
A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 1

A Survey of Machine Learning Applications
to Cloud Computing

Joe Fiala (A paper written under the guidance of Prof. Raj Jain) Download

Abstract
Due to the explosion of data made available due to cloud computing, we are faced with issues of
resource management, energy efficiency, and security. This paper explores recent literature on
all the aforementioned topics as they relate to cloud computing and examines a number of
methods which propose to make use of machine learning to either allow for more dynamic
resource management, better energy efficiency, or higher security. Additionally, the proposed
methods are compared to one another to demonstrate their particular strengths and weaknesses,
in order to allow further work to build upon the conclusions reached and to propose continually
improving methods.

Keywords
machine learning, cloud computing, resource management, security, energy efficiency, QoS

Table of Contents
• 1. Introduction
• 2. Predicting and Managing Resources

•
o 2.1 SVM
o 2.2 ANN
o 2.3 Comparing SVM and ANN
o 2.4 Summary

• 3. Effective Use of Resources
•
o 3.1 Motivating Dynamic and Effective Use of Resources
o 3.2 Greedy Algorithm
o 3.3 Naïve Algorithms and Backfilling Algorithms
o 3.4 QoS and Specificity
o 3.5 Summary

• 4. Security in Cloud Computing and ML
•
o 4.1 General Algorithm for Trust Levels
o 4.2 Naïve Bayes Tree and Random Forest

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 2

o 4.3 Framework to Detect Semantic Gaps and Anomalies
o 4.4 Summary

• 5. Conclusion
• References
• Acronyms Used

1. Introduction
As cloud computing has become more popular due to the efforts of big name companies such as
Amazon, Google, and Microsoft, it has allowed for the amount of available data to increase
exponentially [Li13][Bala14][Vinay15], leading to increased opportunities for utilization. As a
result, cloud computing and machine learning (ML) have formed a partnership, of sorts, in which
both benefit from the other’s advancement and refinement. ML, for example, has been able to
better train its algorithms from the increased datasets, leading to results such as Facebook’s
DeepFace – an algorithm that identifies faces and records accuracies of up to 97.35%.
[Taigman14] For the purposes of this paper, however, the growth of machine learning from
cloud computing will be put on hold in favor of discussing the particular applications offered to
cloud computing by ML. In particular, the following paper will begin with a discussion on the
ways in which ML can help to better predict and manage resources on virtual machines (VMs).
From there, it will move to a look at ways in which ML can reduce energy consumption on
servers and datacenters before concluding with an examination of the potential security benefits
offered by ML. Finally, I conclude with a summary of the approaches discussed, citing their
strengths, weaknesses, and areas for improvement, from which future research can expand upon.

2. Predicting and Managing Resources
Despite the prevalence of cloud computing, the most popular cloud vendors have yet to
capitalize on dynamic resource management. Amazon, Google, and Microsoft each offer some
degree of limited customizability for one’s virtual instance – such as the ability to choose the
number of cores, the amount of memory, and the capacity (and type) of storage. However, once
configured, the virtual machine (VM) is static, meaning that if a customer requires more
resources for their virtual machine, they must request more resources. Likewise, if a customer
only uses 10% of their VM’s resources, the rest essentially goes to waste and cannot be
redistributed to other customers or used by the vendors for their own purposes. As a result, the
following section will focus on recent work dealing on cloud resource prediction and
management using ML in order to outline paths by which cloud vendors can offer more dynamic
services effectively and reliably.

Of the recent work, the three most commonly cited approaches to dynamic resource management
are linear regression (LR), support vector machine (SVM), and artificial neural network (ANN).
Usually, LR is used as the baseline ML method from which the other two (SVM and ANN) are
compared, in order to gauge their effectiveness and their potential advantages and disadvantages;
however, sometimes LR is used in addition to the other proposed techniques in order to capture
particular features produced by SVM or ANN. As a result, the bulk of the work done in this
section will be focused on SVM and ANN.

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 3

2.1 SVM

In this section, we will first take a brief look at the ways in which SVM is implemented by both
[Matsunaga10] and [Kundu12]. We will then see how each implementation fared, particularly in
relation to an LR model, which the authors take as the baseline standard for comparison.

For SVM implementation, the focus is primarily on performing non-linear classification using a
kernel function, which allows for effective mapping of inputs onto some multi-dimensional
vector space [Matsunaga10][Kundu12]. Of the possible kernels, polynomial and radial basis
functions prove to be the most popular, due to their ability to analyze input samples in relation to
others, as well as their ability to analyze input samples in combination and compared to vectors
of higher dimensionality. Once the classification is complete, LR is then used in order to
construct a hyperplane from the mapping, thereby obtaining the final model from which the
predictions for the appropriate VM are made.

In order to gauge how the SVM method performed, [Matsunaga10] and [Kundu12] used
decidedly different environments. [Matsunaga10] decided to evaluate the models using two
bioinformatics applications, Basic Local Alignment Search Tool (BLAST) and Randomized
Axelerated Maximum Likelihood (RAxML). Additionally, [Matsunaga10] evaluated the models
based on predicted required resources as well as predicted execution time, the results of which
can be seen in Figure 1.

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 4

Figure 1: Results of [Matsunaga10] for SVM and LR

As Figure 1 shows, SVM is the victor in both predicted resources and predicted execution time
for both the BLAST and RAxML environments. Moreover, SVM shows clear advantages in
three of the four cases – BLAST: Predicting Disk Space, BLAST: Predicting Execution Time,
and RAxML: Predicting Execution Time. In these cases, SVM reduces percentage error from
1204 to 283, 22.98 to 11.84, and 1379 to 135, respectively. Even in the case in which SVM does
not show as clear of dominance, RAxML: Predicting Resident Memory, SVM still reduces
percentage error down to 2.01 from 3.14 (via LR).

