Data Center Ethernet

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at:

http://www.cse.wustl.edu/~jain/cse570-18/

Washington University in St. Louis

p://www.cse.wustl.edu/~jain/cse570-1

©2018 Rai Jain

4-1

Quiz: True or False?
Which of the following statements are generally true?
T F
□ Ethernet is a local area network (Local ≤ 2km)
□ Token ring, Token Bus, and CSMA/CD are the three most common LAN access methods.
□ Ethernet uses CSMA/CD.
□ Ethernet bridges use spanning tree for packet forwarding.
□ Ethernet frames are 1518 bytes.
□ Ethernet does not provide any delay guarantees.
□ Ethernet has no congestion control.
□ Ethernet has strict priorities.

- 1. Residential vs. Data Center Ethernet
- 2. Review of Ethernet Addresses, devices, speeds, algorithms
- 3. Enhancements to Spanning Tree Protocol
- 4. Virtual LANs
- 5. Data Center Bridging Extensions

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18

©2018 Rai Jain

4-2

Residential vs. Data Center Ethernet

Residential	Data Center
□ Distance: up to 200m	□ No limit
☐ Scale:	
Few MAC addresses	Millions of MAC Addresses
> 4096 VLANs	Millions of VLANs Q-in-Q
Protection: Spanning tree	☐ Rapid spanning tree,
	(Gives 1s, need 50ms)
Path determined by	☐ Traffic engineered path
spanning tree	
☐ Simple service	☐ Service Level Agreement.
	Rate Control.
□ Priority	Need per-flow/per-class QoS
⇒ Aggregate QoS	
No performance/Error	□ Need performance/BER
monitoring (OAM)	_
Washington University in St. Louis http:	://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Jain

IEEE 802 Address Format

48-bit:1000 0000 : 0000 0001 : 0100 0011

: 0000 0000 : 1000 0000 : 0000 1100

= 80:01:43:00:80:0C

	nizationall Identifier (Universal/ Local	OUI)	24 bits assigned by OUI Owner
1	1	22	24

- ☐ Multicast = "To all bridges on this LAN"
- Broadcast = "To all stations" (Note: Local bit is set)

= 1111111....111 = FF:FF:FF:FF:FF

Washington University in St. Louis

©2018 Rai Jain

©2018 Rai Jain

IEEE Standards Numbering System

■ IEEE 802.* and IEEE 802.1* standards (e.g., IEEE 802.1Q-2011) apply to all IEEE 802 technologies:

> IEEE 802.3 Ethernet

> IEEE 802.11 WiFi

> IEEE 802.16 WiMAX

	802 Overview and Architecture					
		802.2 Logical Link Control				
		8	02.1 Brid	lging		
		802	2.1 Mana	gement		
	802.10 Security					
	802.3 802.11 802.17					
	Ethernet		WiFi		Resilient	
		•••			Packet	•••
Washington University in St.	Louis	http:/	/www.cse.wus	tl.edu/~iain/c	Ring (RPR)	©2018 Raj J

Names, IDs, Locators

Name: John Smith

ID: 012-34-5678

1234 Main Street

Big City, MO 12345

Locator:

USA

IEEE Standards Numbering (Cont)

- □ IEEE 802.3* standards apply only to Ethernet, e.g., IEEE802.3ba-2010
- Standards with all upper case letters are base standards E.g., IEEE 802.1AB-2009
- □ Standards with lower case are additions/extensions/revisions. Merged with the base standard in its next revision. e.g., IEEE 802.1w-2001 was merged with IEEE 802.1D-2004
- □ Standards used to be numbered, sequentially, e.g., IEEE 802.1a, ..., 802.1z, 802.1aa, 802.1ab, ...
- Recently they started showing base standards in the additions, e.g., IEEE 802.1Qau-2010

■ Examples:

- > Names: Company names, DNS names (Microsoft.com)
- > IDs: Cell phone numbers, 800-numbers, Ethernet addresses, Skype ID, VOIP Phone number

□ Locator changes as you move, ID and Names remain the same.

> Locators: Wired phone numbers, IP addresses

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jair

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18

Ethernet Speeds

- □ IEEE 802.3ba-2010 (40G/100G) standard
- □ 10Mbps, 100 Mbps, 1 Gbps versions have both CSMA/CD and Full-duplex versions
- □ No CSMA/CD in 10G and up
- □ No CSMA/CD in practice now even at home or at 10 Mbps
- □ 1 Gbps in residential, enterprise offices
- □ 1 Gbps in Data centers, moving to 10 Gbps and 40 Gbps
- □ 100G in some carrier core networks 100G is still more expensive than 10×10G
- Note: only decimal bit rates are used in networking No cheating like binary byte values used in storage 1 Gbps = 10⁹ b/s, Buy 256 GB Disk = 238.4 GB storage

Ref: http://en.wikipedia.org/wiki/100_Gigabit_Ethernet

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18.

