Carrier Ethernet

Raj Jain

Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at:

http://www.cse.wustl.edu/~jain/cse570-15/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

- 1. Enterprise vs Carrier Ethernet
- 2. UNI vs Peer-to-Peer Signaling
- 3. Metro Ethernet
- 4. Ethernet Provider Bridge (PB)
- 5. Provider Backbone Network (PBB)
- 6. Connection Oriented Ethernet

Note: Although these technologies were originally developed for carriers, they are now used inside multi-tenant data centers

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Enterprise vs Carrier Ethernet

Enterprise

- □ Distance: up to 2km
- □ Scale:
 - > Few K MAC addresses
 - > 4096 VLANs
- Protection: Spanning tree
- Path determined by spanning tree
- Simple service
- \square Priority \Rightarrow Aggregate QoS
- No performance/Error monitoring (OAM)

Carrier

- r Up to 100 km
- Millions of MAC Addresses
- Millions of VLANsQ-in-Q
- r Rapid spanning tree (Gives 1s, need 50ms)
- r Traffic engineered path
- r SLA
- r Need per-flow QoS
- r Need performance/BER

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Carriers vs. Enterprise

We need to exchange topology for optimal routing.

Sorry, We can't tell you anything about our internal network.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Network Hierarchy

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Issue: UNI vs Peer-to-Peer Signaling

- Two Business Models:
 - > Carrier: Overlay or cloud
 - □ Network is a black-box
 - User-to-network interface (UNI)
 to create/destroy light paths (in OIF)
 - > Enterprise: Peer-to-Peer
 - □ Complete exchange of information

UNI vs. ENNI

- **□** User to Network Interface (UNI):
 - > Separates responsibilities between the user and the provider. (Troubleshooting, failures etc).
 - > Like the wired phone box outside your home.
 - > Only one customer's traffic.
- **■** External Network to Network Interface (ENNI):
 - > Separates responsibilities between two providers.
 - > Many customer's traffic passes through an ENNI
 - > Tier 2 *operators* sell services to Tier 3 service providers.

Customer UNI Provider 1 ENNI Provider 2
Tier 3

Ref: Fujitsu, "Carrier Ethernet Essentials," http://www.fujitsu.com/downloads/TEL/fnc/whitepapers/CarrierEthernetEssentials.pdf
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/
©2015 Raj Jain

Operator Virtual Connection (OVC)

- Between UNI and ENNI or between two ENNIs.
- ☐ For wholesale service providers
- ☐ Two types: Point-to-Point and Multipoint-to-Multipoint
- Untagged or single tagged frames at NNI. Q-in-Q at ENNI
- □ UNIs may be 10 to 100 Mbps. ENNIs at 1 to 10 Gbps.

Metro Access Ethernet Private Line

- **□** Access Ethernet Private Line (Access-EPL):
 - > Port-based service for Internet access Like the service at your home.
 - > Ends at your access provider, where many other Access-EPLs may end
 - ➤ Access provider has only one interface
 Shared by many Access-EPLs ⇒Different from p2p EPL.

E-Access

http://www.cse.wustl.edu/~jain/cse570-15/

End-to-End Metro Ethernet Connection

- An EC may go through multiple service providers
 - ⇒ Multiple OVCs can be concatenated to create an EC

Ethernet Virtual Connections (EVCs)

- Port-based ECs: Forwarding not based on VLANs. Frames delivered to remote UNI/ENNI for P2P or Based on destination address for P2MP
- □ VLAN-based ECs: Forwarding based on VLAN tag.
 - ⇒ Multiple Virtual UNIs
 - \Rightarrow Ethernet *Virtual* Connection (*EVC*) More cost-effective for Enterprise customers
- □ Types of EVCs:
 - 1. Ethernet Virtual Private Line (EVPL)
 - 2. Ethernet Virtual Private Tree (EVP-Tree)
 - 3. Ethernet Virtual Private LAN (EVPLAN)
 - 4. Access Ethernet Virtual Private Line (Access EVPL)
- Note: Service providers always share an ENNI for multiple connections ⇒ OVCs are always virtual ⇒ No OCs

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Metro Ethernet Service Attributes

- Bandwidth Profiles: Limits on data dates
 - > Ingress Profile: Incoming data rate
 - > Egress Profile: Outgoing data rate
- Per UNI, Per EVC or OVC, orPer EVC/OVC per Class of Service (CoS)
- CoS is indicated by the 3-bits in the priority field or
 4-bit Differentiated Services Code Point (DSCP)
- Rate specified by 5 parameters
 - 1. Committed Information Rate (CIR)
 - 2. Committed Burst Size (CBS)
 - 3. Excess Information rate (EIR)
 - 4. Excess Burst Size (EBS)
 - 5. Color Mode (CM): Customer does/does not mark drop eligibility indicator (DEI)