[Kundu12], on the other hand, decided to use two benchmark environments in order to test the
generated SVM model, the Rice University Bidding System (RUBiS) and Filebench. In addition
to the two global environments (RUBiS and Filebench), [Kundu12] supplemented the tests with
the following additional sub-models in order to achieve finer granularity with regards to results

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 5

for each test: RUBiS Browsing, RUBiS Bidding, Filebench OLTP, Filebench Webserver, and
Filebench Fileserver. It is also important to note that unlike [Matsunaga10], [Kundu12] measured
only predicted resources, rather than predicted resources and predicted execution time. The
results of the tests can be seen in Figure 2.

Figure 2: Results of [Kundu12] for SVM and LR

From the results, we can see that in all testing environments, SVM outperforms LR. However,
we also see that the results are varied in terms of dominance. In both test cases using RUBiS, we
see that SVM significantly outperforms LR in both the global and sub-model cases. However, in
the Filebench test cases, such performance is not mirrored. In each of the Filebench/Global
cases, we do see that SVM outperforms LR by quite some margin, but in each of the sub-model
cases, the performance margin is much smaller and there may no longer be a clear benefit to
using SVM over LR in such cases. Additionally, it’s interesting to note that, overall, RUBiS

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 6

presented much higher average percent prediction errors for both LR and SVM and for both the
global model and sub-models, demonstrating an inability for either LR or SVM to find ample
success using the RUBiS environment.

As we can see, both [Matsunaga10] and [Kundu12] find similar results when testing the
performance of SVM as compared to LR in regards to resource prediction: namely, SVM clearly
outperforms LR across most test cases. And even in those cases in which the gap between SVM
and LR is not quite so large, the gap still does, in fact, exist, demonstrating a strict dominance of
SVM over LR in the test cases examined, thus concluding our examination of SVM.

2.2 ANN

In this section, we will again visit the work by [Matsunaga10] and [Kundu12], but rather than
discussing SVM, we will focus on ANN. We will begin by briefly examining the ways in which
ANN is implemented before continuing on to the results obtained by both papers, as compared to
the standard performance of LR.

For any ANN implementation, the focus is primarily on obtaining a balanced hidden neuron to
hidden layer ratio, in order to avoid under-fitting from lack of weight or over-fitting from excess
weight with regards to input. To obtain this balance, one could naively set a standard ratio and
observe results for all tests using that ratio. [Matsunaga10] However, an alternative approach is
to iteratively add more hidden neurons until no noticeable change in accuracy occurs, at which
point more hidden layers are added. This is then repeated until neither additional hidden neurons
nor additional hidden layers improve accuracy, thereby achieving a testable model with a more
accurate balance [Kundu12].

Regardless of the implementation used, there needs to exist environments in which to test the
models generated. We have seen that both [Matsunaga10] and [Kundu12] use the same
environments for tests of ANN as for tests of SVM (as seen in 2.1) – BLAST/RAxML and
RUBiS/Filebench, respectively. Additionally, the comparison will be to LR (also like in 2.1) in
order to give a baseline standard for comparison. The results of [Matsunaga10] using ANN can
be seen in Figure 3, and the results of [Kundu12] can be seen in Figure 4.

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 7

Figure 3: Results of [Matsunaga10] for ANN and LR

As Figure 3 shows, the results of ANN and LR are not nearly as one-sided as the results obtained
while testing SVM and LR. That is, unlike SVM, which had the advantage over LR in both
BLAST test cases and in both RAxML test cases, ANN performs better only in the BLAST:
Predicting Disk Space case, BLAST: Predicting Execution Time, and the RAxML: Predicting
Execution Time case. Even in the BLAST: Predicting Disk Space case, the performance is only
marginally better (1129 compared to 1204) and still with an extraordinarily high percentage
error. In RAxML: Predicting Resident Memory, however, LR performs significantly better, with
percentage errors of 3.14 for LR and 30.29 for ANN, raising doubts about the superiority of
ANN over LR.

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 8

Figure 4: Results of [Kundu12] for ANN and LR

Unlike the results in Figure 3, the results in Figure 4 demonstrate a clear advantage for ANN
over LR, demonstrating strict performance advantages in all test cases. Furthermore, in all cases
except for Filebench/Global and OLTP/Sub-Model, ANN gives significantly better performance
than LR, with less than half the average prediction error. And even in those cases in which ANN
gives only moderate performance advantages, ANN keeps a relatively low prediction error, with
rates of 12.89 and 10.60 for Filebench/Global and OLTP/Sub-Model, respectively. Also notable
is that ANN never reaches the extremely high percentage error rates seen in Figure 3 (e.g. in
BLAST: Predicting Disk Space, ANN had a 1129 percentage error rate) – in all tests performed
by [Kundu12], the average prediction error was capped at 68.57, with the second highest average
prediction error being 19.85.

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 9

Contrary to the tests involving SVM, [Matsunaga10] and [Kundu12] each achieved very
different results. In [Matsunaga10]’s tests using BLAST and RAxML, ANN did not strictly
outperform LR and in some cases performed significantly worse than LR. However, in
[Kundu12]’s tests using RUBiS and Filebench, as well as their respective sub-models, ANN did
strictly outperform LR and even in the cases in which ANN only outperformed LR marginally,
ANN still achieved relatively low average prediction error rates.

2.3 Comparing SVM and ANN

Since we have seen implementations and results for both SVM and ANN, we can now turn to
examining the comparison of SVM and ANN methods for those aforementioned test
environments in [Matsunaga10] and [Kundu12]. We will first look at SVM and ANN in the
BLAST and RAxML test cases, as seen in Figure 5, before turning to the RUBiS and Filebench
test cases, as seen in Figure 6.