©2018 Rai Jain

Interconnection Devices (Cont)

- □ Repeater: PHY device that restores data and collision signals
- □ **Hub**: Multiport repeater + fault detection and recovery
- □ **Bridge**: Datalink layer device connecting two or more collision domains. MAC multicasts are propagated throughout the LAN.
- **Router**: Network layer device. IP, IPX, AppleTalk. Does not propagate MAC multicasts.
- □ Switch: Multiport bridge with parallel paths
- ☐ These are functions. Packaging varies.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

4-10

Link Aggregation Control Protocol (LACP)

- □ IEEE 802.1AX-2008/IEEE 802.3ad-2000
- □ Allows several parallel links to be combined as one link 3×1Gbps = 3 Gbps
- □ Allows any speed links to be formed
- □ Allows fault tolerance
 ⇒ Combined Link remains connected even if one of the member links fails
- □ Several proprietary extensions. E.g., aggregate links to two switches which act as one switch.

Ref: Enterasys, "Enterasys Design Center Networking – Connectivity and Topology Design Guide," 2013,

http://www.enterasys.com/company/literature/datacenter-design-guide-wp.pdf

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

4-11

Spanning Tree Algorithm

- ☐ Helps form a tree out of a mesh topology
- □ All bridges multicast to "All bridges"
 - > My ID. 64-bit ID = 16-bit priority + 48-bit MAC address.
 - > Root ID
 - > My cost to root
- ☐ The bridges update their info using Dijkstra's algorithm and rebroadcast
- □ Initially all bridges are roots but eventually converge to one root as they find out the lowest Bridge ID.

□ All ports of all non-designated bridges are blocked.

Washington University in St. Louis

Washington University in St. Louis

©2018 Raj Jain

4-13

Homework 4

□ Which links in the following diagram will be blocked by spanning tree? Justify your answer.

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

Spanning Tree Example

Ref: Cisco, "Understanding Spanning-Tree Protocol Topology Changes,"

http://www.cisco.com/en/US/tech/tk389/tk621/technologies_tech_note09186a0080094797.shtml

/ashington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18

4-14

Enhancements to STP

- □ A topology change can result in 1 minute of traffic loss with STP ⇒ All TCP connections break
- □ Rapid Spanning Tree Protocol (RSTP)
 IEEE 802.1w-2001 incorporated in IEEE 802.1D-2004
- $lue{}$ One tree for all VLANs \Rightarrow Common spanning tree
- Many trees ⇒ Multiple spanning tree (MST) protocol IEEE 802.1s-2002 incorporated in IEEE 802.1Q-2005
- □ One or more VLANs per tree.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

©2018 Raj Jain

4-15

MSTP (Multiple Spanning Tree)

- MSTP (Multiple STP) IEEE 802.1s-2002 incorporated in IEEE 802.1Q-2005
- Each tree serves a group of VLANs.
- □ A bridge port could be in forwarding state for some VLANs and blocked state for others.

Washington University in St. Louis

Ref: http://en.wikipedia.org/wiki/Shortest_Path_Bridging

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

©2018 Rai Jain

4-17

Shortest Path Bridging □ IEEE 802.1aq-2012 (later incorporated in 802.1Q-2014) □ Allows all links to be $used \Rightarrow Better CapEx$ Switch | Switch | Aggregation □ IS-IS link state protocol (similar to OSPF) is used to build shortest path Switch | Switch | Switch | Access Switch trees for each node to every other node within the SPB domain Server2 | Server3 | Server4 Server1 ■ Equal-cost multi-path (ECMP) used to distribute load

IS-IS Protocol

- □ Intermediate System to Intermediate System (IS-IS) is a protocol to build routing tables. Link-State routing protocol => Each nodes sends its connectivity (link state) information to all nodes in the network
- □ Dijkstra's algorithm is then used by each node to build its routing table.
- □ Similar to OSPF (Open Shortest Path First).
- □ OSPF is designed for IPv4 and then extended for IPv6. IS-IS is general enough to be used with any type of addresses
- □ OSPF is designed to run on the top of IP IS-IS is general enough to be used on any transport ⇒ Adopted by Ethernet

