Data Center Networks: Virtual Bridging Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-21/ - 1. Virtual Bridges to connect virtual machines - 2. IEEE Virtual Edge Bridging Standard - 3. Single Root I/O Virtualization (SR-IOV) - 4. Aggregating Bridges and Links: VSS and vPC - 5. Bridges with massive number of ports: VBE #### **Student Questions** ### Virtualization "Virtualization means that Applications can use a resource without any concern for where it resides, what the technical interface is, how it has been implemented, which platform it uses, and how much of it is available." -Rick F. Van der Lans in Data Virtualization for Business Intelligence Systems #### **Student Questions** ### What is Virtual? □ If you can see it and it is there \Rightarrow Its real \square If you can't see it but it is there \Rightarrow It's transparent \square If you can see it and it is not there \Rightarrow It's virtual \square If you can not see it and it is not there \Rightarrow It's gone Ref: Cisco Live, "What you make possible," https://www.alcatron.net/Cisco%20Live%202013%20Melbourne/Cisco%20Live%20 https://www.cse.wustl.edu/~jain/cse570-21/ http://www.cse.wustl.edu/~jain/cse570-21/ http://www.cse.wustl.edu/~jain/cse570-21/ http://www.cse.wustl.edu/~jain/cse570-21/ ©2021 Raj Jain ### **5** Reasons to Virtualize - 1. Sharing: Break up a large resource Large Capacity or high-speed E.g., Servers - 2. Isolation: Protection from other tenants E.g., Virtual Private Network - 3. Aggregating: Combine many resources into one, e.g., storage - Dynamics: Fast allocation, Change/Mobility, load balancing, e.g., virtual machines - Ease of Management ⇒ Easy distribution, deployment, testing **Student Questions** ### **Advantages of Virtualization** - Minimize hardware costs (CapEx) Multiple virtual servers on one physical hardware - Easily move VMs to other data centers - > Provide disaster recovery. Hardware maintenance. - > Follow the sun (active users) or follow the moon (cheap power) - □ Consolidate idle workloads. Usage is bursty and asynchronous. Increase device utilization - □ Conserve powerFree up unused physical resources - Easier automation (Lower OpEx) Simplified provisioning/administration of hardware and software - □ Scalability and Flexibility: Multiple operating systems Ref: http://en.wikipedia.org/wiki/Platform_virtualization Ref: K. Hess, A. Newman, "Practical Virtualization Solutions: Virtualization from the Trenches," Prentice Hall, 2009, ISBN:0137142978 Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-21/ ©2021 Raj Jain # Virtualization in Computing - **Storage**: - > Virtual Memory \Rightarrow L1, L2, L3, ... \Rightarrow Recursive - > Virtual CDs, Virtual Disks (RAID), Cloud storage - **□** Computing: - > Virtual Desktop \Rightarrow Virtual Server \Rightarrow Virtual Datacenter Thin Client \Rightarrow VMs \Rightarrow Cloud - **Networking**: Plumbing of computing - Virtual Channels, Virtual LANs, Virtual Private Networks # **Server Virtualization Concepts** - Host OS: Runs on the bare metal - □ Guest OS: Runs on the host OS, e.g., Windows 7 on Win 10 - □ Hypervisor: Software to support multiple virtual machines - > Type 1: Runs on bare metal, e.g., Xen, VMware ESXi - > Type 2: Runs on a host OS, e.g., MS Virtual PC - Type 0: Both 1 and 2, e.g., Linux Kernel-based Virtual Machine (KVM) Ref: http://en.wikipedia.org/wiki/Hypervisor Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-21/ ©2021 Raj Jain ### **Network Virtualization** - 1. Network virtualization allows tenants to form an overlay network in a multi-tenant network such that tenant can control: - 1. Connectivity layer: Tenant network can be L2 while the provider is L3 and vice versa - 2. Addresses: MAC addresses and IP addresses - 3. Network Partitions: VLANs and Subnets - 4. Node Location: Move nodes freely - 2. Network virtualization allows providers to serve a large number of tenants without worrying about: - 1. Internal addresses used in client networks - 2. Number of