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 10

Figure 5: Comparison of SVM and ANN in [Matsunaga10]

From the comparison in Figure 5, we can see that for all cases tested, SVM outperformed ANN.
In the cases in which resources were predicted, SVM performed significantly better, with
prediction errors of 283 and 2.01 compared to ANN’s prediction errors of 1129 and 30.29. In the
other cases, SVM only slightly outperformed ANN with prediction errors of 11.84 and 135
compared to 15.95 and 164. This demonstrates that although both performed relatively evenly in
regards to predicting execution time, SVM was the clear victor in regards to the actual prediction
of resources.

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 11

Figure 6: Comparison of ANN and SVM in [Kundu12]

Unlike the results seen in Figure 5, the comparison in Figure 6 shows that SVM demonstrates no
clear advantage over ANN in the RUBiS and Filebench test environments. Rather, there is only a
single case in which either SVM or ANN shows clear superiority. In the RUBiS/Global and
Bidding/Sub-Model case, the RUBiS/Global test showed that ANN outperformed SVM
significantly, with average prediction errors of 19.52 and 66.86, respectively. In the only other
notable cases, the average prediction errors slightly favored SVM, with error rates of 55.78 for
SVM and 68.57 for ANN (in RUBiS/Global and Browsing/Sub-Model) and 7.4 for SVM and
11.59 for ANN (in Filebench/Global and OLTP/Sub-Model).

From what we have seen, it’s hard to determine whether either SVM or ANN shows clear
advantages over the other. If we were to only look at the test cases in [Matsunaga10], we might
immediately judge that SVM clearly is the better method for dynamic resource management.

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 12

However, the test cases in [Kundu12] demonstrate that SVM does not always perform
significantly better than ANN, which highlights the importance of particular test environments in
determining performance. That is, the preference of whether to use SVM or ANN for dynamic
resource management may just come down to the particular environments and platforms a
particular cloud vendor decides to use. For bioinformatics (as in [Matsunaga10]), SVM appears
to be the clear winner; in other, more general applications (as in [Kundu12]), SVM and ANN
appear to perform fairly equally.

2.4 Summary

In this section, we’ve taken a look at two proposed methods for dynamic resource management,
SVM and ANN. In order to test these methods, a number of different environments were used
and the results were first compared to the performance of LR in the same environment before
finally comparing SVM to ANN for each environment. As a general rule, the results showed that
both SVM and ANN outperformed LR except for a few outlying cases. However, it was less
clear whether either SVM or ANN outperformed the other, with the conclusion seeming to be
dependent upon the particular test environment in question. As a result, we can conclude that
SVM and ANN are, in fact, more capable of predicting resources than LR, but the determination
of SVM or ANN requires more testing for the particular scenario.

3. Effective Use of Resources
In addition to being able to better predict and allocate resources to the customer (as seen in
section 2), being able to adaptively monitor, coordinate, and predict workload scheduling has
become a key issue in terms of both quality of service (QoS) and energy efficiency (EE). That is,
while it may be easiest to maintain an always active service in order to ensure that the service
level agreement (SLA) between the vendor and company is always met (therefore maintaining a
consistently high QoS), this always active server may require more energy than is absolutely
necessary, leading to wasted resources. For example, if a customer is actively using the cloud
resource in question every day from 9:00 AM to 5:00 PM, but never afterwards, it’s not essential
that the service be provided outside of the 9:00 AM to 5:00 PM range, thereby saving on
resources that can be allocated to other customers (or back to the vendor, themselves), saving on
costs of operation and maintenance, all while still maintaining the necessary QoS for the
customer. In the following section, we’ll look at some of the recent work being done in the fields
of QoS and EE, starting with a more general overview of why such research is motivated, before
considering the various approaches taken, and concluding with a summary of the approaches
seen.

3.1 Motivating Dynamic and Effective Use of Resources

The essential focus of this section, more broadly, is to examine the ways in which dynamic and
effective use of resources can be implemented, while still maintaining the necessary QoS. For the
remainder of Section 3, the main points of focus will be on the following two techniques that can
be utilized to save resources: (1) turning off idle machines; and (2) consolidation of tasks
[Berral10].

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 13

Although these two techniques may seem trivial and obvious, their impact on energy
consumption is enormous. In order to provide perspective into the issue of overall energy
expenditure, [Berral10] recorded the results of wattage used in relation to increasing workload,
as seen in Figure 7. These results were obtained using a 4-CPU and similarly results were
previously observed by [Bianchini04].

Figure 7: Energy Consumed for Various Stages of CPU Load (from [Berral10] p. 221)

As we can see, Figure 7 demonstrates just how severe of an increase in energy is required for the
shift between OFF and IDLE (0 Watts to 230 Watts), especially compared to the relatively
modest shift between IDLE and the max CPU load of 400% (230 Watts to 300 Watts). With this
in mind, the importance of turning off idle machines – in order to avoid the extreme energy
requirements for the idle state – as well as the importance of consolidation – by allowing
machines to be more fully utilized, thereby performing similarly to the max CPU seen above and
allowing other machines to move to the off state, which saves energy overall – becomes more
apparent. It is this importance that drives the motivation behind dynamic and effective use of
resources, and will be key to understanding the research discussed later in this section.

3.2 Greedy Algorithm

In this section, we will focus on the work done by [Chase01], which uses a greedy algorithm,
named Maximize Service Revenue and Profit (MSRP), in order to decrease power consumption
in shared service centers. Although this research does not involve cloud computing, it provides a
good basis from which further research into cloud computing EE can take place.

[Chase01] attempts to better determine the times in which energy is actually required, in order to
avoid wasting energy for those times in which actual activity is minimal or nonexistent. With the

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 14

typical static allocation of energy for a particular system, we see energy consumption compared
to activity (throughput) similar to the mapping shown in Figure 8.

Figure 8: Static Allocation of Energy Compared to Activity (from [Chase01] p. 113)

As we can see from Figure 8, the power consumption will remain fairly constant despite the
activity fluctuating. This results in a massively inefficient use of energy – rather than always
using the same amount of energy regardless, a more efficient use of the energy would have the
energy consumption correspond to the rate of activity (i.e. more activity leads to more energy
consumption).