Ref: http://en.wikipedia.org/wiki/IS-IS

http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

©2018 Rai Jain

4-18

4-19

http://www.cse.wustl.edu/~jain/cse570-18/

Link Layer Discovery Protocol (LLDP)

- □ IEEE 802.1AB-2009
- Neighbor discovery by periodic advertisements
- Every minute a LLC frame is sent on every port to neighbors
- LLDP frame contains information in the form of Type-Length-Value (TLV)
- □ Types: My Chassis ID, My Port ID, Time-to-live, Port description (Manufacturer, product name, version), Administratively assigned system name, capabilities, MAC address, IP Address, Power-via-MDI, Link aggregation, maximum frame size, ...

DA SA Len LLC Type Len Value ... Type Len Value CRC

Ref: M. Srinivasan, "Tutorial on LLDP," http://www.eetimes.com/document.asp?doc_id=1272069

Ref: http://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-1

©2018 Rai Jain

4-25

Ethernet Flow Control: Pause Frame

- □ Defined in IEEE 802.3x-1997. A form of on-off flow control.
- A receiving switch can stop the adjoining sending switch by sending a "Pause" frame.
 Stops the sender from sending any further information for a
- time specified in the pause frame.

 The frame is addressed to a standard (well-known) multicast
- address. This address is acted upon but not forwarded.

4-27

□ Stops all traffic. Causes congestion backup.

 $\textbf{Ref:}\ \underline{\textbf{http://en.wikipedia.org/wiki/Ethernet_flow_control}$

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18.

©2018 Rai Jain

Data Center Bridging

- ☐ Goal: To enable storage traffic over Ethernet
- Four Standards:
 - > Priority-based Flow Control (IEEE 802.1Qbb-2011)
 - > Enhanced Transmission Selection (IEEE 802.1Qaz-2011)
 - > Congestion Control (IEEE 802.1Qau-2010)
 - > Data Center Bridging Exchange (IEEE 802.1Qaz-2011)
- □ All of these are now incorporated in IEEE 802.1Q-2014

 $Ref: M.\ Hagen, "Data\ Center\ Bridging\ Tutorial," \\ \underline{http://www.iol.unh.edu/services/testing/dcb/training/DCB-Tutorial.pdf}$

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

4-26

Priority-based Flow Control (PFC)

- □ IEEE 802.1Qbb-2011
- □ IEEE 802.1Qbb-2011 allows any single priority to be stopped. Others keep sending

Ref: J. L. White, "Technical Overview of Data Center Networks," SNIA, 2013,

http://www.snia.org/sites/default/education/tutorials/2012/fall/networking/JosephWhite_Technical%20Overview%20of%20Data%20Center%20Networks.pd

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Jain 4-28

A ETS Fairness Example

- Max-Min Fairness: Giving more to any one should not require decreasing to someone with less allocation (Help the poorest first)
- **Example**: In a 3-class group bridge, Groups 1 and 2 have a minimum guaranteed bandwidth of 20% and 30%, respectively. In a particular time slot, the traffic demands for group 1, 2, and 3 are 30%, 60%, 30%, respectively. How much should each group get?
- ☐ Iteration 1: Group 1 = 20, Group 2= 30, Unallocated = 50, Unsatisfied groups = 3 Fair allocation of unallocated bandwidth = 50/3 per group
- □ Iteration 2: Group 1 = 20+10 (can't use more), Group 2=30+50/3, Group 3=50/3

Total Used = 280/3, Unallocated = 20/3, Unsatisfied groups = 2, Fair share of unallocated bandwidth = 10/3 per group

☐ Iteration 3: Group 1 = 30, Group 2 = 30+50/3+10/3, Group 3 = 50/3+10/3Total Used = 100, Unallocated = 0 ⇒ Done.

