# Introduction to OpenFlow



Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at:

http://www.cse.wustl.edu/~jain/cse570-21/

**Student Questions** 

http://www.cse.wustl.edu/~jain/cse570-21/



- 1. Planes of Networking
- 2. OpenFlow
- 3. OpenFlow Operation
- 4. OpenFlow Switches including Open vSwitch
- 5. OpenFlow Evolution
- 6. Current Limitations and Issues

Note: This is the first module of four modules on OpenFlow, OpenFlow Controllers, SDN and NFV in this course.

**Student Questions** 

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

### **Planes of Networking**

- □ Data Plane: All activities involving as well as resulting from data packets sent by the end user, e.g.,
  - > Forwarding
  - > Fragmentation and reassembly
  - > Replication for multicasting
- □ Control Plane: All activities that are <u>necessary</u> to perform data plane activities but do not involve end-user data packets
  - > Making routing tables
  - > Setting packet handling policies (e.g., security)
  - > Base station beacons announcing availability of services

**Student Questions** 

Ref: Open Data Center Alliance Usage Model: Software Defined Networking Rev 1.0,"

http://www.opendatacenteralliance.org/docs/Software\_Defined\_Networking\_Master\_Usage\_Model\_Rev1.0.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

# Planes of Networking (Cont)

- Management Plane: All activities related to provisioning and monitoring of the networks
  - > Fault, Configuration, Accounting, Performance and Security (FCAPS).
  - > Instantiate new devices and protocols (Turn devices on/off)
  - $ightharpoonup Optional \Rightarrow$  May be handled manually for small networks.
- Services Plane: Middlebox services to improve performance or security, e.g.,
  - > Load Balancers, Proxy Service, Intrusion Detection, Firewalls, SSL Off-loaders
  - ➤ Optional ⇒ Not required for small networks

#### **Student Questions**

# Data vs. Control Logic

- Data plane runs at line rate, e.g., 100 Gbps for 100 Gbps Ethernet  $\Rightarrow$  Fast Path ⇒ Typically implemented using special hardware, e.g., Ternary Content Addressable Memories (TCAMs)
- Some exceptional data plane activities are handled by the CPU in the switch  $\Rightarrow$  Slow path e.g., Broadcast, Unknown, and Multicast (BUM) traffic
- □ All control activities are generally handled by CPU



©2021 Raj Jain

# **OpenFlow: Key Ideas**

- 1. Separation of control and data planes
- 2. Centralization of control
- 3. Flow based control

**Student Questions** 

Ref: N. McKeown, et al., "OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM CCR, Vol. 38, No. 2, April 2008, pp. 69-74.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

# **Separation of Control and Data Plane**



- Control logic is moved to a controller
- Switches only have forwarding elements
- One expensive controller with a lot of cheap switches
- OpenFlow is the protocol to send/receive forwarding rules from controller to switches

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

# **OpenFlow V1.0**

□ On packet arrival, match the header fields with flow entries in a table, if any entry matches, update the counters indicated in that entry and perform indicated actions

Flow Table: Header Fields Counters Actions
Header Fields Counters Actions
Header Fields Counters Actions
Header Fields Counters Actions

| Ingress | Ether  | Ether | VLAN | VLAN     | IP  | IP  | IP    | IP  | Src L4 | Dst L4 |
|---------|--------|-------|------|----------|-----|-----|-------|-----|--------|--------|
| Port    | Source | Dest  | ID   | Priority | Src | Dst | Proto | ToS | Port   | Port   |

Ref: <a href="http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf">http://archive.openflow.org/documents/openflow-spec-v1.0.0.pdf</a>

Washington University in St. Louis <a href="http://www.cse.wustl.edu/~jain/cse570-21/">http://www.cse.wustl.edu/~jain/cse570-21/</a>