EBS CIR

Dropped Mark EIR

DEI

s not

Forwarded

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Data

 $\mathbb{C}\mathsf{BS}$

Metro Ethernet OAM

- Operation, Administration and Maintenance (OAM)
- □ Defined in IEEE 802.1ag, IEEE 802.1ah, and ITU Y.1731
- Maintenance end points (MEPs)
- Maintenance Intermediate Points (MIPs)
- Maintenance Entity Group (MEG): Level of Administration

Metro Ethernet OAM (Cont)

- Performance Monitoring: Measure throughput and latency
- Connectivity Fault Management: Monitor downtime
 - > Service Fault Management
 - > Link Fault Management

Metro Ethernet OAM Messages

- Continuity Check Message (CCM) in both directions (Similar to IP Ping)
- □ Link Trace Message (LTM): Locates fault. Link Trace Response (LTR) is returned by each end point and intermediate point (similar to IP trace route)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Metro Ethernet Use Cases

1. Head office to Satellite offices and/or Internet

2. Customers to Cloud Service Provider

Ethernet Provider Bridge (PB)

- IEEE 802.1ad-2005 incorporated in IEEE 802.1Q-2011
- □ Problem: Multiple customers may have the same VLAN ID. How to keep them separate?
- Solutions:
 - VLAN translation: Change customer VLANs to provider VLANs and back
 - 2. VLAN Encapsulation: Encapsulate customer frames

Ref: D. Bonafede, "Metro Ethernet Network," http://www.cicomra.org.ar/cicomra2/asp/TUTORIAL-%20Bonafede.pdf Ref: P. Thaler, et al., "IEEE 802.1Q," IETF tutorial, March 10 2013,

http://www.ietf.org/meeting/86/tutorials/86-IEEE-8021-Thaler.pdf

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/

Ethernet Provider Bridge (PB)

- □ IEEE 802.1ad-2005 incorporated in IEEE 802.1Q-2011
- □ Problem: Multiple customers may have the same VLAN ID. How to keep them separate?
- Solutions:
 - VLAN translation: Change customer VLANs to provider VLANs and back
 - 2. VLAN Encapsulation: Encapsulate customer frames

Ref: D. Bonafede, "Metro Ethernet Network," http://www.cicomra.org.ar/cicomra2/asp/TUTORIAL-%20Bonafede.pdf Ref: P. Thaler, et al., "IEEE 802.1Q," IETF tutorial, March 10 2013,

http://www.ietf.org/meeting/86/tutorials/86-IEEE-8021-Thaler.pdf

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/

Provider Bridge (Cont)

- Q-in-Q Encapsulation: Provider inserts a service VLAN tag
 VLAN translation Changes VLANs using a table
- □ Allows 4K customers to be serviced. Total 16M VLANs
- 8 Traffic Classes using Differentiated Services Code Points (DSCP) for Assured Forwarding

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Provider Backbone Network (PBB)

- Problem: Number of MAC addresses passing through backbone bridges is too large for all core bridge to remember Broadcast and flooded (unknown address) frames give unwanted traffic and security issues
- □ Solution: IEEE 802.1ah-2008 now in 802.1Q-2011
- Add new source/destination MAC addresses pointing to ingress backbone bridge and egress backbone bridge
 - ⇒Core bridges only know edge bridge addresses

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

MAC-in-MAC Frame Format

- Provider backbone edge bridges (PBEB) forward to other PBEB's and learn customer MAC addresses
 - ⇒ PB *core* bridges do not learn customer MACs
- B-DA = Destination backbone bridge address
 Determined by Customer Destination Address
- Backbone VLANs delimit the broadcast domains in the backbone

□ PBB Core switches forward based on Backbone Destination Bridge Address and Backbone-VLAN ID (60 bits) Similar to 802.1ad Q-in-Q. Therefore, same EtherType.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

PBB Service Instance

- □ 24-bit Service instance ID (I-SID) indicates a specific flow
 - > All frames on a specific port, or
 - > All frames on a specific port with a specific *service* VLAN, or
 - All frames on a specific port with a specific service VLAN and a specific *customer* VLAN

SID	Definition	B-VLAN
1	Port 1	1
20	Port 2, S-VLAN=10	3
33	Port 2, S-VLAN=20	6
401	Port 2, S-VLAN=30, C-VLAN=100	4
502	Port 3, S-VLAN=40, C-VLAN=200	4

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

MAC-in-MAC (Cont)

- Each Backbone VLANs (B-VLAN) can carry multiple services
- Arr 24-bit SID \Rightarrow 2²⁴ Service Instances in the backbone
- □ I-Tag format: I-Tag not looked at in the core. Includes C-DA+C-SA.