In order to allow for this dynamic energy consumption, [Chase01] proposes MSRP. To construct
the greedy algorithm, [Chase01] uses a weighted system involving resource costs, supplies, and
demands. For each of these attributes, a weight is assigned, which is then used in order to
determine prices for the resources. From these weights, resource prices are allowed to fluctuate
according to the dynamically oscillating supply and demand for resources as well as the
(potentially) dynamic resource costs. This weighting allows MSRP to allocate energy more
efficiently than a simple, static allocation, as we can see in Figure 9.

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 15

Figure 9: Dynamic Allocation of Energy Compared to Activity (from [Chase01] p. 113)

As we can see, MSRP allows for the energy consumption to vary according to the activity level –
so when the activity level is low (e.g. minute 145), the energy consumption is also low; and
when the activity level is high (e.g. minute 160), the energy consumption is also high. From this
dynamic allocation, [Chase01] recorded an overall 29% savings of energy compared to the static
allocation. However, it’s also important to take note of the difference in latency levels between
Figure 8 and Figure 9. In Figure 8 – the static allocation – we see latency levels that correspond
to activity. However, in Figure 9 – the dynamic allocation – we see more consistent latency
levels. In addition to the more static latency, the dynamic allocation appears to result in slightly
higher overall latency levels than the static allocation.

As we have seen from [Chase01]’s greedy algorithm MSRP, a dynamic allocation of energy can
result in overall savings in energy consumption. However, from the tests performed by
[Chase01], this dynamic allocation resulted in a more consistent, and overall higher, level of
latency than with the static allocation. As a result, any further research involving this dynamic
allocation, or any customer wishing to use MSRP, would need to take into account both the
potential benefits offered by the energy savings as well as the potential detriments of overall
higher latency.

3.3 Naïve Algorithms and Backfilling Algorithms

In this section, we will take a look at the work performed in [Berral10], in which a machine
learning dynamic backfilling algorithm (MLDB) is used. In addition to MLDB, a variety of other
algorithms will be considered, in order to best understand the advantages and disadvantages of
MLDB. The other algorithms considered are as follows: random assignment, round-robin

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 16

assignment, conventional backfilling, and non-machine learning dynamic backfilling. As the
names of the algorithms suggest, the random assignment algorithm assigns tasks randomly, the
round-robin assignment algorithm assigns tasks to all possible nodes evenly, the conventional
backfilling algorithm attempts to assign a tasks in order to maximize individual node workload
(thereby saving nodes from having to be utilized), the dynamic backfilling algorithm builds upon
the conventional backfilling algorithm by also allowing task migration between nodes in order to
increase consolidation, and the MLDB implements a supervised learning schema (as seen in
Figure 10) and an SLA function in order to improve predictions and allow for better dynamic
allocation.

Figure 10: Supervised Learning Schema for MLDB (adapted from [Berral10])

Essentially, the schema takes labeled data and feeds it into a particular learning algorithm (in this
case, MLDB) in order to generate a model. With this model, we would then input unlabeled data
and get labeled data as output. So as inputs for the MLDB model, we would feed in the
characteristics of a particular scenario, involving data such as activity levels, energy
consumption, SLA fulfillment, and so on.

In testing this particular method, [Berral10] found a key relationship between the aggressiveness
of the turn on/off mechanism and the ability to fulfill the SLA – that is, the more cautious the
turn on/off mechanism was, the easier it was to achieve higher SLA fulfillment. However,
increased caution also resulted in higher energy consumption, due to leaving more machines idle
or with less consolidation, leading to a tradeoff function. As a result, [Berral10] concluded that a
compromise is best reached when λmin (earlier machine turnoff) and λmax (higher
consolidation) have values of 30% and 60%, respectively, allowing for near complete SLA
fulfillment while still retaining a sufficiently aggressive dynamic turn on/off mechanism to save
energy.

To summarize the results obtained, the MLDB algorithm actually did not perform best in all
cases, particularly in the case of grid workload, due to unnecessary caution. Although it achieved
a 99.90 SLA fulfillment, it required 1574.78 kW of energy whereas the conventional backfilling
algorithm and dynamic backfilling algorithm only required 1141.65 kW of energy and 1118.86

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 17

kW of energy, respectively. Furthermore, MLDB’s energy consumption was only slightly better
than the energy consumption of the round robin and random algorithms, which required 1696.66
kW of energy and 1671.16 kW of energy, respectively.

In the other two workload cases, however, MLDB did, in fact, perform better with regards to
energy consumption. In the service workload, MLDB consumed roughly 3000 less kW of energy
than either the conventional backfilling algorithm or the dynamic backfilling algorithm and
roughly 6000 less kW of energy than either the round robin algorithm or random algorithm.
Moreover, MLDB still managed to achieve 100.00 SLA fulfillment in the service workload.

Slightly less impressive, but still notable is that MLDB performed best with regards to energy
consumption in the heterogeneous workload. MLDB consumed roughly 1000 less kW of energy
than either the conventional backfilling algorithm or the dynamic backfilling algorithm and
roughly 4500 less kW of energy than either the round robin algorithm or random algorithm.
However, unlike the service workload, this decreased energy consumption comes at the cost of
decreased SLA fulfillment. In the heterogeneous workload, MLDB achieved 98.63 SLA
fulfillment, while conventional backfilling achieved 99.50 SLA fulfillment and dynamic
backfilling achieved 99.59 SLA fulfillment.