©2021 Raj Jain

# Flow Table Example

| Port | Src MAC | Dst MAC | VLAN ID | Priority | EtherType* | Src IP | Dst IP      | IP Proto | IP ToS | Src L4 Port<br>ICMP Type | Dst L4 Port<br>ICMP Code | Action     | Counter |
|------|---------|---------|---------|----------|------------|--------|-------------|----------|--------|--------------------------|--------------------------|------------|---------|
| *    | *       | 0A:C8:* | *       | *        | <b>)</b> * | *      | *           | *        | *      | *                        | *                        | Port 1     | 102     |
| *    | *       | *       | *       | *        | *          | *      | 192.168.*.* | *        | *      | *                        | *                        | Port 2     | 202     |
| *    | *       | *       | *       | *        | *          | *      | *           | *        | *      | 21                       | 21                       | Drop       | 420     |
| *    | *       | *       | *       | *        | *          | *      | *           | 0x806    | *      | *                        | *                        | Local      | 444     |
| *    | *       | *       | *       | *        | *          | *      | *           | 0x1*     | *      | *                        | *                        | Controller | 1       |

- □ Idle timeout: Remove entry if no packets received for this time
- ☐ Hard timeout: Remove entry after this time
- ☐ If both are set, the entry is removed if either one expires.

Ref: S. Azodolmolky, "Software Defined Networking with OpenFlow," Packt Publishing, October 2013, 152 pp., ISBN:978-1-84969-872-6 (Safari Book)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain



# **Counters**

| Per Table      | Per Flow            | Per Port            | Per Queue        |
|----------------|---------------------|---------------------|------------------|
| Active Entries | Received Packets    | Received Packets    | Transmit Packets |
| Packet Lookups | Received Bytes      | Transmitted Packets | Transmit Bytes   |
| Packet Matches | Duration (Secs)     | Received Bytes      | Transmit overrun |
|                |                     |                     | errors           |
|                | Duration (nanosecs) | Transmitted Bytes   |                  |
|                |                     | Receive Drops       |                  |
|                |                     | Transmit Drops      |                  |
|                |                     | Receive Errors      |                  |
|                |                     | Transmit Errors     |                  |
|                |                     | Receive Frame       |                  |
|                |                     | Alignment Errors    |                  |
|                |                     | Receive Overrun     |                  |
|                |                     | erorrs              |                  |
|                |                     | Receive CRC         |                  |
|                |                     | Errors              |                  |
|                |                     | Collisions          |                  |

#### **Student Questions**

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

#### **Actions**

- □ Forward to Physical Port *i* or to *Virtual Port*:
  - > All: to all interfaces except incoming interface
  - > Controller: encapsulate and send to controller
  - > Local: send to its local networking stack
  - > **Table**: Perform actions in the flow table
  - > In\_port: Send back to input port
  - > Normal: Forward using traditional Ethernet
  - > Flood: Send along minimum spanning tree except the incoming interface
- Enqueue: To a particular queue in the port  $\Rightarrow$  QoS
- Drop
- Modify Field: E.g., add/remove VLAN tags, ToS bits, Change TTL

#### **Student Questions**

# **Actions (Cont)**

- Masking allows matching only selected fields, e.g., Dest. IP, Dest. MAC, etc.
- ☐ If header matches an entry, corresponding actions are performed and counters are updated
- ☐ If no header match, the packet is queued and the header is sent to the controller, which sends a new rule. Subsequent packets of the flow are handled by this rule.
- Secure Channel: Between controller and the switch using TLS
- Modern switches already implement flow tables, typically using Ternary Content Addressable Memories (TCAMs)
- □ Controller can change the forwarding rules if a client moves
   ⇒ Packets for mobile clients are forwarded correctly
- □ Controller can send flow table entries beforehand (**Proactive**) or Send on demand (**Reactive**). OpenFlow allows both models.

http://www.cse.wustl.edu/~jain/cse570-21

©2021 Raj Jain

# **OpenFlow Evolution Summary**



# **OpenFlow Evolution Summary (Cont)**



14-15

**Student Questions** 

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Washington University in St. Louis

# **Bootstrapping**

- Switches require initial configuration: Switch IP address, Controller IP address, Default gateway
- Switches connect to the controller
- Switch provides configuration information about ports
- Controller installs a rule to forward LLDP (Link Layer Discovery Protocol) packets to controller and then sends, one by one, LLDP packets to be sent out to port i (i=1, 2, ..., n) which are forwarded to respective neighbors. The neighbors send the packets back to controller.
- Controller determines the topology from LLDP packets
- LLDP is a one-way protocol to advertise the capabilities at fixed intervals.