UCA=1 \Rightarrow Use customer addresses (used in CFM in the Edge)

	Priority	Drop	Use	Reserved	Reserved	Service	Customer	Customer	
	Code	Eligibility	Customer	1	2	Instance	Destination	Source	
	Point	Indicator	Address			ID	Address	Address	
	(I-PCP)	(I-DEI)	(UCA)			(I-SID)	(C-DA)	(C-SA)	
Washinot	3b on Universit	1b y in St. Louis	1b	1b http://www	2b .cse.wustl.edu/	24b /~jain/cse570-	-15/ 48b	48b ©2015 Ra	ai Ia

Connection Oriented Ethernet

- Connectionless: Path determined at forwarding
 - ⇒ Varying QoS
- Connection Oriented: Path determined at provisioning
 - \triangleright Path provisioned by management \Rightarrow Deterministic QoS
 - □ No spanning tree, No MAC address learning,
 - □ Frames forwarded based on VLAN Ids and Backbone bridges addresses
 - □ Path not determined by customer MAC addresses and other customer fields \Rightarrow More Secure
 - > Reserved bandwidth per EVC
 - \triangleright Pre-provisioned Protection path \Rightarrow Better availability

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

VLAN Cross-Connect

- \square Cross-connect \Rightarrow Circuit oriented
- Connection Oriented Ethernet with Q-in-Q
- □ Forward frames based on VLAN ID and Input port⇒ No MAC Learning

Input	VLAN	Output
Port	ID	Port
1	200	7
2	201	5
3	20	5
3	21	6
4	100	7
4	101	8

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

PBB-TE

- Provider Backbone Bridges with Traffic Engineering (PBB-TE)
- □ IEEE 802.1Qay-2009 now in 802.1Q-2011
- □ Provides connection oriented P2P (E-*Line*) Ethernet service
- For PBB-TE traffic VLANs:
 - > Turn off MAC learning
 - > Discard frames with unknown address and broadcasts.
 - \Rightarrow No flooding
 - > Disable Spanning Tree Protocol.
 - > Add protection path switching for each direction of the trunk
- Switch forwarding tables are administratively populated using management
- Same frame format as with MAC-in-MAC. No change.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

PBB-TE QoS

- \square Guarantees QoS \Rightarrow No need for MPLS or SONET/SDH
- UNI traffic is classified by Port, Service VLAN ID, Customer VLAN ID, priority, Unicast/Multicast
- □ UNI ports are *policed* \Rightarrow Excess traffic is dropped No policing at NNI ports. Only remarking, if necessary.
- □ Traffic may be marked and remarked at both UNI and NNI

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Ethernet Tagged Frame Format Evolution

Original Ethernet

C-DA C-SA Type Payload

□ IEEE 802.1Q VLAN

C-DA C-SA Type 8100 C-VID Type Payload

□ IEEE 802.1ad PB

C-DA	C-SA	Туре	S-VID	Type	C-VID	Type	Payload
		88A8		8100			

□ IEEE 802.1ah PBB or 802.1Qay PBB-TE

B-DA	B-SA	Type	B-VID	Type	I-SID	C-DA	C-SA	Type	S-VID	Type	C-VID	Type	Payload	
		88A8		88E7				88A8		8100				ı

Tag Type	Value
Customer VLAN	8100
Service VLAN or Backbone VLAN	88A8
Backbone Service Instance	88E7

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Comparison of Technologies

	Basic	MPLS	PB	PBB-TE
	Ethernet			
Resilience	No	Protection	SPB/LAG	Protection
		Fast Reroute		Fast Reroute
Security	No	Circuit	VLAN	Circuit
		Based		Based
Multicast	Yes	Inefficient	Yes	No. P2P only
QoS	Priority	Diffserve	Diffserve+	Diffserve+
			Guaranteed	Guaranteed
Legacy	No	Yes (PWE3)	No	No
Services				
Traffic	No	Yes	No	Yes
Engineering				
Scalability	Limited	Complex	Q-in-Q	Q-in-Q+
				Mac-in-MAC
Cost	Low	High	Medium	Medium
OAM	No	Some	Yes	Yes

Ref: Bonafede

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Summary

- 1. Carriers use User-to-Network Interface (UNI) signaling rather than peer-to-peer signaling
- 2. Metro Ethernet allows E-Line, E-Access, E-Tree, and E-LAN services
- 3. Q-in-Q allows service providers to carry customer VLAN tags in their Ethernet Frames
- 4. MAC-in-MAC extension allows very large Ethernet networks spanning over several backbone carriers
- 5. PBB-TE extension allows connection oriented Ethernet with QoS guarantees and protection

