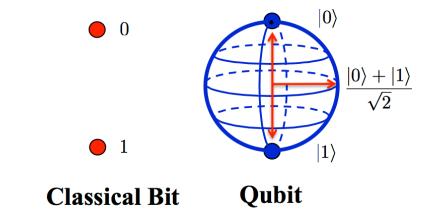
Introduction to Quantum Computing and its Applications to Cyber Security



Raj Jain

Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu

These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-21/

Student Questions

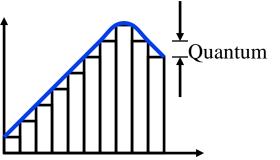
http://www.cse.wustl.edu/~jain/cse570-21/

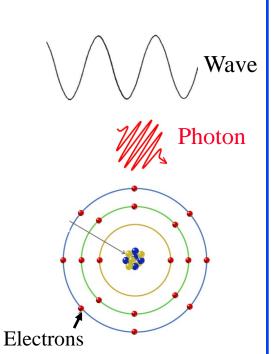
- 1. What is a Quantum and Quantum Bit?
- 2. Matrix Algebra Review
- 3. Quantum Gates: Not, And, or, Nand
- 4. Applications of Quantum Computing
- 5. Quantum Hardware and Programming

Student Questions

What is a Quantum?

- Quantization: Analog to digital conversion
- □ Quantum = Smallest discrete unit
- Wave Theory: Light is a wave. It has a frequency, phase, amplitude
- □ Quantum Mechanics: Light behaves like discrete packets of energy that can be absorbed and released
- □ **Photon** = One quantum of light energy
- Photons can move an electron from one energy level to next higher level
- □ Photons are released when an electron moves from one level to lower energy level



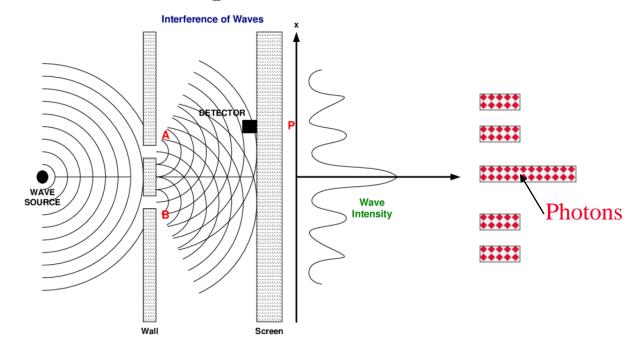


Student Questions

http://www.cse.wustl.edu/~jain/cse570-21/

Probabilistic Behavior

Young's Double-Slit Experiment 1801



- □ The two waves exiting the slits interfere.
- □ Interference is constructive at some spots and destructive at others ⇒ Probabilistic

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

Quantum Bits

- 1. Computing bit is a binary scalar: 0 or 1
- 2. Quantum bit (Qubit) is a 2×1 vector, e.g., $\begin{bmatrix} 1\\0 \end{bmatrix}$ or $\begin{bmatrix} 0\\1 \end{bmatrix}$
- 3. Vector elements of Qubits are complex numbers x+iy
- 4. Modulus of a complex Number $|x+iy| = \sqrt{(x+iy)(x-iy)} = \sqrt{x^2+y^2}$ Conjugate

Example:
$$|(1+2i)| = \sqrt{(1+2i)(1-2i)} = \sqrt{1+4} = \sqrt{5}$$

5. Probability of each element in a qubit vector is proportional to its modulus squared $\begin{bmatrix} a_0 \\ a_1 \end{bmatrix} \Rightarrow \frac{P = |a_0|^2 / (|a_0|^2 + |a_1|^2)}{P = |a_1|^2 / (|a_0|^2 + |a_1|^2)}$

$$\begin{bmatrix} 1+2i \\ 1-i \end{bmatrix} \Rightarrow \begin{vmatrix} 1+2i \\ |1-i| \end{vmatrix} = \frac{\sqrt{(1+2i)(1-2i)}}{\sqrt{(1-i)(1+i)}} = \frac{\sqrt{5}}{\sqrt{2}} \Rightarrow P = \begin{cases} 5/(5+2) & = 5/7 \\ 2/(5+2) & = 2/7 \end{cases}$$

