
21-1
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Containers, Dockers,
and Kubernetes

Raj Jain
Washington University in Saint Louis

Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at:
http://www.cse.wustl.edu/~jain/cse570-18/

21-2
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Overview

1. What is a Container and Why?
2. How Docker helps using containers
3. Docker Commands
4. Orchestration: Swarms and Kubernetes
5. Docker Networking and Security

Key Reference: N. Poulton, "Docker Deep Dive," Oct 2017, ISBN: 9781521822807 (Not a Safari Book)

21-3
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Advantages of Virtualization
Minimize hardware costs (CapEx)
Multiple virtual servers on one physical hardware
Easily move VMs to other data centers

Provide disaster recovery. Hardware maintenance.
Follow the sun (active users) or follow the moon (cheap power)

Consolidate idle workloads. Usage is bursty and asynchronous.
Increase device utilization
Conserve power
Free up unused physical resources
Easier automation (Lower OpEx)
Simplified provisioning/administration of hardware and software
Scalability and Flexibility: Multiple operating systems

Ref: http://en.wikipedia.org/wiki/Platform_virtualization
Ref: K. Hess, A. Newman, "Practical Virtualization Solutions: Virtualization from the Trenches," Prentice Hall, 2009,
ISBN:0137142978

21-4
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Problems of Virtualization

Each VM requires an operating system (OS)
Each OS requires a license CapEx
Each OS has its own compute and storage overhead
Needs maintenance, updates OpEx
VM Tax = added CapEx + OpEx

Hypervisor

VM

OS

App

VM

OS

App

VM

OS

App

Physical Hardware

21-5
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Solution: Containers
Run many apps in the same virtual machine

These apps share the OS and its overhead
But these apps can’t interfere with each other
Can’t access each other’s resources
without explicit permission
Like apartments in a complex
 Containers

21-6
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Containers

Multiple containers run on one operating system on a
virtual/physical machine
All containers share the operating system CapEx and OpEx
Containers are isolated cannot interfere with each other

Own file system/data, own networking Portable

App 1 App 2 App 3

Operating System
Shim

Hypervisor

App 4 App 5 App 6

Operating System
Shim

Container

VM

21-7
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Containers (Cont)
Containers have all the good properties of VMs

Come complete with all files and data that you need to run
Multiple copies can be run on the same machine or different
machine Scalable
Same image can run on a personal machine, in a data center
or in a cloud
Operating system resources can be restricted or unrestricted
as designed at container build time
Isolation: For example, “Show Process” (ps on Linux)
command in a container will show only the processes in the
container
Can be stopped. Saved and moved to another machine or for
later run

21-8
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

VM vs. Containers
Criteria VM Containers
Image Size 3X X
Boot Time >10s ~1s
Computer Overhead >10% <5%
Disk I/O Overhead >50% Negligible
Isolation Good Fair
Security Low-Medium Medium-High
OS Flexibility Excellent Poor
Management Excellent Evolving
Impact on Legacy application Low-Medium High

Ref: M. K. Weldon "The Future X Network: A Bell Labs Perspective," CRC Press, 2016, 476 pp., ISBN:9781498779142

21-9
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Docker
Provides the isolation among containers
Helps them share the OS
Docker = Dock worker Manage containers
Developed initially by Docker.com
Downloadable for Linux, Windows, and Mac from
Docker.com
Customizable with replacement modules from others

App 1 App 2 App 3

Operating System
Docker

21-10
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Docker
Docker Engine: Runtime
Two Editions:

Community Edition (CE): Free for experimentation
Enterprise Edition (EE): For deployment with paid support

Written in “Go” programming language from Google
Now open source project under mobyproject.org
https://github.com/moby/moby
Download the community edition and explore

Ref: https://golang.org/

21-11
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Docker Engine Components
daemon: API and other features
containderd: Execution logic. Responsible for container
lifecycle. Start, stop, pause, unpause, delete containers.
runc: A lightweight runtime CLI
shim: runc exists after creating the container.
shim keeps the container running. Keep stdin/stdout open.
 Docker Client

>_
daemon

containerd

runc

Docker Engine

Ref: N. Poulton, "Docker Deep Dive," Oct 2017, ISBN: 9781521822807 (Not a Safari Book)