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Reading List

- □ Fujitsu, "Carrier Ethernet Essentials,"

 http://www.fujitsu.com/downloads/TEL/fnc/whitepapers/CarrierEthernetEssentials.pdf (must read)
- □ D. Bonafede, "Metro Ethernet Network," http://www.cicomra.org.ar/cicomra2/asp/TUTORIAL-%20Bonafede.pdf
- □ P. Thaler, et al., "IEEE 802.1Q," IETF tutorial, March 10 2013, http://www.ietf.org/meeting/86/tutorials/86-IEEE-8021-Thaler.pdf
- □ G. Santana, "Datacenter Virtualization Fundamentals," Cisco Press, 2014, ISBN: 1587143240 (Safari Book)
- H. Saboowala, M. Abid, S. Modali, "Designing Networks and Services for the Cloud: Delivering business-grade cloud applications and services," Cisco Press 2013, ISBN:1587142945 (Safari Book)

Wikipedia Links

http://en.wikipedia.org/wiki/Carrier Ethernet http://en.wikipedia.org/wiki/Connection-oriented Ethernet http://en.wikipedia.org/wiki/Ethernet Private Line http://en.wikipedia.org/wiki/Ethernet Virtual Private Line http://en.wikipedia.org/wiki/IEEE 802.1ad http://en.wikipedia.org/wiki/IEEE 802.1ag http://en.wikipedia.org/wiki/IEEE 802.1ah-2008 http://en.wikipedia.org/wiki/Metro Ethernet http://en.wikipedia.org/wiki/Metro Ethernet Forum http://en.wikipedia.org/wiki/Network-to-network interface http://en.wikipedia.org/wiki/Operations, administration and management http://en.wikipedia.org/wiki/Provider Backbone Bridge Traffic Engineeri ng http://en.wikipedia.org/wiki/Traffic policing http://en.wikipedia.org/wiki/Traffic shaping http://en.wikipedia.org/wiki/User%E2%80%93network_interface http://en.wikipedia.org/wiki/Virtual Private LAN Service

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

Acronyms

□ BER Bit Error Rate

CBS Committed Burst Size

CCM Continuity Check Message

□ CE Customer Edge

CFI Canonical Form Indicator

CFM Connectivity Fault Management

CIR Committed Information Rate

CM Color Mode

CoS Class of Service

DA Destination Address

□ DEI Drop Eligibility Indicator

DSCP Differentiated Services Code Points

□ EBS Excess Burst Size

□ EC Ethernet Connection

□ EIR Excess Information rate

■ ENNI External Network to Network Interface

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

■ EPL Ethernet Private Line

EVC Ethernet Virtual Connection

EVP-Access Ethernet Virtual Private Access

EVP-LAN Ethernet Virtual Private Local Area Network

EVP-Line Ethernet Virtual Private Line

EVP-Tree Ethernet Virtual Private Tree

■ EVPL Ethernet Virtual Private Line

□ ID Identifier

□ IEEE Institution of Electrical and Electronic Engineers

□ IETF Internet Engineering Task Force

■ IP Internet Protocols

□ ITU International Telecommunications Union

LAN Local Area Network

☐ LTM Link Trace Message

■ LTR Link Trace Response

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

■ MAC Media Access Control

MEG Maintenance Entity Group

MEP Maintenance End Points

MIP Maintenance Intermediate Points

MP Multi-Point

MPLS Multi-Protocol Label Switching

NNI Network-to-Network Interface

OAM Operation, Administration and Maintenance

OC Optical Carrier

OIF Optical Interoperability Forum

OVC Operator Virtual Connection

PB Provider Bridge

□ PBB-TE Provider Backbone Bridge with Traffic Engineering

PBB Provider Backbone Bridge

PBBE Provider BackBone Edge

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-15/

■ PBBN Provider Backbone Network

→ PBEB Provider backbone edge bridges

□ PBN Provider Bridging network

PBX Private Branch Exchange

□ PCP Priority Code Point

PDH Plesiochronous Digital Hierarchy

□ PE Provider Edge

PW Pseudo-Wire

□ PWE3 Pseudo-Wire Emulation Edge-to-Edge

QoSQuality of Service

SA Source Address

SDH Synchronous Digital Hierarchy

□ SID Service Identifier

□ SLA Service Level Agreement

SONET Synchronous optical network

□ TE Traffic Engineering

□ TV Television

UCAUse Customer Address (flag)

UNI
User to Network Interface

VID VLAN Identifier

□ VLAN Virtual Local Area Network

□ VoD Video on Demand

□ VoIP Voice over IP

VPN Virtual Private Network