©2018 Rai Jain

Tabular Method for Max-Min Fairness

Iteration		1	2	3	Total	Unused	# Unsatisfied
	Demand	30	60	30	120		
1 Guaranteed Allocation		20	30	0	50	50	
	Total Used	20	30	0	50	50	3
2	Additional Allocation	16.7	16.7	16.7			
		30	46.7	16.7	93.3	6.7	2
3	Additional Allocation	0	3.3	3.3			
	Total Used	30	50	20	100	0	2

☐ Iterations end when either unused capacity or # of unsatisfied groups is zero.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

Homework 4B

■ What would be max-min allocation for a 4 group system in which group 1 through 3 are guaranteed 10%, 20%, and 30% respectively. The demands on a 100 Gbps system are 1 Gbps, 4Gbps, and 35 Gbps, and 70 Gbps.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jair

4-33

DCBX

- □ Data Center Bridging eXchange, IEEE 802.1Qaz-2011
- Uses LLDP to negotiate quality metrics and capabilities for Priority-based Flow Control, Enhanced Transmission Selection, and Quantized Congestion Notification
- New TLV's
 - > Priority group definition
 - > Group bandwidth allocation
 - > PFC enablement per priority
 - > QCN enablement
 - > DCB protocol profiles
 - > FCoE and iSCSI profiles

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18

©2018 Rai Jain

- □ IEEE 802.1Qau-2010 Dynamic Congestion Notification
- □ A source quench message is sent by the congested switch direct to the source. The source reduces its rate for that flow.
- Sources need to keep per-flow states and control mechanisms
- □ Easy for switch manufacturers but complex for hosts.
 Implemented in switches but not in hosts ⇒ Not effective.
- ☐ The source may be a router in a subnet and not the real source ⇒ Router will drop the traffic. QCN does not help in this case.

Ref: 1. Pepelnjak, "DCB Congestion Notification (802.1Qau)," http://blog.ipspace.net/2010/11/data-center-bridging-dcb-congestion.htm Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Jain

4-34

- 1. Ethernet's use of IDs as addresses makes it very easy to move systems in the data center ⇒ Keep traffic on the same Ethernet
- 2. Spanning tree is wasteful of resources and slow. Ethernet now uses shortest path bridging (similar to OSPF)
- 3. VLANs allow different non-trusting entities to share an Ethernet network
- 4. Data center bridging extensions reduce the packet loss by enhanced transmission selection and Priority-based flow control

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

4-35

List of Acronyms

BER	Bit Error Rate
BPDU	Bridge Protocol Data Unit
CD	Collision Detection
CFI	Canonical Format Indicator
CRC	Cyclic Redundancy Check
CSMA	Carrier Sense Multiple Access with Collision Detection
DA	Destination Address
DCB	Data Center Bridging
DCBX	Data Center Bridging eXtension
DEI	Drop Eligibility Indicator
DNS	Domain Name System
ECMP	Equal-cost multi-path
ETS	Enhanced Transmission Selection
GB	Giga Byte

4-37

©2018 Raj Jain

List of Acronyms (Cont)

			List of Acronyms (Cont)	
		OSPF	Open Shortest Path First	
ı		OUI	Organizationally Unique Identifier	ı
ı		PCP	Priority Code Point	
ı		PFC	Priority-based Flow Control	ı
ı		PHY	Physical layer	ı
ı		QCN	Quantized Congestion Notification	ı
ı		QoS	Quality of Service	ı
ı		RSTP	Rapid Spanning Tree Protocol	ı
ı		SA	Source Address	ı
ı		SNIA	Storage Networking Industries Association	ı
ı		SPB	Shortest Path Bridging	ı
ı		STP	Spanning Tree Protocol	ı
ı		TCP	Transmission Control Protocol	ı
ı		TLV	Type-Length-Value	ı
ı		TPI	Tag Protocol Identifier	ı
ı		VLAN	Virtual Local Area Network	
ı	Was	VM hington University in St	Virtual machine	

List of Acronyms (Cont)

	ID	Identifier	
	IP	Internet Protocol	
	IEEE	Institution of Electrical and Electronics Engineers	
	IS-IS	Intermediate System to Intermediate System	
	iSCSI	Internet Small Computer System Interface	
	LACP	Link Aggregation Control Protocol	
	LAN	Local Area Network	
	LLC	Logical Link Control	
	LLDP	Link Layer Discovery Protocol	
	MAC	Media Access Control	
	MDI	Medium Dependent Interface	
	MSB	Most significant byte first	
	MST	Multiple Spanning Tree	
	MSTP	Multiple Spanning Tree Protocol	
	OAM	Operations, Administration, and Management	
Was	shington University in S	t. Louis http://www.cse.wustl.edu/~jain/cse570-18/	©2018 Raj Jain

4-38

List of Acronyms (Cont)

VOIP	Voice over IP
WAN	Wide Area Network
WiFi	Wireless Fidelity
WiMAX	Wireless Interoperability for Microwave Access