From the results, it is clear that MLDB offers better performance than both the round robin
algorithm and random algorithm, as expected. However, it is less clear whether MLDB should be
preferred to either the conventional backfilling algorithm or the dynamic backfilling algorithm.
On the one hand, MLDB has a clear performance advantage in the service workload and
heterogeneous workload with regards to energy consumption. However, MLDB performs
significantly worse in the case of grid workload. Furthermore, the advantage in the
heterogeneous workload comes with the cost of slightly less SLA fulfillment than either
conventional backfilling or dynamic backfilling (98.63 compared to 99.50 and 99.59).
Ultimately, this allows us to conclude that MLDB is clearly better than the naïve algorithms,
round robin and random, but is only better than the conventional backfilling and dynamic
backfilling algorithms under certain conditions, such as service workload and heterogeneous
workload without extreme need for the difference in SLA fulfillment.

3.4 QoS and Specificity

In each of the previous subsections, we have focused on broad approaches to energy efficiency.
In this section, however, we will take a look at the work in [Chen13], which offers a more fine
grained approach to determining energy efficiency in cloud computing. In order to do this,
[Chen13] proposes using autoregressive moving-average model with exogenous inputs model
(ARMAX) and ANN. In particular, the goal is to expand the traditional ARMAX and ANN
algorithms to new sensitivity aware algorithms, sensitivity aware ARMAX (S-ARMAX) and
sensitivity aware ANN (S-ANN), in order to obtain the highest possible QoS with the minimal
energy expenditure by capturing the sensitivity on inputs for more fine grained results.

In order to measure the results obtained by each of the algorithms in a more fine grained way,
[Chen13] focused on three particular attributes: (1) availability; (2) response time; and (3)
throughput. The results are compiled together in Table 1, in which the two newly extended ML

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 18

algorithms, S-ANN and S-ARMAX, are compared to the conventional ML algorithms, ANN and
ARMAX.

Table 1: Comparison of S-ANN, S-ARMAX, ANN, and ARMAX (see [Chen13])
Symmetric Mean Absolute Percentage Error of Prediction

QoS S-ANN
ANN

S-ARMAX
ARMAX

per-service per-application per-service per-application
Response Time 6.97% 12.76% 31.72% 11.43% 15.08% 34.03%
Throughput 11.14% 16.88% 35.28% 7.99% 13.22% 37.82%
Availability 0.96% 0.38% 1.36% 0.01% 0.01% 1%

From Table 1, we can see that both S-ANN and S-ARMAX offer clear advantages to both ANN
and ARMAX, respectively in regards to response time and throughput and perform on par with
ANN and ARMAX in regards to availability, depending on whether ANN and ARMAX are run
per-service or per-application. Indeed, even when only running per-service, both S-ANN and S-
ARMAX clearly outperform their conventional counterparts. For example, in regards to response
time, S-ANN’s error of prediction was 6.97 whereas ANN’s error of prediction was 12.76 per-
service (and 31.72 per-application); likewise, S-ARMAX’s error of prediction was 11.43
whereas ARMAX’s error of prediction was 15.08 per-service (and 34.03 per-application.

In comparing the two sensitive aware algorithms, however, there is no clear winner. While S-
ANN outperforms S-ARMAX in terms of response time (6.97 compared to 11.43), S-ARMAX
outperforms S-ANN in terms of throughput and availability (7.99 compared to 11.14 and 0.01
compared to 0.96, respectively). This demonstrates that S-ARMAX appears to perform better in
conditions with more stable QoS, whereas S-ANN performs better in more dynamic conditions,
with a more volatile QoS.

As a result of the fine grained approach adopted by [Chen13], the advantages and disadvantages
of the particular algorithms in question become more clear. While ANN and ARMAX offer the
best error of prediction for availability per-service, they perform worse than S-ANN and S-
ARMAX for availability per-application and worse than S-ANN and S-ARMAX for response
time and throughput for both per-service and per-application. However, the decision of
implementing S-ANN or S-ARMAX is more difficult and is dependent upon the particular
conditions at hand. For more dynamic conditions, S-ANN performs better, and for more stable
conditions, S-ARMAX performs better.

3.5 Summary

In this section, we’ve looked at a variety of approaches that aim to reduce overall energy
consumption while maintaining sufficient QoS and SLA fulfillment by either turning off idle
machines or by consolidating work among machines (in order to turn off idle machines). We
started by looking at the greedy algorithm implemented by [Chase01], which provided a more
dynamic mapping of energy consumption to activity level and demonstrated an overall 29%
decrease in energy consumption. We then looked at a number of backfilling algorithms and
compared them to naïve algorithms like random assignment and round robin assignment. We

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 19

saw that, generally, the backfilling algorithms outperformed the naïve algorithms, but it was
unclear whether the proposed algorithm, MLDB, was superior to the other two backfilling
algorithms, conventional backfilling and dynamic backfilling, due to their performance being
dependent upon particular conditions. This then motivated an examination of a more fine grained
study of algorithms, for which we turned to [Chen13], in which ARMAX and ANN algorithms
were used and measured in regards to a number of characteristics, where we saw that for more
dynamic conditions, S-ANN performs better, where for more stable conditions, S-ARMAX
performs better.

4. Security in Cloud Computing and ML
In this section we’ll step away from the discussions about resource allocation (as seen in sections
2 and 3) and focus, instead on the ways in which ML can aid in the security of cloud computing.
With the increase of overall data in the cloud, there has also been an increase of sensitive data in
the cloud, motivating the need for higher security in cloud computing [Whitworth14]. This
section will serve as an examination of various approaches proposed to improve cloud security
via better threat detection. We will first start with a general approach in which to determine
threats via summation of risk levels. We will then move to more advanced approaches to
determine threats which make use of signature detection and anomaly detection in order to
produce a hybrid model for threat detection.

4.1 General Algorithm for Trust Levels

In terms of encryption, one of the most straightforward ways to enable or deny access within the
cloud is to enforce some system of trust levels. In such a system, trust levels are dynamically
allocated to any participant within the cloud system and their privileges are assigned according to
their determined trust level.

One such trust level algorithm is given in [Whiteworth14], in which the trust level is just a
summation of all risk levels associated with the particular relationship in question, as seen in
Equation 1 (with β representing the overall trust level and α representing the risk associated with
each particular characteristic implicit in the relationship).