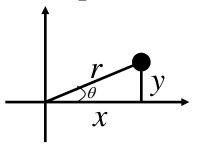
Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

Polar Representation

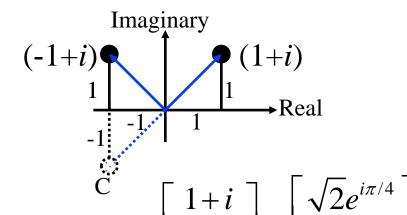
Complex numbers in polar coordinates:



$$(x+iy) = re^{i\theta} = r(\cos(\theta) + i\sin(\theta))$$

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1}(y/x)$$



$$2\pi = 360^{\circ}$$
 $\pi/4=45^{\circ}$
 $\cos(\pi/4) = \frac{1}{\sqrt{2}}$
 $\sin(\pi/4) = 1$

Real $\cos(\pi/4) = \frac{1}{\sqrt{2}}$ $\sin(\pi/4) = 1$ $\left[\frac{1+i}{-1+i} \right] = \left[\frac{\sqrt{2}e^{i\pi/4}}{\sqrt{2}e^{3\pi/4}} \right] = \left[\frac{\sqrt{2}\left(\cos(\pi/4) + i\sin(\pi/4)\right)}{\sqrt{2}\left(\cos(3\pi/4) + i\sin(3\pi/4)\right)} \right]$

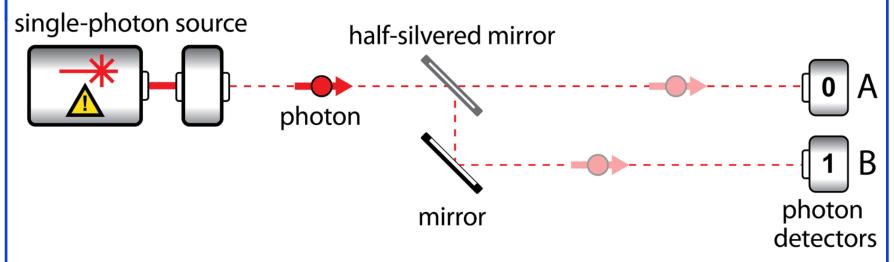
Exercise: Find the complex and polar representation of C

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Qubit Interpretation



[Source: Johnston, et al. 2019]

- ☐ If a single photon is emitted from the source, the photon reaches position A or B with some probability
 - ⇒ Photon has a *superposition* (rather than position)
- Each position has a different path length and, therefore, different amplitude and phase

Ref: E. R. Johnston, N. Harrigan, and M. Gimeno-Segovia, "Programming Quantum Computers," O'reilly, 2019, ISBN:9781492039686, 320 pp.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Bra-Ket Notation

- \square The vector ψ is denoted in bra-kets $|\psi\rangle$
- □ Brackets: { }, [], <>
- □ Bra <a|</p>
- Ket |a>
- Example: Ket-zero and ket-one

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle \qquad \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

■ Bra is the transpose of the complex-conjugate of a Ket. Example: Bra-zero and Bra-one

$$\begin{bmatrix} 1 & 0 \end{bmatrix} = \langle 0 \mid \begin{bmatrix} 0 & 1 \end{bmatrix} = \langle 1 \mid$$

Student Questions

http://www.cse.wustl.edu/~jain/cse570-21/

Matrix Multiplication

□ Matrix multiplication ×:

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \end{bmatrix} \times \begin{bmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \\ b_{20} & b_{21} \end{bmatrix}$$

$$= \begin{bmatrix} a_{00}b_{00} + a_{01}b_{10} + a_{02}b_{20} & a_{00}b_{01} + a_{01}b_{11} + a_{02}b_{21} \\ a_{10}b_{00} + a_{11}b_{10} + a_{12}b_{20} & a_{10}b_{01} + a_{11}b_{11} + a_{12}b_{21} \end{bmatrix}$$

Example:
$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$3 \times 2 \qquad 2 \times 3 \qquad 3 \times 3$$

