NETCONF, RESTCONF, YIN and YANG, BEEP, and UML

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-18/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

18-1

1. Legacy Network Management: SNMP

2. NETCONF: Network configuration protocol

8. YANG and YIN: Data modeling

4. RESTCONF

BEEP: Transport

6. UML: Software modeling

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

18-2

Network Management

- □ Management = Initialization, Monitoring, Control
- Manager, Agents, and Management Information Base (MIB)

SNMP

- □ Based on Simple Gateway Management Protocol (SGMP)
- □ SNMP = Simply Not My Problem [Rose] Simple Network Management Protocol
- Only Five commands

Command	Meaning
get-request	Fetch a value
get-next-request	Fetch the next value (in a tree)
get-response	Reply to a fetch operation
set-request	Store a value
trap	An event

Washington University in St. Louis http://www.cse.wustl.ed

©2018 Raj Jain

18-3

Management Information Base

- MIBs follow a fixed naming and structuring convention ⇒ Structure of Management Information (SMI)
- □ All names are unique
- □ All nodes of the name tree are assigned numeric values by standards authorities iso.org.dod.internet.mgmt.mib.ip.ipInReceives 1.3.6.1.2.1.4.3
- Tables rows are referenced by appending the index

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

18-5

MIB (Cont)

- □ All names are specified using a subset of Abstract Syntax Notation (ASN.1)
- □ ASN.1 specifies notation (that humans can read) and encoding (representation and ranges)
- Only INTEGER, OCTET STRING, OBJECT IDENTIFIER, NULL types
- □ Only SEQUENCE, SEQUENCE OF, CHOICE constructors

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

18-6

MIB Definition: Example

```
ipAddrTable ::= SEQUENCE of ipAddrEntry
ipAddrEntry ::= SEQUENCE {
ipAdEntAddr ipAddress,
ipAdEntIfIndex INTEGER,
ipAdEntNetMask ipAddress,
ipAdEntBcastAddr ipAddress,
ipAdEntReasmMaxSize INTEGER (0..65535)
}
ipAddrEntry { ipAddrTable 1}
ipAdEntNetMask {ipAddrTable 3}
```

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

18-7

NETCONF

- □ IETF XML based Network device configuration protocol (RFC 6241, June 2011)
- □ Allows setting configuration parameters when the device is instantiated and changing these parameters later, e.g., set IP address to 192.168.0.1
- □ Replacement for:
 - > SNMP (Simple Network Management Protocol)
 - > Command line interfaces (CLIs)
 - > Scripts used by operators
- XML based ⇒ Both human and machine readable
- ☐ Also allows monitoring the device
- Uses remote procedure calls (RPCs) called "Operations"
- \square Runs over SSH \Rightarrow Secure

Ref: https://en.wikipedia.org/wiki/NETCONF#Operations

R. Enns, et al, "Network Configuration Protocol (NETCONF)," IETF RFC 6241, https://tools.ietf.org/pdf/rfc6241

Washington University in St. Louis

5://www.cse.wusti.edu/~jain/cse5

©2018 Rai Jain

18-9

Configurations

- 1. Running: Complete currently running configuration
- 2. Start up: Configuration to be used on next reboot
- 3. Candidate: Part of currently running configuration. Scratch pad for configuring pieces before commit.

Washington University in St. Louis

//www.cse.wustl.edu/~jain/cse570-1

©2018 Raj Jain

NETCONF Protocol Layers

18-10

□ **Notification**: Publish/subscribe mechanism to get state/alerts

NETCONF Operations

- ☐ Get: Get complete running configuration and state
- ☐ Get-Config: Get all or part of running configuration
- □ Edit-Config: Edit configuration

Ref: netconf central, http://www.netconfcentral.org/

Washington University in St. Louis

Netconf Wiki, http://trac.tools.ietf.org/wg/netconf/trac/wiki

- □ Copy-Config: Copy the entire configuration store to another
- □ Delete-Config:
- □ Lock: Lock the full/partial configuration (so that no one else can modify)
- Unlock
- □ Close-Session: Graceful termination of session
- Kill-Session: Abort