Ref: S. Sharma, et al., "Automatic Bootstrapping of OpenFlow Networks," 19<sup>th</sup> IEEE Workshop on LANMAN, 2013, pp. 1-6, <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6528283">http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6528283</a> (Available to subscribers only)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

# **OpenFlow Configuration Protocol** (**OF-Config**)

- □ OpenFlow Configuration Point: Entity that configures OpenFlow switches
- □ OF-Config: Protocol used for configuration and management of OpenFlow Switches.

Assignment of OF controllers so that switches can initiate

connections to them:

- > IP address of controller
- > Port number at the controller
- Transport protocol: TLS or TCP
- Configuration of queues (min/max rates) and ports
- Enable/disable receive/forward speed, media on ports

OpenFlow
Configuration
Point
OF-Config
OpenFlow
Protocol
OpenFlow
Protocol
OpenFlow
Switch

Ref: Cisco, "An Introduction to OpenFlow," Feb 2013,

# **OF-Config (Cont)**

- A physical switch = one or more logical switches each controlled by an OF Controller
- □ OF-Config allows configuration of logical switches.



Ref: ONF, "OpenFlow Management and Configuration Protocol (OF-Config 1.1.1)," March 23, 2013,

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

# **OpenFlow Notification Framework**

- □ Notification: Event triggered messages, e.g., link down
- Publish/subscribe model: Switch = publisher. OpenFlow controller or OpenFlow config points, and others can subscribe. They will be notified about the events they subscribe.
- □ Use ITU-T M.3702 Notifications: Attribute value change, Communication alarm, Environmental alarm, Equipment alarm, QoS alarm, Processing error alarm, Security alarm, State change, Object creation and deletion
- □ Pre-existing Notifications: Do not fit in the framework but will be recognized.
  - > OpenFlow: Packet-in, Flow removed, Port Status, Error, Hello, Echo request, Echo reply, Experimenter
  - > OpenFlow Config: OpenFlow logical switch instantiation, OpenFlow capability switch capability change, Successful OpenFLow session establishment, Failed OpenFlow session establishment, Port failure or recovery

Ref: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-notifications-framework-

<u>1.0.pdf</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

# **Implementation Issues**

- □ 40+ matching fields in a flow
- Multiple tables, each with a large number of flow entries
- Instructions and actions for each table
- Need VXLAN, NVGRE, etc. support
- □ For a large network, flow level programming can take a long time
- $\square$  Can't keep adding header fields  $\Rightarrow$  Move to P4 programming



Ref: R. Oshana and S. Addepalli, "Networking Trends- Software Defined Networking, Network Virtualization and Cloud Orchestration," Asia Power Arch. Conf, Oct 2012, https://www.power.org/wp-content/uploads/2012/10/13.-FSL-SDN-Openflow-and-Cloud-computing-UPD\_Rob-Oshana.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

# P4 Language

- Programming Protocol-Independent Packet Processors
- **Protocol-Independent**: Produces forwarding instructions for any L2-L5 protocol
- □ Target Independent: Programmers write one program that can run on many different hardware ⇒ A hw specific compiler translates the program to instructions for that hardware
  - > Similar to how C program can run on any hardware
- Reconfigurability: Can change the program w/o changing the hardware

Control Program in P4

P4 Compiler for X

Switch X Hardware

Ref: P. Bosshart, et al., "P4: Programming Protocol-Independent Packet Processors," Computer Communication Review, ACM SIGCOMM, July 2014, 8 pp., <a href="http://www.sigcomm.org/node/3503">http://www.sigcomm.org/node/3503</a>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

# **P4 Switch Design**

- □ Packet parser: How to extract header fields, their names and types
  - > OpenFlow assumed a fixed parser and needed a new version for each new field
- □ Tables: Match and Action (similar to OpenFlow)
- → Actions: Decrement Hop Count Forward packets to port 3 queue 4

Washington University in St. Louis

■ Some actions can be done in parallel, others sequential



**Student Questions** 

http://www.cse.wustl.edu/~jain/cse570-21/

# Open vSwitch

- Open Source Virtual Switch
- Nicira Concept
- □ Can Run as a stand alone hypervisor switch or as a distributed switch across multiple physical servers
- Default switch in XenServer 6.0, Xen Cloud Platform and supported in Proxmox VE, VirtualBox, Xen KVM
- □ Integrated into many cloud management systems including OpenStack, openQRM, OpenNebula, and oVirt
- Distributed with Ubuntu, Debian, Fedora Linux. Also FreeBSD
- □ Intel has an accelerated version of Open vSwitch in its own Data Plane Development Kit (DPDK)

