Multi-Tenant Isolation and Network Virtualization in Cloud Data Centers

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-13/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

©2013 Raj Jain

- 1. NVO3
- 2. VXLAN
- 3. NVGRE
- 4. STT

Note: Data center interconnection and LAN extension techniques are covered in another module which includes OTV, TRILL, and LISP.

Network Virtualization

- 1. Network virtualization allows tenants to form an overlay network in a multi-tenant network such that tenant can control:
 - 1. Connectivity layer: Tenant network can be L2 while the provider is L3 and vice versa
 - 2. Addresses: MAC addresses and IP addresses
 - 3. Network Partitions: VLANs and Subnets
 - 4. Node Location: Move nodes freely
- 2. Network virtualization allows providers to serve a large number of tenants without worrying about:
 - 1. Internal addresses used in client networks
 - 2. Number of client nodes
 - 3. Location of individual client nodes
 - 4. Number and values of client partitions (VLANs and Subnets)
- 3. Network could be a single physical interface, a single physical machine, a data center, a metro, ... or the global Internet.
- 4. Provider could be a system owner, an enterprise, a cloud provider, or a carrier.

Network Virtualization Techniques

Entity	Partitioning	Aggregation/Extension/Interconnection**
NIC	SR-IOV	MR-IOV
Switch	VEB, VEPA	VSS, VBE, DVS, FEX
L2 Link	VLANs	LACP, Virtual PortChannels
L2 Network using L2	VLAN	PB (Q-in-Q), PBB (MAC-in-MAC), PBB-TE, Access-EPL, EVPL, EVP-Tree, EVPLAN
L2 Network using L3	NVO3,	MPLS, VPLS, A-VPLS, H-VPLS, PWoMPLS,
	VXLAN,	PWoGRE, OTV, TRILL, LISP, L2TPv3,
	NVGRE, STT	EVPN, PBB-EVPN
Router	VDCs, VRF	VRRP, HSRP
L3 Network using L1		GMPLS, SONET
L3 Network using	MPLS, GRE,	MPLS, T-MPLS, MPLS-TP, GRE, PW, IPSec
L3*	PW, IPSec	
Application	ADCs	Load Balancers

^{*}All L2/L3 technologies for L2 Network partitioning and aggregation can also be used for L3 network partitioning and aggregation, respectively, by simply putting L3 packets in L2 payloads.

http://www.cse.wustl.edu/~jain/cse570-13/

^{**}The aggregation technologies can also be seen as partitioning technologies from the provider point of view.

- Network Virtualization Overlays using L3 techniques
- **Problem:** Data Center Virtual Private Network (DCVPN) in a multi-tenant datacenter
- □ Issues:
 - > Scale in Number of Networks: Hundreds of thousands of DCVPNs in a single administrative domain
 - > Scale in Number of Nodes: Millions of VMs on hundred thousands of physical servers
 - > VM (or pM) Migration
 - > Support both L2 and L3 VPNs
 - > Dynamic provisioning
 - > Addressing independence
 - ➤ Virtual Private ⇒ Other tenants do not see your frames
 - > Optimal Forwarding (VRRP inefficient in a large network)

Ref: Network Virtualization Overlays (nvo3) charter, http://datatracker.ietf.org/wg/nvo3/charter/ Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

NVO3 Goals

- Develop a general architectural framework
 - > Identify key functional blocks.
 - > Indentify alternatives for each functional block
 - > Deployments can mix and match these alternatives
 - Analyze which requirements are satisfied by different alternatives
 - Operation, Administration and Management (OAM)

NVO3 Terminology

- Tenant System (TS): VM or pM
- Virtual Network (VN): L2 or L3 Tenant networks
- **Network Virtualization Edges (NVEs):** Entities connecting TSs (virtual/physical switches/routers)
- **Network Virtualization Authority (NVA):** Manages forwarding info for a set of NVEs
- **NV Domain:** Set of NVEs under one authority
- **NV Region**: Set of domains that share some information (to support VNs that span multiple domains)