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

4-39

Reading List

- G. Santana, "Data Center Virtualization Fundamentals," Cisco Press, 2014, ISBN:1587143240
- □ Enterasys, "Enterasys Design Center Networking Connectivity and Topology Design Guide," 2013,

 $\underline{\text{http://www.enterasys.com/company/literature/datacenter-design-guidewp.pdf}}$

- □ Cisco, "Understanding Spanning-Tree Protocol Topology Changes,"

 http://www.cisco.com/en/US/tech/tk389/tk621/technologies_tech_note0918
 6a0080094797.shtml
- □ Cisco, Understanding Rapid Spanning Tree Protocol (802.1w),

 http://www.cisco.com/en/US/tech/tk389/tk621/technologies_white_paper09186a0080094cfa.shtml
- □ Canonical vs. MSB Addresses, http://support.lexmark.com/index?page=3Dcontent&id=3DHO1299

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

4-41

Wikipedia Links

- □ http://en.wikipedia.org/wiki/10-gigabit Ethernet
- □ http://en.wikipedia.org/wiki/100 Gigabit Ethernet
- □ http://en.wikipedia.org/wiki/Data center
- □ http://en.wikipedia.org/wiki/Data_center_bridging
- □ http://en.wikipedia.org/wiki/Data link layer
- □ <u>http://en.wikipedia.org/wiki/EtherChannel</u>
- □ http://en.wikipedia.org/wiki/Ethernet
- http://en.wikipedia.org/wiki/Ethernet_flow_control
- □ http://en.wikipedia.org/wiki/Ethernet_frame
- http://en.wikipedia.org/wiki/Ethernet_physical_layer
- □ http://en.wikipedia.org/wiki/EtherType
- □ http://en.wikipedia.org/wiki/Fast Ethernet
- □ http://en.wikipedia.org/wiki/Gigabit_Ethernet

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18

©2018 Rai Jain

Reading List (Cont)

☐ M. Hagen, "Data Center Bridging Tutorial,"

http://www.iol.unh.edu/services/testing/dcb/training/DCB-Tutorial.pdf

 J. L. White, "Technical Overview of Data Center Networks," SNIA, 2013, http://www.snia.org/sites/default/education/tutorials/2012/fall/networking/JosephWhite_Technical%20Overview%20of%20Data%20Center%20Networks.pdf

□ I. Pepelnjak, "DCB Congestion Notification (802.1Qau)," http://blog.ipspace.net/2010/11/data-center-bridging-dcb-congestion.html

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

4-42

Wikipedia Links (Cont)

- □ http://en.wikipedia.org/wiki/IEEE 802.1aq
- □ http://en.wikipedia.org/wiki/IEEE 802.1D
- □ http://en.wikipedia.org/wiki/IEEE_802.1Q
- □ <u>http://en.wikipedia.org/wiki/IEEE_802.3</u>
- □ http://en.wikipedia.org/wiki/IEEE_P802.1p
- □ http://en.wikipedia.org/wiki/IS-IS
- □ http://en.wikipedia.org/wiki/Link Aggregation
- http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol
- □ http://en.wikipedia.org/wiki/Link layer
- □ <u>http://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol</u>
- http://en.wikipedia.org/wiki/Logical_link_control
- □ <u>http://en.wikipedia.org/wiki/MAC_address</u>
- □ http://en.wikipedia.org/wiki/MC-LAG

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

4-43

Wikipedia Links (Cont)

- □ http://en.wikipedia.org/wiki/Media Independent Interface
- □ http://en.wikipedia.org/wiki/Minimum spanning tree
- □ http://en.wikipedia.org/wiki/Network switch
- http://en.wikipedia.org/wiki/Organizationally unique identifier
- http://en.wikipedia.org/wiki/Port Aggregation Protocol
- http://en.wikipedia.org/wiki/Priority-based flow control
- □ http://en.wikipedia.org/wiki/RSTP
- □ http://en.wikipedia.org/wiki/Shortest Path Bridging
- □ http://en.wikipedia.org/wiki/Spanning tree
- http://en.wikipedia.org/wiki/Spanning Tree Protocol
- http://en.wikipedia.org/wiki/Subnetwork Access Protocol
- □ http://en.wikipedia.org/wiki/Virtual LAN

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

4-45

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

tps://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011), https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyvg93u

Video Podcasts of Prof. Raj Jain's Lectures,

tps://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/ 4-47

©2018 Rai Jain

Scan This to Download These Slides

Raj Jain http://rajjain.com

Washington University in St. Louis

4-46

©2018 Rai Jain