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse570-18/

18-12

©2018 Raj Jain

©2018 Raj Jain

NETCONF Parameters

- Parameters are stored in a hierarchical XML file.
- □ Any branch or the entire tree can be over-written or retrieved

18-13

YANG Data Model

- ☐ Yet Another Next Generation data modeling language. By IETF netmod working group
- □ Sequel to SMI (Structure of Management Information) used with SNMP, SMIv2 used by SNMPv2, and SMIng
- □ To express configuration data and state data
- **Data model**: Describes the data, its *constraints*. A.k.a., *Schema* E.g., address may consist of street, state, zip *within* 50 states. 1 Brookings Dr., Saint Louis, MO 63130 is an *instance*.
- ☐ YANG defines a number of built-in data types and specifies a way to construct more complex data types.

Ref: M. Bjorklund, Ed., "YANG – A Data Modeling Language for the Network Configuration Protocol (NETCONF)," RFC 6020, Oct 2010, http://tools.ieff.org/html/rfc6020

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

NETCONF Example

□ Show currently running BGP Configuration:

18-14

Washington University in St. Louis

YANG Concepts

Ref: A. Clemm, "Network Management Fundamentals," Section 8.1.4, Cisco Press, 2006, 552 pp., ISBN: 1587201372 (Safari Book)

□ YANG is used for configuration data, state data, RPCs (Operations), and event notifications.

15

18-16

YANG Node Types

- □ Container: A subtree of related nodes. No data values. Only a set of child nodes. Single instance. E.g., WUSTL
- □ Leaf: Has a value and no child nodes. Can have a default value. Can be mandatory or optional. Single instance. E.g., Department of CSE
- □ List: A set of list entries. Each list entry may contain many child nodes including other lists. Uniquely identified by its key value. E.g., list user { key login-name; leaf login-name { type string; } leaf full-name { type string; } }

18-17

http://www.cse.wustl.edu/~jain/cse570-18/

YANG Node Types (Cont)

■ **Anyxml**: any chunk of XML data

Washington University in St. Louis

- \Box **Choice**: One of *n* case statements. Only one is satisfied
- □ Augment: Allows vendors to add vendor-specific data to standard data modules. Should not break applications that do not understand vendor-specific data

Ref: M. Bjorklund, "YANG HighLevel Presentation, YIN, XML on the wire," IETF 72, https://www.ietf.org/proceedings/72/slides/netmod-5.pdf

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Iain

©2018 Raj Jain

YANG Node Types (Cont)

- **Leaf-List**: A set of leafs. Leaf nodes have only one instance, while leaf-lists may have multiple instances, e.g., "Departments" is a leaf-list, while "CSE" is a leaf in "WashU" container.
- □ **Typedef**: Define new types by adding to another data type typedef port-number {
 type uint16 {
 range "1..65535";
 }
- Uses: Refines and augments another data type

 Container server {

 Container address {

 uses address-type;

 }
 }

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

18-18

Built-in Data Types in YANG

Name	Description
binary	Any binary data
bits	A set of bits or flags
boolean	"true" or "false"
intn	n-bit signed integer, n=8, 16, 32, 64
uint <i>n</i>	n-bit unsigned integer, n=8, 16, 32, 64
decimal64	64-bit signed decimal number
string	Human readable string
empty	A leaf that does not have any value
enumeration	Enumerated strings
intentityref	A reference to an abstract identity
instance-identifier	References a data tree node
leafref	A reference to a leaf instance
union	Choice of member types

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

18-19

YANG Examples leaf host-name{ ←Built-in data type type string; } typedef percent { ←User defined data type type uint8 { range "0..100";} leaf-list domain-search { ←List of domains to search type string;} container food { choice snack { case sports-arena leaf pretzel { type empty; } ←No value. Only presence or absence. case late-night { leaf chocolate { type enumeration { ←Enumeration = Set of assigned names