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse570-13/

©2013 Rai Jain

NVO3 Components

- Underlay Network: Provides overlay network service
- □ Orchestration Systems: Create new VMs and associated vSwitches and other networking entities and properties. May share this information with NVAs.
- □ NVEs could be in vSwitches, external pSwitches or span both.
- NVA could be distributed or centralized and replicated.
- □ NVEs get information from hypervisors and/or NVA.
 - Hypervisor-to-NVE Protocol (data plane learning)
 - NVE-NVA Protocol: Push or Pull (on-demand) model. Control plane learning.
- □ Map and Encap: Find destination NVE (map) and send (encap)

Ref: T. Narten, et al., "An Architecture for Overlay Networks (NVO3)," http://datatracker.ietf.org/doc/draft-narten-nvo3-arch/
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-13/
©2013 Raj Jain

Current NVO Technologies

- BGP/MPLS IP VPNs: Widely deployed in enterprise networks. Difficult in data centers because hosts/hypervisors do not implement BGP.
- BGP/MPLS Ethernet VPNs: Deployed in carrier networks. Difficult in data centers.
- 802.1Q, PB, PBB VLANs
- Shortest Path Bridging: IEEE 802.1aq
- □ Virtual Station Interface (VSI) Discovery and Configuration Protocol (VDP): IEEE 802.1Qbg
- Address Resolution for Massive numbers of hosts in the Data Center (ARMD): RFC6820
- TRILL
- L2VPN: Provider provisioned L2 VPN
- □ Proxy Mobile IP: Does not support multi-tenancy
- LISP: RFC 6830

GRE

- □ Generic Routing Encaptulation (RFC 1701/1702)
- \square Generic \Rightarrow X over Y for any X or Y
- Over IPv4, GRE packets use a protocol type of 47
- Optional Checksum, Loose/strict Source Routing, Key
- Key is used to authenticate the source
- Recursion Control: # of additional encapsulations allowed. $0 \Rightarrow$ Restricted to a single provider network \Rightarrow end-to-end
- Offset: Points to the next source route field to be used
- ☐ IP or IPSec are commonly used as delivery headers

Delivery Header | GRE Header |

											·		
Check- sum Present	Routing Present	Present	Seq. # Present	Source	Recursion Control	Flags	Ver. #	Prot. Type	Offset	Check sum	Key	Seq. #	Source Routing List
1b	1b	1b	1b	1b	3b	5b	3b	16b	16b	16b	32b	32b	Variable
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-13/							©201	3 Raj Jain					

Payload

EoMPLSoGRE

- □ Ethernet over MPLS over GRE (point-to-point)

 VPLS over MPLS over GRE (Multipoint-to-multipoint)
- Used when provider offers only L3 connectivity Subscribers use their own MPLS over GRE tunnels
- VPLSoGRE or Advanced-VPLSoGRE can also be used
- GRE offers IPSec encryption option

NVGRE

□ Ethernet over GRE over IP (point-to-point)

http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-03

Washington University in St. Louis

- A unique 24-bit Virtual Subnet Identifier (VSID) is used as the lower 24-bits of GRE key field $\Rightarrow 2^{24}$ tenants can share
- Unique IP multicast address is used for BUM (Broadcast, Unknown, Multicast) traffic on each VSID
- Equal Cost Multipath (ECMP) allowed on point-to-point tunnels

13-12

http://www.cse.wustl.edu/~jain/cse570-13/

©2013 Rai Jain

NVGRE (Cont)

- ☐ In a cloud, a pSwitch or a vSwitch can serve as tunnel endpoint
- □ VMs need to be in the same VSID to communicate
- □ VMs in different VSIDs can have the same MAC address
- □ Inner IEEE 802.1Q tag, if present, is removed.