Equation 1: Trust Level

For each particular risk, α, the total risk associated with that characteristic is then calculated by
having a weighted value, w, multiplied by the mitigation level, c, thereby producing a risk value
that is weighted by importance as well as potential consequences, as we see in Equation 2.

Equation 2: Risk Value

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 20

By using this calculation of risk level, and in conjunction with the calculation of overall trust
level via summing risk levels, each agent in the cloud is able to be associated with a particular
degree of trust, thereby enabling privileges for that particular agent in addition to restricting
access for that particular agent to certain features of the cloud.

In this section, we’ve taken a brief look into one way in which trust level can be calculated,
namely via some general algorithm with weighted values for particular attributes that are then
combined in order to produce an overall trust level. However, moving forward this offers very
little advice and can become overly cumbersome in a complex environment in which
characteristics are not necessarily known beforehand and therefore are not capable of being
assigned a reliable weight.

To fix this, we can turn to two other methods, named signature detection and anomaly detection.
In signature detection, agents are identified by their particular signature – as a result, intruders or
other malicious agents are easily identified as potential risks if they have a history of malicious
activity. However, signature detection is limited in that it is generally unable to detect threats
whose signatures have not yet been identified [Bhat13][Gander13]. As a result, anomaly
detection is often used. Anomaly detection determines potential risks based on an agent’s
deviation from standard behavior, thereby painting it as an “anomaly” (and therefore a potential
threat). The disadvantage to anomaly detection is that it suffers from a high false positive rate, in
which it identifies particular benign agents as malicious [Bhat13]. Consequently, the two
methods – signature detection and anomaly detection – are often used in conjunction to create a
hybrid approach in which malicious signatures are detected and stored (for use in repeat and
static circumstances) and anomaly detection is used for more dynamic situations (where
signature detection has no data).

4.2 Naïve Bayes Tree and Random Forest

In this section, we will focus on a hybrid method for threat detection that makes use of Naïve
Bayes Tree (NBT) and Random Forest (RF), as outlined in [Bhat13]. The idea behind this
approach is to first generate a classification pattern from training sets and then determine
anomalies based on the classification pattern and similarity of features for each connection in the
classification. As a result, we require extensive data sets in order to generate an accurate
classification. To resolve this issue, [Bhat13] used data from the KDD Cup ’99 data set
[KDD09]. Additionally, the dataset was divided into subclasses based on the particular type of
attack, as seen in Table 2.

Table 2: Types of Attack Present in KDD Dataset
Class of Attack Attacks in Dataset
Probe Ipsweep, Nmap, Portsweep, Satan
Denial of Service
(DoS) Back, Land, Neptune, Pod, Smurf, Teardrop

User to Root (U2R) Buffer_overflow, Loadmodule, Perl, Rootkit
Remote to Local
(R2L)

Ftp_write, Guess_passwd, Imap, Multihop, Phf, Spy, Warezclient,
Warezmaster

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 21

From this dataset, [Bhat13] proposed to implement their method via use of both front-end and
back-end processing, as seen in Figure 11. Essentially, the front-end is used to do the necessary
pre-processing in addition to basic feature construction in order to accommodate (1) those
algorithms which require pre-processing; and (2) those algorithms that require an already
constructed feature set. On the back-end, the features are then reduced in order to create models,
which are used to signal the anomaly detection system, which, in turn, signal the alarm for an
intruder.

Figure 11: Processing Model from [Bhat13]

After the learning stage (which used the KDD datasets), [Bhat13] tested the model and measured
performance based on percent accuracy and false positive rate. The model was then compared to
the performance of a similar, competing model, which uses RF and K-Nearest Nodes (KNN)
algorithms. The results of both models are displayed in Table 3.

Table 3: Comparing Performance of NBT + RF and RF + KNN
Classifier Accuracy False Positive
NBT + RF 99.0% 2.0%
RF + KNN 94.7% 12.0%

From the results, we can clearly see that the proposed method, using both NBT and RF, obtains
better results both in regards to accuracy (99.0 to 94.7) as well as false positive rate (2.0 to 12.0).
It is important to note that not only does the proposed method reduce the false positive rate, it
does so dramatically; this is particularly important given the high false positive rate implicit in
anomaly detection and demonstrates a significant step forward for any method planning on using
anomaly detection for threat detection. However, it is also important to note that although the
proposed method outperformed the RF and KNN method, [Bhat13] failed to compare the results
to a wider variety of competing methods. This could have been due to a lack of competing
methods or else a lack of relevance between the competing methods and the proposed methods,
but is nonetheless unfortunate and is important to note.

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 22

In this section, we took a brief look at one way in which a hybrid method for threat detection
could be constructed that made use of both signature detection and anomaly detection. More
specifically, the method proposed by [Bhat13] uses NBT and RF in order to generate a classifier,
from which we are able to better determine anomalies. We have also seen that this method
improves upon already existing methods that rely solely on RF and KNN, but do not have
sufficient data to make further conclusions about the performance of the proposed method
compared to other ML algorithms.

4.3 Framework to Detect Semantic Gaps and Anomalies

In this section, we will focus on a proposed framework as seen in [Gander13] that emphasizes
the identification of semantic gaps and anomalies in order to detect threats. Specifically, we will
look at the ways in which semantic gaps are proposed to aid in threat detection as well as the
process by which one may make conclusions from such a framework.

In order to detect semantic gaps, and therefore identify potential anomalies and threats, one must
first specify a particular domain specific language (DSL) in which to work. The DSL is
imperative, since it is used to better base the results generated by signature detection and
anomaly detection, via specified workflows and monitoring rules present in the DSL. Once the
DSL has been specified, the rules generated by the DSL allow for easier detection of semantic
gaps, since such rules specify the necessary information in order to identify agents, allowing for
signature detection to more correctly identify particular agents as malicious or benign.