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Student Questions

Washington University in St. Louis

Tensor Product

■ Tensor Product⊗: $m \times n \otimes k \times l$ results in $mk \times nl$ matrix

$$A = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} B = \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \end{bmatrix}$$

$$A \otimes B = \begin{bmatrix} a_{00} \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \end{bmatrix} & a_{01} \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \end{bmatrix} \\ a_{10} \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \end{bmatrix} & a_{11} \begin{bmatrix} b_{00} & b_{01} & b_{02} \\ b_{10} & b_{11} & b_{12} \\ b_{20} & b_{21} & b_{22} \end{bmatrix} \end{bmatrix}$$

$$=\begin{bmatrix} a_{00}b_{00} & a_{00}b_{01} & a_{00}b_{02} & a_{01}b_{00} & a_{01}b_{01} & a_{01}b_{02} \\ a_{00}b_{10} & a_{00}b_{11} & a_{00}b_{12} & a_{01}b_{10} & a_{01}b_{11} & a_{01}b_{12} \\ a_{00}b_{20} & a_{00}b_{21} & a_{00}b_{22} & a_{01}b_{20} & a_{01}b_{21} & a_{01}b_{22} \\ a_{10}b_{00} & a_{10}b_{01} & a_{10}b_{02} & a_{11}b_{00} & a_{11}b_{01} & a_{11}b_{02} \\ a_{10}b_{10} & a_{10}b_{11} & a_{10}b_{12} & a_{11}b_{10} & a_{11}b_{11} & a_{11}b_{12} \\ a_{10}b_{20} & a_{10}b_{21} & a_{10}b_{22} & a_{11}b_{20} & a_{11}b_{21} & a_{11}b_{22} \end{bmatrix}$$

Student Questions

©2021 Raj Jain

http://www.cse.wustl.edu/~jain/cse570-21/

Tensor Product (Cont)

Example 1:
$$\begin{bmatrix} a_{00} \\ a_{10} \\ a_{20} \end{bmatrix} \otimes \begin{bmatrix} b_{00} \\ b_{10} \end{bmatrix} = \begin{bmatrix} a_{00} \begin{bmatrix} b_{00} \\ b_{10} \end{bmatrix} \\ a_{10} \begin{bmatrix} b_{00} \\ b_{10} \end{bmatrix} = \begin{bmatrix} a_{00}b_{00} \\ a_{00}b_{10} \\ a_{10}b_{00} \\ a_{10}b_{10} \end{bmatrix}$$

$$\begin{bmatrix} a_{00} \begin{bmatrix} b_{00} \\ b_{10} \end{bmatrix} \\ a_{20} \begin{bmatrix} b_{00} \\ b_{10} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a_{00}b_{00} \\ a_{10}b_{00} \\ a_{20}b_{00} \\ a_{20}b_{10} \end{bmatrix}$$

 3×1 2×1

Example 2: $\begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} \otimes \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} = \begin{vmatrix} 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{vmatrix}$ 2×2 1×3

Student Questions

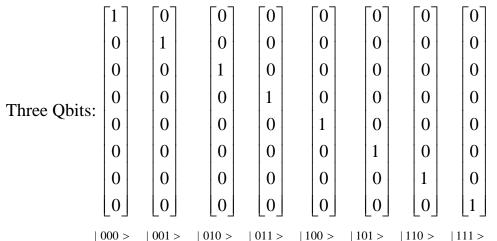
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

Multiple Qubits and QuBytes

One Qbit:
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Two Qbits:
$$|00\rangle = |0\rangle \otimes |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 $|01\rangle = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $|10\rangle = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ $|11\rangle = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$
Tensor Product



- □ In a k-qubit register, each of the 2^k positions can be any complex number
- □ QuByte=8-Qubits = 256-element vector

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Homework 19A

Given two matrices:

$$A = \begin{bmatrix} 1+i & 1 \\ 1-i & i \end{bmatrix} B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

- $lue{}$ Compute the probabilities of each element of $A \times B$

Student Questions

Washington University in St. Louis

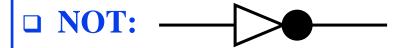
http://www.cse.wustl.edu/~jain/cse570-21/