Ref: Emulex, "NVGRE Overlay Networks: Enabling Network Scalability," Aug 2012, 11pp.,

http://www.emulex.com/artifacts/074d492d-9dfa-42bd-9583-69ca9e264bd3/elx_wp_all_nvgre.pdf Washington University in St. Louis

©2013 Raj Jain

VXLAN

- □ Virtual eXtensible Local Area Networks (VXLAN)
- L3 solution to isolate multiple tenants in a data center (L2 solution is Q-in-Q and MAC-in-MAC)
- Developed by VMware. Supported by many companies in IETF NVO3 working group
- □ Problem:
 - > 4096 VLANs are not sufficient in a multi-tenant data center
 - > Tenants need to control their MAC, VLAN, and IP address assignments \Rightarrow Overlapping MAC, VLAN, and IP addresses
 - ➤ Spanning tree is inefficient with large number of switches
 ⇒ Too many links are disabled
 - > Better throughput with IP equal cost multipath (ECMP)

Ref: M. Mahalingam, "VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks," draft-mahalingam-dutt-dcops-vxlan-04, May, 8, 2013, http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-04

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

©2013 Raj Jain

VXLAN Architecture

- □ Create a virtual L2 overlay (called VXLAN) over L3 networks
- □ 2²⁴ VXLAN Network Identifiers (VNIs)
- Only VMs in the same VXLAN can communicate
- □ vSwitches serve as VTEP (VXLAN Tunnel End Point).
 - \Rightarrow Encapsulate L2 frames in UDP over IP and send to the destination VTEP(s).
- Segments may have overlapping MAC addresses and VLANs but L2 traffic never crosses a VNI

http://www.cse.wustl.edu/~jain/cse570-13/

VXLAN Deployment Example

Example: Three tenants. 3 VNIs. 4 Tunnels for unicast.

+ 3 tunnels for multicast (not shown)

VXLAN Encapsulation Format

- Outer VLAN tag is optional.
 Used to isolate VXLAN traffic on the LAN
- Source VM ARPs to find Destination VM's MAC address. All L2 multicasts/unknown are sent via IP multicast. Destination VM sends a standard IP unicast ARP response.
- □ Destination VTEP learns inner-Src-MAC-to-outer-src-IP mapping
 ⇒ Avoids unknown destination flooding for returning responses

VXLAN Encapsulation Format (Cont)

- □ IGMP is used to prune multicast trees
- □ 7 of 8 bits in the flag field are reserved. I flag bit is set if VNI field is valid
- UDP source port is a hash of the inner MAC header
 ⇒ Allows load balancing using Equal Cost Multi Path using L3-L4 header hashing
- □ VMs are unaware that they are operating on VLAN or VXLAN
- VTEPs need to learn MAC address of other VTEPs and of client VMs of VNIs they are handling.
- A VXLAN gateway switch can forward traffic to/from non-VXLAN networks. Encapsulates or decapsulates the packets.

VXLAN: Summary

- VXLAN solves the problem of multiple tenants with overlapping MAC addresses, VLANs, and IP addresses in a cloud environment.
- □ A server may have VMs belonging to different tenants
- No changes to VMs. Hypervisors responsible for all details.
- □ Uses UDP over IP encapsulation to isolate tenants

Stateless Transport Tunneling Protocol (STT)

- Ethernet over TCP-Like over IP tunnels. GRE, IPSec tunnels can also be used if required.
- □ Tunnel endpoints may be inside the end-systems (vSwitches)
- Designed for large storage blocks 64kB. Fragmentation allowed.
- Most other overlay protocols use UDP and disallow fragmentation ⇒ Maximum Transmission Unit (MTU) issues.
- □ TCP-Like: Stateless TCP ⇒ Header identical to TCP (same protocol number 6) but no 3-way handshake, no connections, no windows, no retransmissions, no congestion state
 ⇒ Stateless Transport (recognized by standard port number).
- Broadcast, Unknown, Multicast (BUM) handled by IP multicast tunnels