18-21

http://www.cse.wustl.edu/~jain/cse570-18/

enum dark;

enum milk;

Washington University in St. Louis

enum first-available;}}}}

←Member of enumeration

©2018 Raj Jain

YIN Example

YIN

- Yin and Yang: Complementary and interrelated
- ☐ YANG is human readable YIN is an equivalent XML syntax for YANG.
- ☐ YANG module can be translated into YIN, manipulated by XML tools and translated back into YANG without loosing any information.

YANG(YIN(M)) == M

- XML syntax useful for XML tools.
 E.g., Extensible Stylesheet Language Transformations (XSLT)
 - > Extract documentation
 - > Generate Code
 - > Display graphically

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

18-22

YANG Tools

- □ Libsmi: Generate YANG from SMIv2
- □ **Pyang**: Validate YANG. Translate between YANG and YIN. Generate XML schema definition (XSD) and document scheme definition language (DSDL) from YANG or YIN.
- **Yangdump**: Validate YANG. Generate XSD and HTML from YANG.

Ref: http://www.ibr.cs.tu-bs.de/projects/libsmi, http://code.google.com/p/pyang, http://www.netconfcentral.org/download

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

18-23

RESTCONF

- □ Same function as NETCONF
- Same datastore can be accessed by NETCONF or RESTCONF
- Uses HTTP for transport instead of SSH
- □ Similar CRUD Operations
 - > NETCONF: create, replace, merge, delete, get/get-config
 - > RESTCONF: POST, PUT, PATCH, DELETE, GET
- □ Listens on port 8080 for HTTP requests
- Request and response data can be in XML or JSON
- Structure of data defined in YANG by XML-YANG and JSON-YANG
- RESTfullness and ability to use JSON makes RESTCONF attractive

Ref: J. Johansson, "Getting inside RESTCONF," March 2017, http://www.tail-f.com/getting-inside-restconf http://www.tail-f.com/getting-inside-restconf http://www.tail-f.com/getting-inside-restconf http://www.tail-f.com/getting-inside-restconf http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

18-25

BEEP

- Blocks Extensible Exchange Protocol A general purpose protocol framework for exchange of data.
- Allows application developers to concentrate on their application messages and offload message exchange by using ready made BEEP code.
- BEEP implementations in C, Java, Pascal, C++, Python, JavaScript, Ruby, TCL, perl are available at beepcore.org
- □ Like XML, BEEP is eXtensible and most applications can be implemented on the top of BEEP.
- ☐ After the success of HTTP, many applications started modifying HTTP to suite their applications, e.g., Internet Printing Protocol added a few new headers to HTTP.
- HTTP is a stateless client-server protocol. Not easy to use for stateful or peer-to-peer applications.

Ref: E. Dumbill, "XML Watch: Bird's-eye BEEP," Dec 2001,

http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

©2018 Rai Jain

Secure Transports

- □ SSH: Secure Shell
- □ TLS: Transport Level Security
- BEEP: Blocks Extensible Exchange Protocol
 - > Framework for creating network application protocols
 - > Provides building blocks, e.g., authentication, framing, pipelining, multiplexing, reporting, ...
 - > Allows multiple parallel pipelines (channels)
 - > Can define multiple profiles (sets of blocks)
 - > Runs on TLS
- □ SOAP: Simple Object Access Protocol
 - > Protocol to exchange structured information for web services
 - > Can run over HTTP, SMTP, TCP, UDP, ...