Quantum Gates

- 1. Quantum NOT Gate
- 2. Quantum AND Gate
- 3. Quantum OR Gate
- 4. Quantum NAND Gate
- 5. Quantum \sqrt{NOT} Gate

Student Questions

Quantum NOT Gate



$$NOT = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} ? \\ ? \end{bmatrix}$$

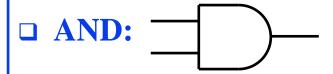
$$NOT | 1 > = |0 > NOT | 0 > = |? >$$

Exercise: Fill in the ?'s

Student Questions

http://www.cse.wustl.edu/~jain/cse570-21/

Quantum AND Gate



$$AND = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

AND

$$|00\rangle$$
 $|01\rangle$ $|10\rangle$ $|11\rangle$ = $|0\rangle$ $|0\rangle$

$$|11> =$$

$$1 > = 0$$

Student Questions

 2×4

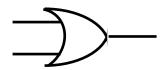
 4×1

 2×1

Exercise: Fill in the ?'s

Quantum OR Gate

□ OR:



$$OR = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

OR

$$1 > = |0|$$

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

Quantum NAND Gate

$$NAND = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

NAND
$$|00\rangle$$
 $|01\rangle$ $|10\rangle$ $|11\rangle$ $=$ $|1\rangle$ $|1\rangle$ $|0\rangle$

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

Quantum VNOT Gate

 \square \sqrt{NOT} : $\sqrt{NOT} \times \sqrt{NOT} = NOT$

$$\sqrt{\text{NOT}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix} \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \times \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \qquad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \times \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$|0>$$

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \times \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

Controlled NOT Gate

□ CNOT: If the control bit is 0, no change to the 2nd bit If control bit is 1, the 2nd bit is complemented

$$\mathbf{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\$$

- Controlled NOT gate can be used to produce two bits that are **entangled** \Rightarrow Two bits behave similarly even if far apart
 - ⇒ Can be used for teleportation of information

Quantum Gates: Summary

$$NOT = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad AND = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\
OR = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \qquad NAND = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \qquad Classical$$

$$\sqrt{NOT} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \qquad CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad Non-Classical$$

- ☐ The first 4 gates above are similar to the classical gates. The last two are non-classical gate.
- There are many other classical/non-classical quantum gates, e.g., Rotate, Copy, Read, Write, ...
- Using such gates one can design quantum circuits