From here, anomalies can be detected using ML techniques by taking advantage of the particular
profiles gathered by the workflow by dividing each profile into four categories: (1) service; (2)
user; (3) host; and (4) workflow. Each sub-profile is then used in order to gain insight as to the
nature of the potential behavior associated with that particular sub-profile. Service profiles, for
example, are used to determine fluctuations in activity as compared to past history and other
profiles, whereas user profiles are used in order to monitor specific behavior, more generally, in
order to prevent data theft [Gander13].

Going even further, each sub-profile can be further divided into particular time tracks:
immediate, hourly, or monthly. Each of these time tracks allows for further classification of
profiles, and allow for detection of anomalous behaviors not just in relation to other profile, but
in relation to other profiles over time as well as one’s own profile over time, issues which may
not have been adequately handled by the model presented by [Bhat13].

Once these profiles have been gathered and classified, they can be analyzed via the clustering of
fingerprints. Such a clustering essentially maps all of the particular profiles (and each of the
profile’s particular characteristics) and then compares each feature of each profile to the general
cluster(s) formed. Outliers are then detected using some form of the Euclidian metric as seen in
Equation 3 (by using each fingerprint to create a vector, v).

Equation 3: Example Euclidian Metric

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 23

Moreover, in this model, once the outliers have been detected, the model can then make further
relations among the outliers. This allows for the model to better learn potential threats (by
connecting patterns among threats) as well as (hopefully) decreasing the rate of false positives by
potentially finding connections among benign outliers that successfully identify such outliers as
benign, due to some particular characteristic that the malicious profiles, in fact, contain.

Unfortunately, however, the model proposed in [Gander13] was just proposed as a framework
and so had not been fully implemented or tested, either in isolation or in relation to other,
competing methods. Nevertheless, the framework outlined in this section offered further insight
as to how the currently implemented methods may improve their models via further specificity,
either by reducing their framework to a particular DSL in order to identify semantic gaps or else
by storing and classifying subdivisions of data corresponding to characteristics similar to profile
type and/or time frame.

4.4 Summary

In this section, we have looked at the various proposed methods for detecting threats in cloud
computing. We first started with a general algorithm, which provided a guideline for how threats
could be determined by a calculated trust level via various risk levels. From this, we then turned
to a proposed method in which NBT and RF were used, in conjunction with an already available
dataset, in order to train a model to detect anomalies. And although this model outperformed
another, competing model, further comparison was not made to other models, leaving the
strength of the proposed method a bit questionable. Finally, we turned to a proposed framework
by which threat levels can be better determined by narrowing the scope of focus to a specific
DSL. Once this is done, we can then add specificity by having particular profile categories and
time frames in order to better classify the profiles and detect anomalies. Consequently, while
there is no clear method for security in cloud computing, the proposed models provide promising
starting points for future work and offer insights as to the ways in which future work might
proceed with regards to implemented algorithms and scope of specificity.

5. Conclusion
In this paper, we have looked at a variety of ways in which ML applications can be used to
improve cloud computing. We started by looking at ML techniques for dynamic resource
management, with particular focus on predictions of required VM size. We found that the two
proposed techniques, SVM and ANN, both outperformed LR in most cases, and the
determination of which of the two methods to use is situation dependent. We then turned to look
at ML techniques for more efficient use of resources, particularly in order to save energy, by
turning off idle machines and consolidation of workloads. Here, we again found that although the
proposed methods outperformed the naïve approach(es), choosing between the proposed
methods required further specificity that is situation dependent. Finally, we concluded with a

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 24

discussion of security in cloud computing. We started with a generic algorithm for determining
trust levels, from which more advanced techniques could build upon. One such technique, using
NBT and RF, demonstrated improved performance but was not adequately compared to other
methods in order to achieve a decisive conclusion. Another technique was proposed merely as a
framework and so was not able to be tested, but nevertheless offered intriguing perspectives for
future work to build upon.

References
1. Kundu, Sajib, Rangaswami, Raju, Gulati, Ajay, Zhao, Ming, & Dutta, Kaushik. (2012).

"Modeling virtualized applications using machine learning techniques."" SIGPLAN Not.,
47(7), 3-14. doi: 10.1145/2365864.2151028. http://dl.acm.org/citation.cfm?id=2151028.

2. Matsunaga, A., & Fortes, J. (2010). "On the Use of Machine Learning to Predict the Time
and Resources Consumed by Applications". Paper presented at the Cluster, Cloud and
Grid Computing (CCGrid), 2010 10th IEEE/ACM.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5493447.

3. Berral, Josep Ll., Goiri, Inigo, Nou, Ramon, Julia, Ferran, Guitart, Jordi, Gavalda,
Ricard, & Torres, Jordi. (2010). "Towards energy-aware scheduling in data centers using
machine learning". Paper presented at the Proceedings of the 1st International Conference
on Energy-Efficient Computing and Networking, Passau, Germany.
http://dl.acm.org/citation.cfm?doid=1791314.1791349.

4. Chen, Tao, & Bahsoon, Rami. (2013). "Self-adaptive and sensitivity-aware QoS
modeling for the cloud". Paper presented at the Proceedings of the 8th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, San
Francisco, CA, USA. http://dl.acm.org/citation.cfm?id=2487346.

5. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. (2001). "Managing energy and
server resources in hosting centers". 18th ACM symposium on Operating systems
principles (SIGOPS), 35(5):103–116. http:// dl.acm.org/citation.cfm?id=502045.

6. Bianchini, R., Rajaniony, R. (2004). "Power and energy management for server systems".
Computer, 37(11):68–76. http://dx.doi.org/10.1109/MC.2004.217.

7. Whitworth, Jeff, & Suthaharan, Shan. (2014). "Security problems and challenges in a
machine learning-based hybrid big data processing network systems". SIGMETRICS
Perform. Eval. Rev., 41(4), 82-85. doi: 10.1145/2627534.2627560.
http://dl.acm.org/citation.cfm?id=2627560.