Ref: https://en.wikipedia.org/wiki/BEEP, https://en.wikipedia.org/wiki/SOAP, Washinoton University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

18-26

BEEP (Cont)

- BEEP is designed for applications that are:
 - > Connection Oriented: Connect, Exchange,..., Exchange, Disconnect.
 - > Message Oriented: Loosely coupled peers communicating using messages
 - > Asynchronous: Multiple parallel exchanges
 - Example: FTP, SMTP. Not good for one-shot exchanges, e.g., DNS
- BEEP Provides the following functions:
 - > Separating one message from next (Framing)
 - > Multiple parallel asynchronous exchanges
 - > Negotiating encryption, authentication
 - > Reporting errors

Ref: M. Rose, "The Blocks Extensible Exchange Protocol Core," RFC 3080, March 2001

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Rai Jain

BEEP Channels

- ☐ *Initiator* sends a connection request to *listener* and sets up a bidirectional session. Multiple channels are then setup.
- □ *Channel 0* is used for managing other channels
- □ Some *tuning* channels are used for negotiating profiles such as encryption and authentication for other data exchange channels
- ☐ Libraries of standard profiles are available as XML Document Type Definitions (DTDs).
- Many application profiles use XML to encode their messages

Washington University in St. Louis

18-29

UML Diagrams

- 1. Class Diagram: Attributes and relationships of systems classes
- Component Diagram: System components and their dependencies
- Composite Structure Diagram: Internal structure of a class
- Deployment Diagram: Hardware used in implementations
- Object Diagram: Structure of a sample modeled system
- Package Diagram: Logical groupings inside a system
- 7. Profile Diagram: profiles of various classes
- Activity Diagram: Work flows of components in a system
- 9. UML State Machine Diagram: State transition diagram
- 10. Use Case Diagram: Actors and their goals in some use cases
- 11. Communication Diagram: communication between components
- 12. Interaction Overview Diagram: Interactions between communication diagrams

18-31

- 13. Sequence Diagram: Sequence of messages between objects
- 14. Timing Diagram: Shows timing constraints

Ref: http://en.wikipedia.org/wiki/Unified Modeling Language Washington University in St. Louis

©2018 Rai Jain

©2018 Raj Jain

Unified Modeling Language (UML)

- UML is a modeling language for software engineering. Standardized by the Object Management Group (OMG) and ISO
- Structural diagrams show the static view of objects, attributes, operations, and relationships
- Behavior diagrams show the dynamic behavior in terms of collaborations among objects and state changes

18-30

UML Diagram Notation

Unidirectional Association:	$A \longrightarrow B$
□ Bidirectional Association:	A — B
☐ Dependency: Change to A will cause change to B	A→ B
□ Aggregation: A is a part of B	A → B
□ Composite Aggregation: A (Child) and B (Parent) are tightly coupled such that child can not exist without the parent.	A → → B
☐ Generalization: A is a subclass of B	A ──> B
Def. D. Makrimakuk, F. Nichowa, W.M. Ga, Mara Marak, W. Addison, Washa, Das Garrianak, 2000	4 200 JCDN 0 221 24/24 1

http://www.cse.wustl.edu/~jain/cse570-18

18-32

Washington University in St. Louis

Sample UML Class Diagram for OF-Config Data Model

- "OF capable switch" consists of many logical switches
- 2. OF capable switch is configured by many "OF configuration points"
- 3. "OF logical switch" is controlled by many "OF controllers"
- 4. Logical switch uses many "OF resources"
- Resource types are Ports, Queues, External certificates, own certificate, and flow tables

Ref: Open Networking Foundation, "OpenFlow Management and Configuration Protocol (OF-Config 1.1.1)," March 23, 2013, https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Ja

18-33

Reading List

- □ Jithesh Sathyan, "Fundamentals of EMS, NMS and OSS/BSS," Auerbach Publications, April 2016, 588 pp., ISBN:978-1-4200-8573-0 (Safari Book).
- A. Clemm, "Network Management Fundamentals," Section 8.1.4, Cisco Press, 2006, 552 pp., ISBN: 1587201372 (Safari Book)
- □ Netconf central, http://www.netconfcentral.org/
- M. Bjorklund, "YANG HighLevel Presentation, YIN, XML on the wire," IETF 72, https://www.ietf.org/proceedings/72/slides/netmod-5.pdf
- M. Bjorklund, Ed., "YANG A Data Modeling Language for the Network Configuration Protocol (NETCONF)," RFC 6020, Oct 2010, http://tools.ietf.org/html/rfc6020
- E. Dumbill, "XML Watch: Bird's-eye BEEP," Dec 2001, http://www.ibm.com/developerworks/webservices/library/x-beep/x-beep-pdf.pdf
- M. Rose, "The Blocks Extensible Exchange Protocol Core," RFC 3080, March 2001, http://www.ietf.org/rfc/rfc3080.txt?number=3080
- R. Maksimchuk, E. Naiburg, "UML for Mere Mortals," Addison-Wesley Professional, 2004, pp. 288, ISBN:0-321-24624-1 (Safari Book)

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Rai Jain

Summary

- 1. NETCONF is the network device configuration protocol (next generation of SNMP)
- 2. YANG is the human-readable data modeling language (next generation of SMI). YIN is the XML version of YANG modules
- 3. RESTCONF uses HTTP for network device configuration.
- 4. BEEP is the message exchange transport protocol
- 5. UML is the software modeling language

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

18-34

WikiPedia Links

- □ https://en.wikipedia.org/wiki/Network management
- □ https://en.wikipedia.org/wiki/NETCONF
- □ https://en.wikipedia.org/wiki/YANG
- □ https://en.wikipedia.org/wiki/Beep
- □ https://en.wikipedia.org/wiki/Unified Modeling Language
- □ https://en.wikipedia.org/wiki/XSLT
- □ https://en.wikipedia.org/wiki/SOAP

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse570-18/

©2018 Raj Jain

18-35

Acronyms

 □ ASN.1 Abstract Syntax Notation 1 □ BEEP Blocks Extensible Exchange Protocol □ BGP Border Gateway Protocol □ CLI Command line interface 	
□ BGP Border Gateway Protocol□ CLI Command line interface	
□ CLI Command line interface	
□ CSE Computer Science and Engineering	
□ DNS Domain Name System	
□ DSDL Document Scheme Definition Language	
□ DTD Document Type Definition	
□ FTP File Transfer Protocol	
☐ HTML Hyper Text Markup Language	
□ IETF Internet Engineering Taskforce	
□ IP Internet Protocol	
☐ ISO Internet Standards Organization	
☐ JSON JavaScript Object Notation	
☐ MIB Management Information Base	
□ NETCONF Network configuration protocol	
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/	

18-37

Acronyms (Cont)

WashU	Washington University in Saint Louis
WUSTL	Washington University in Saint Louis
XML	eXtensible Markup Language
XSD	XML Scheme Definition
XSLT	Extensible Stylesheet Language Transformations
YANG	Yet Another Next Generation Data Modeling Language
YIN	Complement of Yang

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

Acronyms (Cont)

□ OF-Config OpenFlow Management and Configuration Protocol
□ OF OpenFlow
□ ONC Object Management County

OMGObject Management GroupRPCRemote Procedure Call

□ SMI Structure of Management Information

□ SMIng Structure of Management Information Next Generation

□ SMIv2 Structure of Management Information Version 2

□ SNMP Simple Network Management Protocol

□ SNMPv2 Simple Network Management Protocol Version 2

□ SOAP Simple Object Access Protocol

□ SSH Secure Shell

TCL Tool Command Language
 TCP Transmission Control Protocol
 TLS Transport Layer Security
 UDP User Dagram Protocol

□ UML Unified Modeling Language

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/

18-38

Raj Jain http://rajjain.com

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-18/

©2018 Raj Jain

©2018 Raj Jain

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

ttps://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

 $\underline{https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw}$

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures, https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

©2018 Raj Jain