Ref: http://openvswitch.org/

Washington University in St. Louis

# **Open vSwitch Features**

- □ Link Aggregation Control Protocol (LACP)
- □ IEEE 802.1Q VLAN
- □ IEEE 802.1ag Connectivity Fault Management (CFM)
- Bidirectional Forwarding Detection (BFD) to detect link faults (RFC 5880)
- IEEE 802.1D-1998 Spanning Tree Protocol (STP)
- □ Per-VM traffic policing
- OpenFlow
- Multi-table forwarding pipeline
- □ IPv6
- □ GRE, VXLAN, IPSec tunneling
- Kernel and user-space forwarding engine options

#### **Student Questions**

#### **OVSDB**

- Open vSwitch Database Management Protocol (OVSDB)
- Monitoring capability using publish-subscribe mechanisms
- Stores both provisioning and operational state
- □ Java Script Object Notation (JSON) used for schema format and for JSON-RPC over TCP for wire protocol (RFC 4627)

<database-schema>

"name": <id>

"version": <version>

"tables": {<id>: <table-schema>,...}

- □ RPC Methods: List databases, Get Schema, Update, Lock, ...
- Open vSwitch project includes open source OVSDB client and server implementations

Ref: B. Pfaff and B. Davie, "The Open vSwitch Database Management Protocol," IETF RFC 7047m December 2013,

https://tools.ietf.org/pdf/rfc7047

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

**OpenFlow** 

ovs-vswitchd

Forwarding Path

Control and Mgmt Cluster

OVSDB<sup>4</sup>

**OVSDB** Server



- 1. Four planes of Networking: Data, Control, Management, Service
- 2. OpenFlow separates control plane and moves it to a central controller ⇒ Simplifies the forwarding element
- 3. Switches match incoming packets with flow entries in a table and handle it as instructed. The controller supplies the flow tables and other instructions.
- 4. OpenFlow has been extended to IPv4, MPLS, IPv6, and Optical Network. But more work ahead.
- 5. Many hardware and software based switches including Open vSwitch

#### **Student Questions**

http://www.cse.wustl.edu/~jain/cse570-21/

# **Reading List**

#### Any one book:

- T. Nadeau and K. Gray, "SDN," O'Reilly, 2013, 384 pp, ISBN:978-1-449-34230-2B (Safari Book)
- Oswald Coker, Siamak Azodolmolky, "Software-Defined Networking with OpenFlow Second Edition," Packt Publishing, October 2017, 246 pp., ISBN:978-1-78398-429-9 (Safari Book).
- □ William Stallings, "Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud," Addison-Wesley Professional, October 2015, 544 pp., ISBN:0-13-417539-5 (Safari Book).
- □ Kingston Smiler. S, "OpenFlow Cookbook," Packt Publishing, April 2015, 292 pp., ISBN:978-1-78398-795-5 (Safari Book).
- □ P. Bosshart, et al., "P4: Programming Protocol-Independent Packet Processors," Computer Communication Review,
   ACM SIGCOMM, July 2014, 8 pp., <a href="http://www.sigcomm.org/node/3503">http://www.sigcomm.org/node/3503</a>

#### **Student Questions**

#### References

- N. McKeown, et al., ``OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM CCR, Vol. 38, No. 2, April 2008, pp. 69-74.
- ONF, "The OpenFlow Timeline,"
   <a href="http://openflownetworks.com/of\_timeline.php">http://openflownetworks.com/of\_timeline.php</a>
- Open Data Center Alliance Usage Model: Software Defined Networking Rev 1.0,"
   <a href="http://www.opendatacenteralliance.org/docs/Software\_Defined\_Networking">http://www.opendatacenteralliance.org/docs/Software\_Defined\_Networking</a>
   Master Usage Model Rev1.0.pdf
- R. Oshana and S. Addepalli, "Networking Trends- Software Defined Networking, Network Virtualization and Cloud Orchestration," Asia Power Arch. Conf, Oct 2012, <a href="https://www.power.org/wp-content/uploads/2012/10/13.-FSL-SDN-Openflow-and-Cloud-computing-UPD\_Rob-Oshana.pdf">https://www.power.org/wp-content/uploads/2012/10/13.-FSL-SDN-Openflow-and-Cloud-computing-UPD\_Rob-Oshana.pdf</a>
- □ ONF, **Technical Library** (includes all OpenFlow, OF-Config, and other specifications), <a href="https://www.opennetworking.org/sdn-resources/technical-library">https://www.opennetworking.org/sdn-resources/technical-library</a>