client nodes - 3. Location of individual client nodes - 4. Number and values of client partitions (VLANs and Subnets) - 3. Network could be a single physical interface, a single physical machine, a data center, a metro, ... or the global Internet. - 4. Provider could be a system owner, an enterprise, a cloud provider, or a carrier. #### **Student Questions** http://www.cse.wustl.edu/~jain/cse570-21/ ### **Levels of Network Virtualization** Data Center - Networks consist of: Host Interface L2 Links L2 Bridges L2 Networks L3 Links L3 Routers L3 Networks Data Centers Global Internet. - Each of these needs to be virtualized Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-21/ ©2021 Raj Jain # **Network Virtualization Techniques** | Entity | Partitioning | Aggregation/Extension/Interconnection** | | |----------------------|-------------------------------|---|--| | NIC | SR-IOV | MR-IOV | | | Switch | VEB, VEPA | VSS, VBE, DVS, FEX | | | L2 Link | VLANs | LACP, Virtual PortChannels | | | L2 Network using L2 | VLAN | PB (Q-in-Q), PBB (MAC-in-MAC), PBB-TE, Access-EPL, EVPL, EVP-Tree, EVPLAN | | | L2 Network using L3 | NVO3,
VXLAN,
NVGRE, STT | MPLS, VPLS, A-VPLS, H-VPLS, PWoMPLS, PWoGRE, OTV, TRILL, LISP, L2TPv3, EVPN, PBB-EVPN | | | Router | VDCs, VRF | VRRP, HSRP | | | L3 Network using L1 | | GMPLS, SONET | | | L3 Network using L3* | MPLS, GRE,
PW, IPSec | MPLS, T-MPLS, MPLS-TP, GRE, PW, IPSec | | | Application | ADCs | Load Balancers | | ^{*}All L2/L3 technologies for L2 Network partitioning and aggregation can also be used for L3 network partitioning and aggregation, respectively, by simply putting L3 packets in L2 payloads. http://www.cse.wustl.edu/~jain/cse570-21/ ©2021 Raj Jain ^{**}The aggregation technologies can also be seen as partitioning technologies from the provider point of view. ### **vSwitch** - **Problem**: Multiple VMs on a server need to use one physical network interface card (pNIC) - Solution: Hypervisor creates multiple vNICs connected via a virtual switch (vSwitch) - pNIC is controlled by hypervisor and not by any individual VM - Notation: From now on prefixes p and v refer to physical and virtual, respectively. For VMs only, we use upper case V. Ref: G. Santana, "Datacenter Virtualization Fundamentals," Cisco Press, 2014, ISBN: 1587143240 Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-21/ ©2021 Raj Jain # **Virtual Bridging** Where should most of the tenant isolation take place? - 1. VM vendors: S/W NICs in Hypervisor w Virtual Edge Bridge (VEB): 802.1Qbg (overhead, not ext manageable, not all features) - 2. Switch Vendors: Switch provides virtual channels for inter-VM Communications using virtual Ethernet port aggregator (VEPA): 802.1Qbg (s/w upgrade) - 3. NIC Vendors: NIC provides virtual ports using Single-Route I/O virtualization (SR-IOV) on PCI bus **Student Questions** Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-21/ # Virtual Edge Bridge - □ IEEE 802.1Qbg-2012 standard for vSwitch - Two modes for vSwitches to handle *local* VM-to-VM traffic: - > Virtual Edge Bridge (VEB): Switch internally. - > Virtual Ethernet Port Aggregator (VEPA): Switch externally - VEB - > could be in a hypervisor or network interface card - > may learn or may be configured with the MAC addresses - > VEB may participate in spanning tree or may be configured\ - > Advantage: No need for the external switch in some cases ### Virtual Ethernet Port Aggregator (VEPA) - VEPA simply relays all traffic to an external bridge - External bridge forwards the traffic. Called "*Hairpin Mode*." Returns local VM traffic back to VEPA Note: Legacy bridges do not allow traffic to be sent back to the incoming port within the same VLAN - **□ VEPA Advantages**: - > Visibility: External bridge can see VM to VM traffic. - > Policy Enforcement: Better. E.g., firewall - ➤ Performance: Simpler vSwitch ⇒ Less load on CPU - > Management: Easier - Both VEB and VEPA can be implemented on the same NIC in the same server and can be cascaded. #### **Student Questions** ### **PCIe** - □ Peripheral Component Interconnect (PCI) Used in computers for I/O storage, video, network cards - Designed by PCI Special Interest Group (PCI-SIG) - PCI Express (PCIe): Serial point-to-point interconnect with multiple lanes, 4 pins per lane. X1=1 Lane, x32=32 lanes 2 GB/s/lane. - □ Root complex is the head of connection to CPU - □ Physical Function (PF): Ethernet, Fibre Channel, Video, ... - □ A PCIe card can provide multiple **virtual functions (VFs)** of the same type as PF, e.g., one 10Gbps pNIC = 2×5 Gbps vNICs **Student Questions** Ref: R. Emerick, "PCI Express IO Virtualization Overview," SNIA Education, 2012, http://www.snia.org/sites/default/files/RonEmerick_PCI_Express_IO_Virtualization.pdf (Excellent) Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-21/ # Single Root I/O Virtualization (SR-IOV) - After configuration by hypervisor, VFs allow direct VM access without hypervisor overhead - □ Single Root \Rightarrow Single hardware domain \Rightarrow In one Server #### **Student Questions** Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-21/ ### **Multi-Root IOV** - Multiple external PCIe devices accessible via a switch - > Move PCIe adapter out of the server into a switching fabric - > Allows adapters to serve many physical servers - > Used with rack mounted or blade servers Washington University in St. Louis Fewer adapters \rightarrow Less cooling. No adapters \rightarrow Thinner servers # **Combining Bridges** - □ Problem: - > Number of VMs is growing very fast - > Need switches with very large number of ports - > Easy to manage one bridge than 100 10-port bridges - ➤ How to make very large switches ~1000 ports? - Solutions: Multiple pswitches to form a single switch - 1. Distributed Virtual Switch (DVS) - 2. Virtual Switching System (VSS) - 3. Virtual PortChannels (vPC) - 4. Fabric Extension (FEX) - 5. Virtual Bridge Port Extension (VBE) #### **Student Questions** ### **Distributed Virtual Switch (DVS)** - VMware idea to solve the scalability issue - A centralized DVS controller manages vSwitches on many physical hosts - DVS decouples the control and data plane of the switch so that each VM has a virtual data plane managed by a centralized control plane - Appears like a single distributed virtual switch - Allows simultaneous creation of port groups on multiple pMs - Provides an API so that other networking vendors can manage vSwitches and vNICs # Virtual Switch System (VSS) - Allows two physical switches to appear as one - □ Although VSS is a Cisco proprietary name, several vendors implement similar technologies. E.g., Virtual Switch Bonding by Enterasys. - \square Implemented in Firmware \rightarrow No degradation in performance - Only one control plane is active. Data-plane capacity is doubled. - Both switches are kept in sync to enable inter-chassis stateful switchover and non-stop forwarding in case of failure **Student Questions** ### Virtual PortChannel (vPC) - □ PortChannel: Cisco name for aggregated link - □ Virtual PortChannel: A link formed by aggregating links to multiple physical switches acting as a virtual switch - □ The combined switch is called "vPC Domain" - Each member of the vPC domain is called "vPC peer". - □ vPC peer link is used to synchronize state and to forward traffic between the peers. No address learning on the peer link. - ightharpoonup All learned address tables are kept synchronized among peers. One peer learns an address \Rightarrow Sends it to every one else. ### Virtual Port Channel (vPC) - ightharpoonup Allows aggregation of links going to different switches ightharpoonup STP does not block links ightharpoonup All capacity used - □ Unlike VSS, maintains two independent control planes - □ Independent control plane → In-service upgrade Software in one of the two switches can be upgraded without service interruption - \square Falls back to STP \rightarrow Used only in small domains - vPC is Cisco proprietary. But other vendors have similar technologies. E.g., Split Multi-link Trunking (SMLT) by Nortel or "Multi-Chassis Link Aggregation (MC-LAG)" by Alcatel-Lucent. - Standardized in RFC 7275 as "Multi-Chassis LACP" #### **Student Questions** ### **Fabric Extenders** - Fabric Extenders (FEX) consists of ports that are managed by a remote parent switch - □ 12 Fabric extenders, each with 48 host ports, connected to a parent switch via 4-16 10 Gbps interfaces to a parent switch provide a virtual switch with 576 host ports - ⇒ Chassis Virtualization - All software updates/management, forwarding/control plane is managed centrally by the parent switch. - □ A FEX can have an active and a standby parent. Ref: P. Beck, et al., "IBM and Cisco: Together for a World Class Data Center," IBM Red Book, 2013, 654 pp., ISBN: 0-7384-3842-1, http://www.redbooks.ibm.com/redbooks/pdfs/sg248105.pdf Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-21/ ©2021 Raj Jain # FEX Topology Example - All hosts are dual homed to FEX - \Rightarrow Two FEX per rack - Both FEX are dual homed to two parents - ⇒ Two virtual access switches - □ Virtual Access switches are dual homed to aggregation switches. - □ Using vPCs, all links can be active. ### Virtual Bridge Port Extension (VBE) - □ IEEE 802.1BR-2012 standard for fabric extender functions - Specifies how to form an extended bridge consisting of a controlling bridge and Bridge Port Extenders - Extenders can be cascaded. - □ Some extenders may be in a vSwitch in a server hypervisor. - All traffic is relayed by the controlling bridge - ⇒ Extended bridge is a bridge. ### Summary - 1. Network virtualization includes virtualization of NICs, Bridges, Routers, and L2 networks. - 2. Virtual Edge Bridge (VEB) vSwitches switch internally while Virtual Ethernet Port Aggregator (VEPA) vSwitches switch externally. - 3. SR-IOV technology allows multiple virtual NICs via PCI and avoids the need for internal vSwitch. - 4. VSS allows multiple switches to appear as one logical switch vPortChannels allow links to multiple switches appear as one. - 5. Fabric Extension and Virtual Bridge Extension (VBE) allows creating switches with a large number of ports using port extenders (which may be vSwitches) **Student Questions** Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-21/ # **Reading List** - □ G. Santana, "Datacenter Virtualization Fundamentals," Cisco Press, 2014, ISBN: 1587143240 (Safari Book) - □ H. Shah, "Management Standards for Edge Virtual Bridging (EVB) and Network Port Profiles," Nov 2010, http://www.ieee802.org/1/files/public/docs2011/bg-shah-dmtf-evbportprofile-overview-0311.pdf #### **Student Questions** ### References - □ Intel, "PCI-SIG SR-IOV Primer," Jan 2011, https://www.intel.com/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf - P. Beck, et al., "IBM and Cisco: Together for a World Class Data Center," IBM Red Book, 2013, 654 pp., ISBN: 0-7384-3842-1, http://www.redbooks.ibm.com/redbooks/pdfs/sg248105.pdf - R. Emerick, "PCI Express IO Virtualization Overview," SNIA Education, 2012, https://www.snia.org/sites/default/education/tutorials/2012/fall/networking/RonEmerick_PCI%20Express_%20IO_Virtualization_Overview-r2.pdf (Excellent) - R. Sharma, et al., "VSI Discovery and Configuration," Jan 2010, http://www.ieee802.org/1/files/public/docs2010/bg-sharma-evb-VSI-discovery-0110-v01.pdf - □ HP "Server-to-Network Edge Technologies: Converged Networks and Virtual I/O," March 2010, http://www.sallustio.ch/blade/Server-to-network%20edge%20technologies.pdf #### **Student Questions** # Wikipedia Links - □ http://en.wikipedia.org/wiki/Address_Resolution_Protocol - http://en.wikipedia.org/wiki/EtherChannel - □ http://en.wikipedia.org/wiki/IEEE_802.1aq - □ http://en.wikipedia.org/wiki/Link_aggregation - □ http://en.wikipedia.org/wiki/MC-LAG - □ http://en.wikipedia.org/wiki/Network_virtualization - □ http://en.wikipedia.org/wiki/PCI_Express - □ http://en.wikipedia.org/wiki/Port_Aggregation_Protocol - □ http://en.wikipedia.org/wiki/Root_complex - □ http://en.wikipedia.org/wiki/Virtual_Routing_and_Forwarding #### **Student Questions** ### Acronyms | A-VPLS | Advanced | Virtual Private | LAN Service | |--------|----------|-----------------|-------------| | | | | | - Access-EPL Access Ethernet Private Line - Access-EVPL Access Ethernet Virtual Private Line - □ ADC Application Delivery Controllers - □ API Application Programming Interface - □ CDCP S-Channel Discovery and Configuration Protocol - □ CPU Central Processing Unit - DMTF Distributed Management Task Force - DVS Distributed Virtual Switching - ECP Edge Control Protocol - □ EPL Ethernet Private Line - EVB Edge Virtual Bridging - EVP-Tree Ethernet Virtual Private Tree - EVPL Ethernet Virtual Private Line - EVPLAN Ethernet Virtual Private Local Area Network - EVPN Ethernet Virtual Private Network - □ FEX Fabric Extender #### **Student Questions** □ GB Giga Byte □ GMPLS Generalized Multi-Protocol Label Switching □ GRE Generic Routing Encapsulation H-VPLS Hierarchical Virtual Private LAN Service HSRP Hot Standby Router Protocol ■ IBM International Business Machines □ IO Input/Output □ IOV Input/Output Virtualization □ IP Internet Protocol ☐ IPoMPLSoE IP over MPLS over Ethernet □ IPSec Internet Protocol Security ■ L2TPv3 Layer 2 Tunneling Protocol Version 3 □ LAG Link Aggregation ■ LISP Locator ID Split Protocol MAC Media Access Control #### **Student Questions** ■ MPLS-TP Multiprotocol Label Switching Transport MPLS Multi-Protocol Label Switching MR-IOV Multi-Root I/O Virtualization ■ NIC Network Interface Card NVGRE Network Virtualization using GRE ■ NVO3 Network Virtualization Over L3 OTV Overlay Transport Virtualization □ PB Provider Bridge PBB-EVPN Provider Backbone Bridging with Ethernet VPN □ PBB-TE Provider Backbone Bridge with Traffic Engineering PBB Provider Backbone Bridge □ PCI-SIG Peripheral Component Interconnect Special Interest Group □ PCI Peripheral Component Interconnect PCIe Peripheral Component Interconnect Express □ PF Physical Function #### **Student Questions** pM Physical Machine pNIC Physical Network Interface Card pSwitch Physical Switch ■ PW Pseudo Wire □ PWoGRE Pseudo Wire Over Generic Routing Encapsulation □ PWoMPLS Pseudo Wire over Multi-Protocol Label Switching SMLT Split Multi-link Trunking □ SNIA Storage Networking Industry Association ■ SR-IOV Single Root I/O Virtualization □ STP Spanning Tree Protocol STT Stateless Transport Tunneling □ TP Transport Profile T-MPLS Transport Multiprotocol Label Switching □ TRILL Transparent Interconnection of Lots of Link ■ VBE Virtual Bridge Extension #### **Student Questions** ■ VDC Virtual Device Context □ VEB Virtual Edge Bridge □ VEM Virtual Ethernet Module □ VEPA Virtual Ethernet Port Aggregator □ VF Virtual Function ■ VIP Virtual IP VLAN Virtual Local Area Network ■ VM Virtual Machine vNIC Virtual Network Interface Card ■ vPC Virtual PathChannel ■ VPLS Virtual Private LAN Service ■ VPN Virtual Private Network ■ vPort Virtual Port VRF Virtual Routing and Forwarding #### **Student Questions** VRRP Virtual Routing Redundancy Protocol □ VSI Virtual Station Interface □ VSL Virtual Switch Link □ VSS Virtual Switch System VXLAN Virtual eXtensible Local Area Network **Student Questions** ### Scan This to Download These Slides Raj Jain http://rajjain.com http://www.cse.wustl.edu/~jain/cse570-21/m_07avb.htm Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-21/ ©2021 Raj Jain ### **Related Modules** CSE567M: Computer Systems Analysis (Spring 2013), https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof CSE473S: Introduction to Computer Networks (Fall 2011), https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw Wireless and Mobile Networking (Spring 2016), https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF CSE571S: Network Security (Fall 2011), https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u Video Podcasts of Prof. Raj Jain's Lectures, https://www.youtube.com/user/ProfRajJain/playlists Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-21/ ©2021 Raj Jain