacenter-design-guide-wp.pdf
- □ Cisco, "Understanding Spanning-Tree Protocol Topology Changes,"

 http://www.cisco.com/en/US/tech/tk389/tk621/technologies_tech_note0918-6a0080094797.shtml
- □ Cisco, Understanding Rapid Spanning Tree Protocol (802.1w), http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09 186a0080094cfa.shtml
- □ Canonical vs. MSB Addresses, http://support.lexmark.com/index?page=3Dcontent&id=3DHO1299&locale=3Den&userlocale=3DEN US
- Extreme Networks, "Link Layer Discovery Protocol (LLDP),"
 http://www.extremenetworks.com/libraries/products/LLDP_TB.pdf

Reading List (Cont)

- M. Srinivasan, "Tutorial on LLDP,"

 http://www.eetimes.com/document.asp?doc_id=3D1272069
- □ P. Thaler, et al, "IEEE 802.1Q" IETF 86 tutorial, March 10, 2013, http://www.ietf.org/meeting/86/tutorials/86-IEEE-8021-Thaler.pdf
- M. Hagen, "Data Center Bridging Tutorial," http://www.iol.unh.edu/services/testing/dcb/training/DCB-Tutorial.pdf
- □ J. L. White, "Technical Overview of Data Center Networks," SNIA, 2013, http://www.snia.org/sites/default/education/tutorials/2012/fall/networking/JosephWhite_Technical%20Overview%20of%20Data%20Center%20Networks.pdf
- □ I. Pepelnjak, "DCB Congestion Notification (802.1Qau)," http://blog.ipspace.net/2010/11/data-center-bridging-dcb-congestion.html

Wikipedia Links

- □ http://en.wikipedia.org/wiki/10-gigabit_Ethernet
- □ http://en.wikipedia.org/wiki/100_Gigabit_Ethernet
- □ http://en.wikipedia.org/wiki/Data_center
- □ http://en.wikipedia.org/wiki/Data_center_bridging
- □ http://en.wikipedia.org/wiki/Data-link-layer
- □ http://en.wikipedia.org/wiki/EtherChannel
- □ http://en.wikipedia.org/wiki/Ethernet
- □ http://en.wikipedia.org/wiki/Ethernet_flow_control
- □ http://en.wikipedia.org/wiki/Ethernet_frame
- □ http://en.wikipedia.org/wiki/Ethernet physical layer
- □ http://en.wikipedia.org/wiki/EtherType
- □ http://en.wikipedia.org/wiki/Fast_Ethernet
- □ http://en.wikipedia.org/wiki/Gigabit Ethernet

Wikipedia Links (Cont)

- □ http://en.wikipedia.org/wiki/IEEE_802.1aq
- □ http://en.wikipedia.org/wiki/IEEE 802.1D
- □ http://en.wikipedia.org/wiki/IEEE_802.1Q
- □ http://en.wikipedia.org/wiki/IEEE_802.3
- □ http://en.wikipedia.org/wiki/IEEE_P802.1p
- □ <u>http://en.wikipedia.org/wiki/IS-IS</u>
- □ http://en.wikipedia.org/wiki/Link_Aggregation
- □ http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol
- □ http://en.wikipedia.org/wiki/Link_layer
- □ http://en.wikipedia.org/wiki/Link Layer Discovery Protocol
- □ http://en.wikipedia.org/wiki/Logical_link_control
- □ http://en.wikipedia.org/wiki/MAC_address
- □ http://en.wikipedia.org/wiki/MC-LAG

Wikipedia Links (Cont)

- □ http://en.wikipedia.org/wiki/Media Independent Interface
- □ http://en.wikipedia.org/wiki/Minimum spanning tree
- □ http://en.wikipedia.org/wiki/Network_switch
- □ http://en.wikipedia.org/wiki/Organizationally_unique_identifier
- □ http://en.wikipedia.org/wiki/Port_Aggregation_Protocol
- □ http://en.wikipedia.org/wiki/Priority-based flow control
- □ <u>http://en.wikipedia.org/wiki/RSTP</u>
- □ http://en.wikipedia.org/wiki/Shortest Path Bridging
- □ http://en.wikipedia.org/wiki/Spanning_tree
- □ http://en.wikipedia.org/wiki/Spanning Tree Protocol
- □ http://en.wikipedia.org/wiki/Subnetwork Access Protocol
- □ http://en.wikipedia.org/wiki/Virtual_LAN