#### **Student Questions**

# References (Cont)

- □ <a href="http://www.openvswitch.org/">http://www.openvswitch.org/</a>
- □ <a href="http://www.projectfloodlight.org/indigo/">http://www.projectfloodlight.org/indigo/</a>
- http://flowforwarding.github.io/LINC-Switch/
- □ <a href="http://github.com/CPqD/openflow-openwrt">http://github.com/CPqD/openflow-openwrt</a>
- □ <a href="http://cpqd.github.io/ofsoftswitch13/">http://cpqd.github.io/ofsoftswitch13/</a>
- □ <a href="http://sourceforge.net/projects/xorplus">http://sourceforge.net/projects/xorplus</a>

**Student Questions** 

http://www.cse.wustl.edu/~jain/cse570-21/

# Wikipedia Links

- □ <a href="http://en.wikipedia.org/wiki/OpenFlow">http://en.wikipedia.org/wiki/OpenFlow</a>
- □ <a href="http://en.wikipedia.org/wiki/Software-defined\_networking">http://en.wikipedia.org/wiki/Software-defined\_networking</a>
- □ <a href="http://en.wikipedia.org/wiki/Network\_Functions\_Virtualization">http://en.wikipedia.org/wiki/Network\_Functions\_Virtualization</a>
- □ <a href="http://en.wikipedia.org/wiki/Forwarding\_plane">http://en.wikipedia.org/wiki/Forwarding\_plane</a>
- □ <a href="https://en.wikipedia.org/wiki/P4\_(programming\_language">https://en.wikipedia.org/wiki/P4\_(programming\_language)</a>

**Student Questions** 

Washington University in St. Louis <a href="http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.http://www.

http://www.cse.wustl.edu/~jain/cse570-21/

# Wikipedia Links (Optional)

- □ <a href="http://en.wikipedia.org/wiki/NetFlow">http://en.wikipedia.org/wiki/NetFlow</a>
- □ <a href="http://en.wikipedia.org/wiki/IP\_Flow\_Information\_Export">http://en.wikipedia.org/wiki/IP\_Flow\_Information\_Export</a>
- □ <a href="http://en.wikipedia.org/wiki/SFlow">http://en.wikipedia.org/wiki/SFlow</a>
- □ <a href="http://en.wikipedia.org/wiki/Northbound\_interface">http://en.wikipedia.org/wiki/Northbound\_interface</a>
- □ <a href="http://en.wikipedia.org/wiki/Big\_Switch\_Networks">http://en.wikipedia.org/wiki/Big\_Switch\_Networks</a>
- □ <a href="http://en.wikipedia.org/wiki/Open\_Data\_Center\_Alliance">http://en.wikipedia.org/wiki/Open\_Data\_Center\_Alliance</a>
- □ <a href="http://en.wikipedia.org/wiki/Virtual\_Extensible\_LAN">http://en.wikipedia.org/wiki/Virtual\_Extensible\_LAN</a>
- □ <a href="http://en.wikipedia.org/wiki/Optical\_Transport\_Network">http://en.wikipedia.org/wiki/Optical\_Transport\_Network</a>
- □ <a href="http://en.wikipedia.org/wiki/Automatically\_switched\_optical\_network">http://en.wikipedia.org/wiki/Automatically\_switched\_optical\_network</a>
- □ <a href="http://en.wikipedia.org/wiki/Wavelength-division\_multiplexing">http://en.wikipedia.org/wiki/Wavelength-division\_multiplexing</a>
- □ <a href="http://en.wikipedia.org/wiki/IEEE\_802.1ad">http://en.wikipedia.org/wiki/IEEE\_802.1ad</a>
- □ <a href="http://en.wikipedia.org/wiki/Transport\_Layer\_Security">http://en.wikipedia.org/wiki/Transport\_Layer\_Security</a>
- □ <a href="http://en.wikipedia.org/wiki/OpenStack">http://en.wikipedia.org/wiki/OpenStack</a>
- □ <a href="http://en.wikipedia.org/wiki/IPv6\_packet">http://en.wikipedia.org/wiki/IPv6\_packet</a>
- □ <u>http://en.wikipedia.org/wiki/ICMPv6</u>
- □ <a href="http://en.wikipedia.org/wiki/Multiprotocol\_Label\_Switching">http://en.wikipedia.org/wiki/Multiprotocol\_Label\_Switching</a>