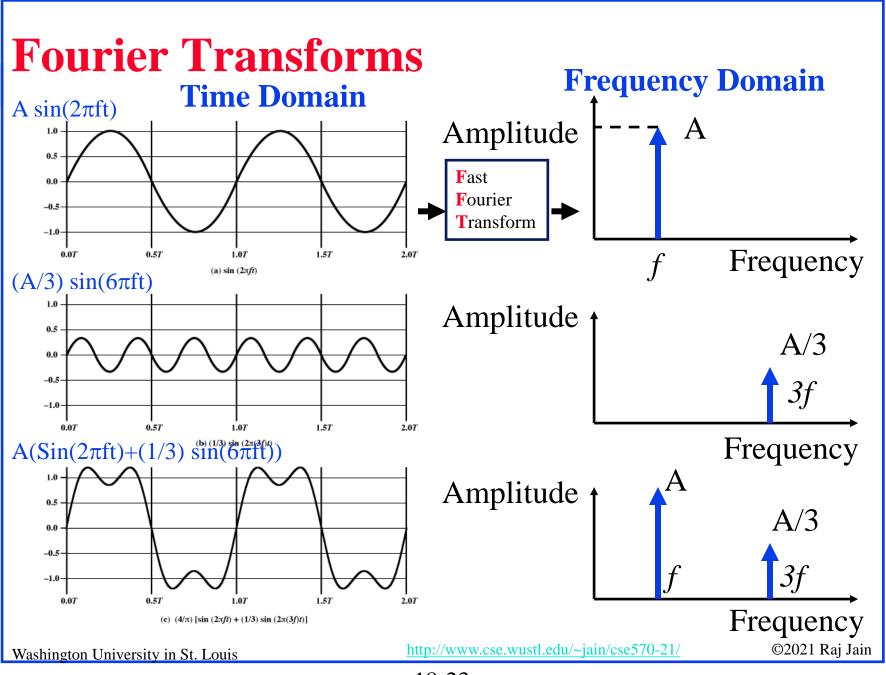
Student Questions

http://www.cse.wustl.edu/~jain/cse570-21/

Quantum Applications

- ☐ It has been shown that quantum computation makes several problems easy that are hard currently. Including:
 - > Fourier Transforms
 - > Factoring large numbers
 - > Error correction
 - > Searching a large unordered list
- ☐ There are some new methods:
 - > Quantum Key Exchange
 - Quantum Teleportation (transfer states from one location to another)

Quantum-Safe Cryptography is being standardized



Quantum Fourier Transform (QFT)

- □ Fourier transform is used to find periodic components of signals
- QFT is faster than classical FT for large inputs

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

GCD

- ☐ Greatest Common Divisor of any two numbers
 - > Divide the larger number with the smaller number and get the remainder less than the divisor
 - > Divide the previous divisor with the remainder
 - Continue this until the remainder is zero.
 The last divisor is the GCD

Student Questions

http://www.cse.wustl.edu/~jain/cse570-21/

Shor's Factoring Algorithm

- Peter Shor used QFT and showed that Quantum Computers can find prime factors of large numbers exponentially faster than conventional computers
- Step 1: Find the period of $a^i \mod N$ sequence. Here a is co-prime to $N \Rightarrow a$ is a prime such that gcd(a, N) = 1 $\Rightarrow a$ and N have no common factors.
 - Example: N=15, a=2; $2^{i} \mod 15$ for i=0, 1, 2, ... $= 1, 2, 4, 8, 1, ... \Rightarrow p=4$
 - > This is the classical method for finding period. QFT makes it fast.
- Step 2: Prime factors of N might be $gcd(N, a^{p/2}+1)$ and $gcd(N, a^{p/2}-1)$
 - \triangleright Example: $gcd(15, 2^2-1) = 3$; $gcd(15, 2^2+1) = 5$;

Student Questions

Homework 19B

- □ Find factors of 35 using Shor's algorithm. Show all steps.
- □ Optional: Try factoring 407 (Answer: 11×37)

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

Quantum Machine Learning (QML)

- Quantum for solving systems of linear equation
- Quantum Principal Component Analysis
- Quantum Support Vector Machines (QSVM)
 - Classical SVM has runtime of O(poly(m,n)),
 m data points, n features
 - \triangleright QSVM has runtime of $O(\log(mn))$
 - □ Currently limited to data that can be represented with small number of qubits
- QML can process data directly from Quantum sensors with full range of quantum information

Ref: E. R. Johnston, N. Harrigan, and M. Gimeno-Segovia, "Programming Quantum Computers," O'reilly, 2019, ISBN:9781492039686, 320 pp.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Building Quantum Computers

- 1. Neural Atom: Group of cesium or rubidium atoms are cooled down to a few degree Kelvin and controlled using lasers
- 2. Nuclear Magnetic Resonance (NMR)
- 3. Nitrogen-Vacancy Center-in-Diamond: Some carbon atoms in diamond lattice are replaced by nitrogen atoms
- 4. **Photonics**: Mirrors, beam splitters, and phase shifters are used to control photons
- 5. Spin Qubits: Using semiconductor materials
- 6. Topological Quantum Computing: Uses Anyon which are quasi-particles different from photons or electrons
- 7. Superconducting Qubits: Requires cooling down to 10mK

Student Questions

Ref: J. D. Hidary, "Quantum Computing: An Applied Approach," Springer, 2019, 380 pp.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

Quantum Hardware

□ IBM Q Experience: 5-Qubit quantum processor Open to public for experiments using their cloud,

https://www.ibm.com/quantum-computing/technology/experience/

Ref: https://www.ibm.com/blogs/research/2018/04/ibm-startups-accelerate-quantum/
Washington University in St. Louis

https://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Quantum Hardware (Cont)