Ref: B. Davie and J. Gross, "A Stateless Transport Tunneling Protocol for Network Virtualization (STT)," Sep 2013, http://tools.ietf.org/html/draft-davie-stt-04

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

LSO and LRO

- □ Large Send Offload (LSO): Host hands a large chunk of data to NIC and meta data. NIC makes MSS size segments, adds checksum, TCP, IP, and MAC headers to each segment.
- □ Large Receive Offload (LRO): NICs attempt to reassemble multiple TCP segments and pass larger chunks to the host. Host does the final reassembly with fewer per packet operations.
- □ STT takes advantage of LSO and LRO features, if available.

Using a protocol number other than 6 will not allow LSO/LRO to handle STT

©2013 Rai Jain

STT Optimizations

- □ Large data size: Less overhead per payload byte
- □ Context ID: 64-bit tunnel end-point identifier
- Optimizations:
 - > 2-byte padding is added to Ethernet frames to make its size a multiple of 32-bits.
 - ➤ Source port is a hash of the inner header ⇒ ECMP with each flow taking different path and all packets of a flow taking one path
- No protocol type field \Rightarrow Payload assumed to be Ethernet, which can carry any payload identified by protocol type.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

©2013 Rai Jain

STT Frame Format

- □ 16-Bit MSS \Rightarrow 2¹⁶ B = 64K Byte maximum
- L4 Offset: From the of STT header to the start of encapsulated L4 (TCP/UDP) header ⇒ Helps locate payload quickly
- □ Checksum Verified: Checksum covers entire payload and valid
- □ Checksum Partial: Checksum only includes TCP/IP headers

IP	TCP-Like	STT	STT
Header	Header	Header	Payload

				_						
Version	Flag	gs L4 Offs	et Reserved	Maximi Segme Size	nt	Priority Code Point	VLAN ID Valid	Context ID	VLAN ID	Padding
8b	8b	8b	8b	<u>1</u> 6b		3b	1b	64b	12b	16b
Checks Verific		Checksum Partial	IP Version IPv4	TCP Payload	Res	served				
1b	_	1b	1b	1b	4b					
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-13/							©2013 Raj Jai			

TCP-Like Header in STT

- Destination Port: Standard to be requested from IANA
- Source Port: Selected for efficient ECMP
- □ Ack Number: STT payload sequence identifier. Same in all segments of a payload
- Sequence Number (32b): Length of STT Payload (16b) + offset of the current segment (16b) ⇒ Correctly handled by NICs with Large Receive Offload (LRO) feature
- □ No acks. STT delivers partial payload to higher layers.
- □ Higher layer TCP can handle retransmissions if required.
- Middle boxes will need to be programmed to allow STT pass through

Source Port (Random)	Dest. Port (Standard)	STT Payload Length Sequence Nu	Segment Offset mber*	Payload Sequence # <i>Ack Number</i> *	Data Offset	
16b	16b	16b+1		32b hifferent meaning than	16b TCP	-

http://www.cse.wustl.edu/~jain/cse570-13/

©2013 Raj Jain

STT Summary

- STT solves the problem of *efficient* transport of large 64 KB storage blocks
- Uses Ethernet over TCP-Like over IP tunnels
- Designed for software implementation in hypervisors

Summary

- 1. NVO3 is a generalized framework for network virtualization and partitioning for multiple tenants over L3. It covers both L2 and L3 connectivity.
- 2. NVGRE uses Ethernet over GRE for L2 connectivity.
- 3. VXLAN uses Ethernet over UDP over IP
- 4. STT uses Ethernet over TCP-like stateless protocol over IP.

Reading List

- B. Davie and J. Gross, "A Stateless Transport Tunneling Protocol for Network Virtualization (STT)," Sep 2013, http://tools.ietf.org/html/draft-davie-stt-04
- Emulex, "NVGRE Overlay Networks: Enabling Network Scalability," Aug 2012, 11pp., http://www.emulex.com/artifacts/074d492d-9dfa-42bd-9583-69ca9e264bd3/elx-wp-all-nvgre.pdf
- M. Mahalingam, "VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks," draft-mahalingam-dutt-dcops-vxlan-04, May, 8, 2013, http://tools.ietf.org/html/draft-mahalingam-dutt-dcops-vxlan-04
- M. Sridharan, "MVGRE: Network Virtualization using GRE," Aug 2013, http://tools.ietf.org/html/draft-sridharan-virtualization-nvgre-03
- Network Virtualization Overlays (nvo3) charter, http://datatracker.ietf.org/wg/nvo3/charter/
- □ T. Narten, et al., "An Architecture for Overlay Networks (NVO3)," http://datatracker.ietf.org/doc/draft-narten-nvo3-arch/
- V. Josyula, M. Orr, and G. Page, "Cloud Computing: Automating the Virtualized Data Center," Cisco Press, 2012, 392 pp., ISBN: 1587204347.

Wikipedia Links

- □ http://en.wikipedia.org/wiki/Generic Routing Encapsulation
- http://en.wikipedia.org/wiki/Locator/Identifier_Separation_Protocol
- □ http://en.wikipedia.org/wiki/Large_segment_offload
- http://en.wikipedia.org/wiki/Large_receive_offload

Acronyms

□ ARMD Address Resolution for Massive numbers of

hosts in the Data center

ARP Address Resolution Protocol

BGP Border Gateway Protocol

□ BUM Broadcast, Unknown, Multicast

DCN Data Center Networks

DCVPN Data Center Virtual Private Network

□ ECMP Equal Cost Multi Path

■ EoMPLSoGRE Ethernet over MPLS over GRE

■ EVPN Ethernet Virtual Private Network

□ GRE Generic Routing Encapsulation

□ IANA Internet Address and Naming Authority

□ ID Identifier

□ IEEE Institution of Electrical and Electronic Engineers

□ IETF Internet Engineering Task Force

Acronyms (Cont)

IGMP Internet Group Multicast Protocol

□ IP Internet Protocol

□ IPSec IP Security

□ IPv4 Internet Protocol V4

LAN Local Area Network

□ LISP Locator ID Separation Protocol

□ LRO Large Receive Offload

□ LSO Large Send Offload

MAC Media Access Control

MPLS Multi Protocol Label Switching

MSS Maximum Segment Size

MTU Maximum Transmission Unit

□ NIC Network Interface Card

□ NV Network Virtualization

□ NVA Network Virtualization Authority

NVEs Network Virtualization Edge

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

©2013 Rai Jain

Acronyms (Cont)

□ NVGRE Network Virtualization Using GRE

■ NVO3 Network Virtualization over L3

OAM Operation, Administration and Management

OTV Overlay Transport Virtualization

PB Provider Bridges

□ PBB Provider Backbone Bridge

pM Physical Machine

pSwitch Physical Switch

QoS Quality of Service

□ RFC Request for Comment

□ RS Routing System

□ STT Stateless Transport Tunneling Protocol

□ TCP Transmission Control Protocol

□ TRILL Transparent Routing over Lots of Links

□ TS Tenant System

UDP User Datagram Protocol

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-13/

©2013 Raj Jain

Acronyms (Cont)

VDP VSI Discovery and Configuration Protocol

□ VLAN Virtual Local Area Network

□ VM Virtual Machine

□ VN Virtual Network

VNI Virtual Network Identifier

VPLS Virtual Private LAN Service

VPLSoGRE Virtual Private LAN Service over GRE

□ VPLSoGRE VPLS over GRE

□ VPN Virtual Private Network

VRRP Virtual Router Redundancy Protocol

□ VSI Virtual Station Interface

□ VSID Virtual Subnet Identifier

vSwitch Virtual Switch

□ VTEP VXLAN Tunnel End Point

VXLAN Virtual Extensible Local Area Network