8. Gander, Matthias, Felderer, Michael, Katt, Basel, Tolbaru, Adrian, Breu, Ruth, &
Moschitti, Alessandro. (2013). "Anomaly Detection in the Cloud: Detecting Security
Incidents via Machine Learning". In A. Moschitti & B. Plank (Eds.), Trustworthy Eternal
Systems via Evolving Software, Data and Knowledge (Vol. 379, pp. 103-116): Springer
Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-45260-4_8.

9. Bhat, Amjad Hussain, Patra, Sabyasachi, & Jena, Debasish. (2013). "Machine learning
approach for intrusion detection on cloud virtual machines". International Journal of
Application or Innovation in Engineering & Management (IJAIEM), 2(6), 56-66.
http://www.ijaiem.org/Volume2Issue6/IJAIEM-2013-06-09-029.pdf.

10. Vinay, A., Shekhar, Vinay S., Rituparna, J., Aggrawal, Tushar, Murthy, K. N.
Balasubramanya, & Natarajan, S. (2015). "Cloud Based Big Data Analytics Framework

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html
http://dl.acm.org/citation.cfm?id=2151028
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5493447
http://dl.acm.org/citation.cfm?doid=1791314.1791349
http://dl.acm.org/citation.cfm?id=2487346
http://dl.acm.org/citation.cfm?id=502045
http://dx.doi.org/10.1109/MC.2004.217
http://dl.acm.org/citation.cfm?id=2627560
http://dx.doi.org/10.1007/978-3-642-45260-4_8
http://www.ijaiem.org/Volume2Issue6/IJAIEM-2013-06-09-029.pdf

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 25

for Face Recognition in Social Networks Using Machine Learning". Procedia Computer
Science, 50, 623-630. doi: http://dx.doi.org/10.1016/j.procs.2015.04.095.

11. Taigman, Y., Ming, Yang, Ranzato, M., & Wolf, L. (2014). "DeepFace: Closing the Gap
to Human-Level Performance in Face Verification". Paper presented at the Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE Conference.
https://facebook.com/download/233199633549733/deepface.pdf.

12. Li, K., Gibson, C., Ho, D., Qi, Zhou, Kim, J., Buhisi, O., Gerber, M. (2013). "Assessment
of machine learning algorithms in cloud computing frameworks." Paper presented at the
Systems and Information Engineering Design Symposium (SIEDS), 2013 IEEE.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6549501.

13. Bala, Kiran, & Vashist, Sahil. (2014). "Machine Learning based decision making by
brokers in cloud computing". International Journal of Application or Innovation in
Engineering & Management (IJAIEM), 3(7), 269-273.
http://www.ijaiem.org/Volume3Issue7/IJAIEM-2014-07-31-95.pdf.

14. KDD’99 Knowledge Discover and Data mining cup 2009. (2009). University of
California, Irvine. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. [Dataset
used for determining threat levels – see section 4.]

15. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. (1990). "Basic Local
Alignment Search Tool". Journal of Molecular Biology, v. 215(3), pp. 403-410, doi:
10.10006/jmbi.1990.9999. http://dx.doi.org/10.1016/S0022-2836(05)80360-2.

16. Stamakis, A. (2006). "RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic
Analyses with Thousands of Taxa and Mixed Models". Bioinformatics 22(21):2688-
2690. http://bioinformatics.oxfordjournals.org/content/22/21/2688.long.

Acronyms Used
• ANN - artificial neural network
• ARMAX - autoregressive moving-average model with exogenous inputs model
• BLAST - Basic Local Alignment Search Tool
• DoS - denial of service
• DSL - domain specific language
• EE - energy efficiency
• KNN - k-nearest neighbor/nodes
• LR - linear regression
• ML - machine learning
• MLDB - machine learning dynamic backfilling
• MSRP - maximize service revenue and profit
• NBT - Naive Bayes Tree
• QoS - quality of service
• R2L - remote to local
• RAxML - Randomized Axelerated Maximum Likelihood
• RF - random forest
• RUBiS - Rice University Bidding System
• S-ANN - sensitivity aware ANN
• S-ARMAX - sensitivity aware ARMAX
• SLA - service level agreement

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html
http://dx.doi.org/10.1016/j.procs.2015.04.095
https://facebook.com/download/233199633549733/deepface.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6549501
http://www.ijaiem.org/Volume3Issue7/IJAIEM-2014-07-31-95.pdf
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://bioinformatics.oxfordjournals.org/content/22/21/2688.long

A Survey of Machine Learning Applications to Cloud Computing

http://www.cse.wustl.edu/~jain/cse570-15/ftp/cld_ml/index.html 26

• SVM - support vector machine
• U2R - user to root
• VM - virtual machine
• VMs - virtual machines

Last modified on November 30, 2015
This and other papers on recent advances in networking are available online at
http://www.cse.wustl.edu/~jain/cse570-15/index.html
Back to Raj Jain's Home Page

http://www.cse.wustl.edu/%7Ejain/cse570-15/ftp/cld_ml/index.html

	A Survey of Machine Learning Applications to Cloud Computing
	Abstract
	Keywords
	Table of Contents
	1. Introduction
	2. Predicting and Managing Resources
	2.1 SVM
	2.2 ANN
	2.3 Comparing SVM and ANN
	2.4 Summary

	3. Effective Use of Resources
	3.1 Motivating Dynamic and Effective Use of Resources
	3.2 Greedy Algorithm
	3.3 Naïve Algorithms and Backfilling Algorithms
	3.4 QoS and Specificity
	3.5 Summary

	4. Security in Cloud Computing and ML
	4.1 General Algorithm for Trust Levels
	4.2 Naïve Bayes Tree and Random Forest
	4.3 Framework to Detect Semantic Gaps and Anomalies
	4.4 Summary

	5. Conclusion
	References
	Acronyms Used