□ Google's Quantum computer in Santa Barbara Lab

Ref: https://www.nbcnews.com/mach/science/google-claims-quantum-computing-breakthrough-ibm-pushes-back-ncna1070461
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/
©2021 Raj Jain

Quantum Simulators

- □ QCEngine: https://oreilly-qc.github.io/
- Qiskit, https://qiskit.org/
 - Qiskit OpenQASM (Quantum Assembly Language),
 https://github.com/QISKit/openqasm/blob/master/examples/genericond/der.qasm
- □ Q# (Qsharp), https://docs.microsoft.com/en-gb/quantum/?view=qsharp-preview
- □ Cirq, https://arxiv.org/abs/1812.09167
- □ Forest, https://www.rigetti.com/forest
- ☐ List of QC Simulators, https://quantiki.org/wiki/list-qc-simulators
- □ See the complete list at: https://en.wikipedia.org/wiki/Quantum_programming

Ref: E. R. Johnston, N. Harrigan, and M. Gimeno-Segovia, "Programming Quantum Computers," O'reilly, 2019, ISBN:9781492039686, 320 pp.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Quantum Supremacy

- Quantum Supremacy: Solve a problem on quantum computer that can not be solved on a classical computer
- □ Google announced it has achieved Quantum Supremacy on October 23, 2019
 - Google built a 54-qubit quantum computer using programmable superconducting processor
- Vendors: IBM, Microsoft, Google, Alibaba Cloud, D-Wave Systems, 1QBit, QC Ware, QinetiQ, Rigetti Computing, Zapata Computing
- □ Global Competition: China, Japan, USA, EU are also competing

Student Questions

Ref: F. Arute, K. Arya, R. Babbush, *et al.*, "Quantum supremacy using a programmable superconducting processor," *Nature* **574**, 505–510 (Oct. 23, 2019), https://www.nature.com/articles/s41586-019-1666-5

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

Summary

- 1. Qubits are two element vectors. Each element is a complex number that indicate the probability of that level
- 2. Multi-qubits are represented by tensor products of singlequbits
- 3. Qbit operations are mostly matrix operations. The number of possible operations is much larger than the classic computing.
- 4. Shor's factorization algorithm is an example of algorithms that can be done in significantly less time than in classic computing
- 5. Quantum computing is here. IBM, Microsoft, Google all offer platforms that can be used to write simple quantum computing programs and familiarize yourself.
- 6. Quantum-Safe Crypto is in standardization

Student Questions

Reading List

- J. D. Hidary, "Quantum Computing: An Applied Approach," Springer, 2019, 380 pp.
- Mercedes Gimeno-Segovia, Nic Harrigan, Eric R. Johnston, "Programming Quantum Computers," O'Reilly Media, Inc., July 2019, ISBN:9781492039686 (Safari Book). Recommended.
- □ N. S. Yanofsky and M. A. Mannucci, "Quantum Computing for Computer Scientists," Cambridge, 2008, 380 pp.
- N. D. Mermin, "Quantum Computer Science: An Introduction," Cambridge, 2007, 220 pp.

Student Questions

References

- Gerd Leuchs, Dagmar Bruss, "Quantum Information," 2 Volume Set, 2nd Edition, Wiley-VCH, June 2019, ISBN:9783527413539 (Safari Book).
- □ Vladimir Silva, "Practical Quantum Computing for Developers: Programming Quantum Rigs in the Cloud using Python, Quantum Assembly Language and IBM QExperience," Apress, December 2018, ISBN:9781484242186 (Safari Book).
- □ Mingsheng Ying, "Foundations of Quantum Programming," Morgan Kaufmann, March 2016, ISBN:9780128025468 (Safari Book).
- □ F.J. Duarte, "Quantum Optics for Engineers," CRC Press, November 2017, ISBN:9781351832618 (Safari Book).
- Quantum Algorithm Zoo, (Compiled list of Quantum algorithms), http://quantumalgorithmzoo.org/

Student Questions

Wikipedia Links

- □ https://en.wikipedia.org/?title=Inner-product&redirect=no
- □ https://en.wikipedia.org/wiki/Bra%E2%80%93ket_notation
- □ https://en.wikipedia.org/wiki/Complex_number
- □ https://en.wikipedia.org/wiki/Controlled_NOT_gate
- □ <u>https://en.wikipedia.org/wiki/Dot_product</u>
- □ https://en.wikipedia.org/wiki/Fourier_transform
- □ https://en.wikipedia.org/wiki/Greatest_common_divisor
- □ https://en.wikipedia.org/wiki/List_of_quantum_processors
- □ https://en.wikipedia.org/wiki/Matrix_multiplication
- □ https://en.wikipedia.org/wiki/Polar_coordinate_system
- □ https://en.wikipedia.org/wiki/Quantum
- □ https://en.wikipedia.org/wiki/Quantum_algorithm
- □ https://en.wikipedia.org/wiki/Quantum_computing
- □ https://en.wikipedia.org/wiki/Quantum_entanglement
- □ https://en.wikipedia.org/wiki/Quantum_error_correction
- □ https://en.wikipedia.org/wiki/Quantum_Fourier_transform

Student Questions

©2021 Raj Jain

http://www.cse.wustl.edu/~jain/cse570-21/

Wikipedia Links (Cont)

- □ https://en.wikipedia.org/wiki/Quantum_logic_gate
- □ https://en.wikipedia.org/wiki/Quantum_machine_learning
- □ https://en.wikipedia.org/wiki/Quantum_mechanics
- □ https://en.wikipedia.org/wiki/Quantum_simulator
- □ https://en.wikipedia.org/wiki/Quantum_supremacy
- □ https://en.wikipedia.org/wiki/Quantum_technology
- □ https://en.wikipedia.org/wiki/Quantum_teleportation
- □ https://en.wikipedia.org/wiki/Qubit
- □ https://en.wikipedia.org/wiki/Shor%27s_algorithm
- □ https://en.wikipedia.org/wiki/Superconducting_quantum_computing
- □ https://en.wikipedia.org/wiki/Sycamore_processor
- https://en.wikipedia.org/wiki/Tensor_product
- □ https://en.wikipedia.org/wiki/Timeline_of_quantum_computing
- □ https://en.wikipedia.org/wiki/Category:Quantum_gates

Student Questions

Classic Papers on Quantum Computing

- R. P. Feynman, "Simulating Physics with Computers," *International journal of theoretical physics* 21.6 (1982): 467-488, http://www.springerlink.com/index/t2x8115127841630.pdf
- D. E. Deutsch, "Quantum theory, the Church-Turing principle and the universal quantum computer," *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences* 400.1818 (1985): 97-117, , https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1985.0070
- D. E. Deutsch, "Quantum Computational Networks," *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences* 425.1868 (1989), 73-90.
 https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1989.0099 (subscribers only)
- □ P. W. Shor, "Algorithms for Quantum Computation: Discrete Log and Factoring," Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, IEEE, 1994, p. 124
- A. Barenco et al., "Elementary gates for quantum computation," Physical Review A, March 22, 1995, https://arxiv.org/pdf/quant-ph/9503016

Student Questions

Classic Papers (Cont)

- L. K. Grover, "A fast quantum mechanical algorithm for database search," Proceedings, STOC 1996, Philadelphia PA, USA, pp. 212-219, https://arxiv.org/pdf/quant-ph/9605043
- G. Brassard et al., "Quantum Counting," 1998, https://arxiv.org/pdf/quant-ph/9805082
- ☐ G. Brassard et al., "Quantum Amplitude Amplification and Estimation," 2000, https://arxiv.org/pdf/quant-ph/0005055
- S. Lloyd, "Quantum Algorithm for Solving Linear Systems of Equations," American Physical Society, APS March Meeting 2010, March 15-19,2010

Student Questions

Scan This to Download These Slides

Raj Jain

http://rajjain.com

http://www.cse.wustl.edu/~jain/cse570-21/m_19qnt.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),

https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse570-21/

©2021 Raj Jain