Container Container Container

runc runc

shim shim shim Enables daemon-less
containers

Receives instructions

Gives image to runc

21-12
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Image Registries
Containers are built from images and can be saves as images
Images are stored in registries

Local registry on the same host
Docker Hub Registry: Globally shared
Private registry on Docker.com

Any component not found in the local registry is downloaded
from specified location
Official Docker Registry: Images vetted by Docker
Unofficial Registry: Images not vetted (Use with care)
Each image has several tags, e.g., v2, latest, …
Each image is identified by its 256-bit hash

21-13
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Layers
Each image has many layers
Image is built layer by layer
Layers in an image can be inspected by Docker commands
Each layer has its own 256-bit hash
For example:

Ubuntu OS is installed, then
Python package is installed, then
a security patch to the Python is installed

Layers can be shared among many containers

Ubuntu
Python
Patch

Layer 1
Layer 2
Layer 3

Image

21-14
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Building Container Images
Create a Dockerfile that describes the application, its
dependencies, and how to run it

FROM Alpine
LABEL maintainer=“xx@gmail.com”
RUN apk add –update nodejs nodejs –npm
COPY . /src
WORKDIR /src
RUN nmp install
EXPOSE 8080
ENTRYPOINT [“node”, “./app.js”]

Start with Alpine Linux
Who wrote this container
Use apk package to install nodejs
Copy the app files from build context
Set working directory
Install application dependencies
Open TCP Port 8080
Main application to run

RUN nmp install
Copy . /src
RUN apk add …
FROM Alpine

Layer 4
Layer 3
Layer 2
Layer 1

Note: WORKDIR, EXPOSE, ENTRYPOINT result in tags. Others in Layers.

21-15
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Docker Commands
docker container run: Run the specified image
docker container ls: list running containers
docker container exec: run a new process inside a container
docker container stop: Stop a container
docker container start: Start a stopped container
docker container rm: Delete a container
docker container inspect: Show information about a container

21-16
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Open Container Initiative (OCI)
A company called CoreOS defined alternative image format
and container runtime API’s
Led to formation of OCI under Linux Foundation to govern
container standards

OCI Image spec
OCI Runtime spec

Everyone including Docker is now moving to OCI

Ref: https://www.opencontainers.org/

21-17
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Swarm
Orchestrating thousands of containers
Swarm: A group of nodes collaborating over a network
Two modes for Docker hosts:

Single Engine Mode: Not participating in a swarm
Swarm Mode: Participating in a Swarm

A service may run on a swarm
Each swarm has a few managers that dispatch tasks to workers.
Managers are also workers (i.e., execute tasks)

Swarm Node Swarm Node

Swarm Node Swarm Node

Single-Engine Node

Swarm

21-18
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Swarms (Cont)
The managers select a leader, who really keeps track of the
swarm
Assigns tasks, re-assigns failed worker’s tasks, …
Other mangers just monitor passively and re-elect a leader if
leader fails
Services can be scaled up or down as needed
Several Docker commands:

docker service : Manage services
docker swarm: Manage swarms
docker node: Manage nodes

21-19
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Docker Swarm Commands
docker swarm init
docker swarm join-token
docker node ls
docker service create
docker service ls
docker service ps
docker service inspect
docker service scale
docker service update
docker service rm

21-20
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Docker Overlay Networking
Nodes in a swarm may not be in the same LAN
VXLAN is used to provide virtual overlay networking
VXLAN was discussed in another module of this course

Node 1 Node 2 Node 1 Node 2
172.116.56.67 172.118.56.67 192.168.0.1 192.168.0.2

Physical Virtual

21-21
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Docker Security
All built-in security mechanisms in Linux are used and more
Cryptographic node IDs
Mutual Authentication
Automatic Certificate Authority configuration
Automatic Certificate Renewal on expiration
Encrypted Cluster Store
Encrypted Network traffic
Signed images in Docker Content Trust (DCT)
Docker Security Scanning detects vulnerabilities
Docker secrets are stored in encrypted cluster store, encrypted
transmission over network, and stored in in-memory file
system when in use

21-22
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Kubernetes
Open Source Container Orchestration alternative
Original source released by Google
Cloud Native Computing Foundation (CNCF) project in Linux
Foundation
Pre-cursor to Swarms
Facilities similar to Swarms
A set of related containers is called a “Pod”
A Pod runs on a single host.
Swarm is called a “Cluster”

21-23
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Hyper-V Containers
Microsoft allows two kinds of containers:

Windows Server Containers: Multiple containers on a single
VM (like Docker containers)
Hyper-V containers: Each container runs on its own VM
 No need for a Linux

Ref: https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container

Hardware

HyperV

V
M

V
M

V
M

Hardware

HyperV

Co
nt

ai
ne

r

Co
nt

ai
ne

r

Co
nt

ai
ne

r

21-24
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Intel Clear Containers
Started 2015 to address security concerns (Dirty COW) in
containers
Idea: Allow lightweight VMs using Intel Virtualization
Technology

Own lightweight OS and a dedicated kernel
 Isolation of network, memory, and I/O
Help by hardware enforced isolation
No need for full VMs for containers

Merged with HyperV to form Kata containers on Dec 5, 2017

Ref: https://clearlinux.org/containers

21-25
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Kata Containers
Lightweight virtual machines
Dedicated VMs to run one and only one container
Combines “Intel Clear Containers” and “HyperV runV”
Open source project under OpenStack Foundation
Compatible with the OCI specs for Docker containers
Compatible with CRI for Kubernetes
Performance like containers, isolation and security like VMs
Six Components: Agent, Runtime, Proxy, Shim, Kernel and QEMU 2.9
Kubernetes will be extended to provision VMs (Kata Containers)
OpenStack’s VM orchestration engine (Nova) will be extended to handle
containers
Package once and run anywhere

VMware, Google, and Amazon are all moving towards this approach
No installable distribution of Kata containers yet (April 22, 2018)

Ref: https://katacontainers.io/
https://www.forbes.com/sites/janakirammsv/2017/12/11/why-kata-containers-is-good-for-the-industry-and-customers/2/#3d8cc2e9404f

21-26
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Summary

Virtual Machines provide scalability, mobility, and cost
reduction but need OS which increase resource requirements
Containers provide isolation on a single OS and are lightweight
Docker allows managing containers
Docker Swarm and Kubernetes allow orchestrating a large
number of containers
Docker provides overlay networking and security

21-27
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Acronyms
API Application Programming Interface
CapEx Capital Expenditure
CE Community Edition
CLI Command Line Interface
CNCF Native Computing Foundation
DCT Docker Content Trust
EE Enterprise Edition
ID Identifier
ISBN International Standard Book Number
LAN Local Area Network
OpEx Operational Expenses
OS Operating System
TCP Transmission Control Protocol
VM Virtual Machine

21-28
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

References
N. Poulton, "Docker Deep Dive," Oct 2017, ISBN: 9781521822807 (Not a
Safari Book) Highly Recommended.
Parminder Singh Kocher, "Microservices and Containers, First edition,"
Addison-Wesley Professional, April 2018, 304 pp., ISBN:978-0-13-459838-
3 (Safari Book).
Russ McKendrick; Pethuru Raj; Jeeva S. Chelladhurai; Vinod Singh,
"Docker Bootcamp," Packt Publishing, April 2017, 196 pp., ISBN:978-1-
78728-698-6 (Safari Book).
Russ McKendrick; Scott Gallagher, "Mastering Docker - Second Edition,"
Packt Publishing, July 2017, 392 pp., ISBN:978-1-78728-024-3 (Safari
Book).
Jeeva S. Chelladhurai; Vinod Singh; Pethuru Raj, "Learning Docker -
Second Edition," Packt Publishing, May 2017, 300 pp., ISBN:978-1-78646-
292-3 (Safari Book).

21-29
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Wikipedia Links
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Operating-system-
level_virtualization
https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Microservices
https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/OpenShift
https://en.wikipedia.org/wiki/LXC

21-30
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Scan This to Download These Slides

Raj Jain
http://rajjain.com

21-31
©2018 Raj Jain http://www.cse.wustl.edu/~jain/cse570-18/ Washington University in St. Louis

Related Modules

Video Podcasts of Prof. Raj Jain's Lectures,
https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

CSE473S: Introduction to Computer Networks (Fall 2011),
https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),
https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE567M: Computer Systems Analysis (Spring 2013),
https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE571S: Network Security (Fall 2011),
https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