#### **Student Questions**

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Washington University in St. Louis

# Acronyms

□ ACL Access Control List

□ API Application Programming Interface

■ ARP Address Resolution Protocol

ASICs Application Specific Integrated Circuit

□ BFD Bidirectional Forwarding Detection

□ BUM Broadcast, Unknown, and Multicast

□ CFM Connectivity Fault Management

□ CPU Central Processing Unit

DFCA Dynamic Frequency Channel Allocation

DSCP Differentiated Service Control Point

□ ECMP Equal Cost Multipath

□ ESP Encrytec Security Payload

□ FCAPS Fault, Configuration, Accounting, Performance and Security

□ GRE Generic Routing Encapsulation

□ ICMP Internet Control Message Protocol

□ ID Identifier

**Student Questions** 

http://www.cse.wustl.edu/~jain/cse570-21/

# Acronyms (Cont)

□ IDS Intrusion Detection System

□ IEEE Institution of Electrical and Electronic Engineers

□ IETF Internet Engineering Task Force

■ IGMP Internet Group Multicast Protocol

□ IP Internet Protocol

□ IPFIX IP Flow Information Export Protocol

□ IPSec IP Security

□ IPv4 Internet Protocol version 4

□ IPv6 Internet Protocol version 6

JSON Java Script Object Notation

KVM Kernel-based Virtual Machine

□ LACP Link Aggregation Control Protocol

□ LLDP Link Layer Discovery Protocol

■ MAC Media Access Control

MAN Metropolitan Area Network

MPLS Multiprotocol Label Switching

#### **Student Questions**

# Acronyms (Cont)

□ NFV Network Function Virtualization

NVGRE Network Virtualization using Generic Routing Encapsulation

□ OF OpenFlow

ONF Open Networking Foundation

openQRM Open Qlusters Resource Manager

OpenWRT Open WRT54G (Linksys product name) software

OSPFOpen Shortest Path First

OTN Optical Transport Network

OVSDB Open vSwitch Database

□ P4 Programming Protocol-Independent Packet Processors

□ PIM-SM Protocol Independent Multicast - Sparse Mode

PIM Protocol Independent Multicast

QoS Quality of Service

□ RAN Radio area networks

□ RFC Request for Comments

□ RIP IGMP, IPv6, PIM-SM

■ RIP Routing Information Protocol

Washington University in St. Louis <a href="http://www.cse.wustl.edu/~jain/cse570-21/">http://www.cse.wustl.edu/~jain/cse570-21/</a>

# Acronyms (Cont)

□ RPC Remote Procedure Call

RSPAN Remote Switch Port Analyzer

SDN Software Defined Network

SPAN Switch Port Analyzer

□ SSL Secure Socket Layer

□ STP Spanning Tree Protocol

□ TCAM Ternary Content Addressable Memory

□ TCP Transmission Control Protocol

□ TLS Transport Level Security

□ TLV Type-Length-Value

□ ToS Type of Service

□ TTL Time to Live

■ TTP Table Typing Patterns

UDP User Datagram Protocol

VLAN
Virtual Local Area Network

□ VM Virtual Machine

□ VxLAN Virtual Extensible Local Area Network

■ WG Working Group

Washington University in St. Louis <a href="http://www.cse.wustl.edu/~jain/cse570-21/">http://www.cse.wustl.edu/~jain/cse570-21/</a>

#### **Student Questions**

#### Scan This to Download These Slides





Raj Jain

http://rajjain.com

http://www.cse.wustl.edu/~jain/cse570-21/m\_14ofl.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

#### **Related Modules**



CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n\_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e\_10TiDw





Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs\_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u





Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain