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Abstract 
This paper provides a high-level overview of the different ways AI can be implemented into 
networking. It highlights a few of the reasons AI is being incorporated into networking at this 
current moment while briefly touching on basic AI concepts. Areas of networking explored include 
traffic classification, rate adaptation, and network and channel modeling. As with any 
advancement in technology, there are two sides to a coin and ethical concerns are evaluated as AI 
looks to revolutionize networking.  
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1. Introduction  
AI has captured the minds of engineers by the ways it can see things the human mind cannot. 
Mastering these once hidden insights is a tantalizing challenge for the inspiring engineer. These 
new ideas can breathe life into systems constrained by ridged mathematical models, one of which 
is networking. Networks have been continuously evolving since their conception and these 
advancements have led us to modern networks that have become more specialized and complex 
than ever. AI can more easily find solutions for specific networks as well as find solutions that 
adapt better over a variety of distinct networks. There are few examples of AI currently employed 
in real-world networks, but many studies have identified capacities AI can shine. As AI is a broad 
field, to help narrow the focus, this paper will explore solutions utilizing machine learning (ML), 
a subfield in AI. Current work has proven that ML has the potential to enhance nearly every aspect 
of modern networking.  

1.1 A Quick Introduction to AI 

AI can be a confusing topic because many of its terms are used interchangeably. This section will 
strive to provide clarity by introducing common terms of AI that are important in understanding 
how models differ from each other. First, it will cover the relationship between AI, ML, and DL, 
which is displayed visually in Figure 1, then go over terms commonly used in AI, and finally 
definitions of the models mentioned in this paper. It is important to realize that AI is an expansive 
field and while this section covers concepts that are essential to this paper, it is in no way a 
comprehensive overview of the topic.  

Artificial Intelligence (AI): The practice of using machines mimicking human behaviors such as 
problem solving or learning.  

Machine Learning (ML): A subset of AI. ML can utilize neural networks, but not all ML 
algorithms do. Inputs to ML models need to be structured and humans need to identify which 
features the model should use.  

Deep Learning (DL): A sub-set of ML. DL utilizes neural networks with three or more layers. 
Inputs to DL models are unstructured and the models themselves identify which features to use.  

 
Figure 1: AI Hierarchy 
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Supervised Learning: training data is provided with labels and a desired output  

Unsupervised Learning: training data is provided without labels; the model makes its own 
inferences on the data  

Reinforcement Learning: training data is provided without labels; the model improves by taking 
into account an award function that provides feedback on the last action  

Classification Model: the output of a supervised model is categorical  

Regression Model: the output of a supervised model is continuous  

Artificial Neural Networks (ANN) | supervised/unsupervised/reinforcement | 
classification/regression A network of perceptrons, arranged in at least three layers, as shown in 
Figure 2. The first layer, the input layer, forwards data to the hidden layer(s) which is where the 
learning happens and perceptrons reside. Each perceptron performs Equation 1, where m is the 
number of inputs, is the weight assigned to an edge and b is the bias assigned to the whole layer. 
If the result of this equation passes a threshold, the resulting value is passed on to the next layer. 
After the data is processed through the hidden layer(s) it is passed to the output layer [Wiki1]. 
ANNs are the base for all other types of neural networks.  

 
Figure 2: Example of an Artificial Neural Network 
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Equation 1 

Deep Neural Network (DNN) | supervised/unsupervised/reinforcement | classification/regression 
A variant of an AAN. DNNs use multiple (at least 3) hidden layers. DNNs use each layer to 
progressively extract higher-level features.  

Graph Neural Networks (GNN) | supervised? | classification/regression?? A variant of an ANN. 
GNNs are particularly suited to learn from graph-based input. Due to the complexity of graphs, 
GNNs are required to be shallower than other neural networks.  

1.2 Why AI and Networking Now?  

Recent trends in networking see many components of a network going through virtualization. 
Virtualization can help split a physical resource into multiple virtual resources, or it can also 
aggregate multiple physical resources to act as one physical resource. Virtualization enables a 
physical network to be efficiently split between different customers. The resulting virtual networks 
can be tailored to meet customers' different services. The complexity of managing the resources 
and functionality of these virtual networks can prove to be too much for traditional models. Virtual 
networks need AI to help harness the full functionality they have to offer [Zappone19].  

As more devices join networks, the traffic, and therefore data, created by the networks increases. 
To effectively design and optimize these networks the whole of the dataset needs to be considered. 
ML is especially aligned for this task since it can process large amounts of unstructured data 
[C.X.Wang20, X.Wang20]. Learning from unstructured data is critical because it removes the need 
for preprocessing of the data and therefore can be learned from in real-time. None of this would 
be viable without recent gains in more powerful and cheaper processing [Vulpe21]. The current 
path of networking has naturally opened a spot for AI to collaborate. The rest of this paper is 
organized as follows: Section 2 highlights a few aspects of networking where ML has been 
exercised. Section 3 discusses what ethical AI looks like and how it applies to the models talked 
about in this paper. Section 4 provides a summary of the main points; section 5 is the list of 
acronyms and section 6 is the references.  

2. AI Applications in Networking  
Network optimization provides benefits to both carriers and customers. An optimized network can 
save capital for the providers and deliver a higher quality of service to customers. While there are 
already many protocols that safely and effectively manage networks today, AI models can provide 
solutions that are more adaptable and reliable. As will become evident below, there is no one way 
to implement an ML model into a network.  
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2.1 Traffic Classification 

One way traffic classification has traditionally been performed was through port-number 
identification. As networks move towards virtualization, ports can be reallocated on the fly, 
making this technique impossible [Vulpe21, Malik20]. Another way to classify traffic is to look at 
flow characteristics, which in some networks can grow to over 200. Examples of flow features can 
be the source, destination, number of packets, and duration time. ANNs and DL are particularly 
attractive in this situation because they can ingest large feature sets and learn hidden patterns of 
flow classification that are unnoticeable to humans [Malik20].  

Traffic classification is intuitively an ML classification problem. Using a supervised ANN model 
is highly customizable as layers and perceptrons can easily be added to accommodate larger and 
more varied data sets. The drawback to a supervised ANN is that it requires the data to be 
preprocessed and can show particularly poor performance when the data is not normalized 
[Vulpe23]. An unsupervised DL model, while can benefit from dataset normalization, does not 
require that the traffic flow dataset be preprocessed. A DL technique called dropout can be used 
to remove perceptrons at random throughout the layers of the neural network which helps prevent 
overfitting on training datasets. Applying this to network classification can help the efficiency of 
DL models because it helps to generalize types of traffic, as types of traffic can evolve throughout 
a network's existence [Malik20].  

2.2 Rate Adaption 

The dynamic environment that most networks operate in requires them to implement congestion 
control to maintain throughput. Maintaining data rates is a deciding factor in the QoS of a network 
and many schemas for rate control have been developed. Rate control is driven by the history of a 
network's performance based on the packets lost, which is used to predict the next rate to choose. 
There exist many schemas that follow a rules-based adaptation rate that do a sufficient job of 
congestion control. They begin to run into issues when traffic begins to change more dynamically. 
Their penalties may be too high, and they may be reacting to pack loss not caused by congestion 
[Jay19].  

RL is particularly suited for rate adaptation because it considers feedback from its last action. 
Where older schemas don't adjust for over-correcting, RL models can make throughput transitions 
gentler. Combining RL with deep learning allows the algorithm to learn intricate relationships 
between network and traffic behavior with the rate it selected [Pratama23]. Based on these insights 
and the history it maintains, a deep RL model can eventually learn when a packet loss is due to 
throughput or other reasons. This ability helps the algorithm avoid unnecessary changes to the rate 
when loss is not due to throughput [Jay19]  

2.3 Network Modeling 

Network modeling is a technique used to predict the mean packet delay based on a network's 
topology, traffic matrix, and routing. Optimizing a network model before deployment is a cost-
saving method for providers but also ensures QoS for customers. Packet simulation is a practice 
deployed in networking modeling, used to stress network models but has proven to be 
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computationally expensive. On the other hand, analytical models are cheaper and more efficient 
but suffer on network models that implement multi-hop routing and multi-queue scheduling 
[Suarez-Varela21]. ML models can learn correlations between network setups and performances, 
where traditional modeling cannot, and reduce the necessity of dataset set generation [Zappone19].  

Predicting packet delay is a regression-based problem where ANNs can be trained supervised or 
unsupervised. ANN would typically be trained on data generated from synthetic network models 
like the target model so it can learn relationships between the interconnections. One possible ML 
framework could use the combination of two ANNs to create a reinforcement model where the 
first ANN sets the baseline and the second ANN is used in the live network, analyzing a small 
amount of live data to improve on the original design and adapt to changes in network flows 
[Zappone19]. The network modeling problem is a particular area where ANNs can show off their 
flexibility.  

GNNs have shown promise in network modeling since most network information such as 
topologies and routing configurations are naturally represented as graphs. Figure 3 demonstrates 
this with a simple example topology. Each user (computer icon), router, and the internet represent 
nodes of different types. The edges are represented by the communication connections between 
each network component. Nodes could be encoded with their capacity, drop rate, and/or scheduling 
policy. Edges can be combined to represent paths defined within the network. A GNN model can 
ingest this graphically encoded information to predict source-destination delays [Suarez-
Varela21].  

 
Figure 3: Example Topology 

http://www.cse.wustl.edu/%7Ejain/cse570-23/ftp/net_ai/index.html


The Ubiquity of AI in Networking 

http://www.cse.wustl.edu/~jain/cse570-23/ftp/net_ai/index.html  

2.4 Channel Modeling 

A feature of evolving wireless networks is that channels will be expanded to use frequencies not 
used in networking currently. 6G is expected to use bands above 52.6 GHz, and networks beyond 
6G have the potential to use sub-6 GHz, millimeter-wave, terahertz, and optical bands 
[C.X.Wang20]. As channels move through the frequency bands their characteristics fluctuate, such 
as phase noise, interference with the atmosphere, and lower power amplifier efficiency to name a 
few [Song22]. Modeling channel interactions becomes more complex as the range of bands grows 
and therefore the range of feature space grows. When introducing a new channel, traditionally to 
gather data on it, a manual process of collecting measurements is performed.  

ML can help fill in the knowledge gaps of new bands by using channel and environment 
measurements to predict the behavior of new channels. There have been studies that have shown 
promising prediction results for using neural networks for singular channel properties, but no work 
has been completed compromising a full channel model. Harnessing ML in channel modeling can 
reduce costs from traditional data-based methodology with supposedly higher accuracy. These 
gains can help bring new channels online faster [C.X.Wang20].  

3. Ethical Concerns  
Understanding why ethics is important to networking can be a little abstract. It usually works 
silently in the background of everyday tasks. It does not create content, only relays it. From the 
average user's perspective, if the network they use is connected, it has little effect on how they 
live. In the background though, there are standards that uphold the quality and distribution of a 
network that help to ensure fairness of service. While AI can help ensure that these standards are 
met, it could also be a tool to tilt the scale. Areas, where ethics is particularly concerned in 
networking, are algorithm interpretability and access to research resources.  

3.1 Interpretability  

Interpretability in AI means being able to understand how and why a model decides. Explainable 
AI (XAI) is the concept of models and methods in AI that allow an operator to provide oversight 
on an AI's decision-making process. It attempts to remove the "black box" characteristics of AI 
models where a user has little idea of how a model draws a conclusion [Wiki2]. There are a couple 
of core methods that XAI employs to achieve these goals: visualization, model simplification, and 
feature relevance.  

In terms of interpretability models can be grouped into two different categories: transparent and 
opaque. Transparent models are simple in the way that it is easy for a human to follow along with 
the model's decision-making process. These models are usually linear in nature. Opaque models 
are more confusing and less interpretable to humans. Their value usually comes from their ability 
to handle large amounts of data in a complex way that is beyond human-level computation 
[Zhang22]. Most all the models discussed in the above solutions utilized neural networks, which 
fall into the opaque category. Their ability to solve complex problems is also the reason they are 
not understandable to humans.  
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The reality is that XAI and the legal framework for AI are both still in their infancy [Guo20, 
Zhang22]. The GDPR in the EU requires algorithms to explain their decisions while France has 
the French Digital Republic Act that requires transparency at the model, data, and decision level. 
An example of unethical AI employment in networking could be an RL congestion control model 
deployed on the internet alongside older congestion control schemas. The RL model could learn 
to provoke packet loss to cause the other schemas to back off providing more bandwidth for the 
RL model. This could disproportionately affect the QoS for users on networks with legacy schemas 
with no fast fix if network operators cannot identify the behavior [Jay19].  

3.2 Research Resources 

Data sets from applied networks are hard to access in the academic world. In many experiments 
employing AI models, the authors must use a simulated network to create data for their 
experiments. Many of the studies in this paper had to simulate their network datasets [Jay19, 
Pratama23, Suarez-Varela21, Vulpe21, Vulpe23]. While this can usually serve the purpose of the 
experiment it also creates a limitation of the relatability of the results to a real network 
environment.  

The issue is data to real-world networks is usually only available to the companies that facilitate 
the networks. The industry owners of these datasets usually do not share with academia. The issue 
is that researchers in industry and academia have different motivations driving their research, the 
most concerning being that industry is profit-driven. A provider may be more incentivized to 
implement a congestion control model like the one described above, without thoroughly testing it 
or not disclosing the issue though it was known. It could provide a competitive advantage over 
other providers and without regulation on AI, they may never be reprimanded.  

One proposition to level the research field between industry and academia is utilizing university 
networks to create datasets. Campus networks provide realism in the sense of scale, complexity, 
and diversity and are more accessible to researchers. Researchers can work directly with IT on 
their campuses, essentially getting more value out of an already existing service [Gupta19]. New 
AI networking advancements from academia may arguably have less of a chance of providing 
malicious results, but at the very least they provide solutions derived from different motivations.  

4. Summary 
While it seems like AI is expanding to many aspects of daily life, it is certainly ubiquitous in the 
development of networking technologies. AI's advantages are that it can adapt to a changing 
network environment more gracefully than traditional models, even learning how its actions have 
affected performance. It is also more equipped to handle the intricacies providers face as they 
divide their infrastructure into specialized networks. Just as fast as AI can bring improvements to 
networking, it can also bring inequality to how networks perform. Judicious effort must be put 
forth to govern AI because it is hard to imagine the future of networking without AI.  
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5. List of Acronyms 

AI Artificial Intelligence 
ANN Artificial Neural Network 
DL Deep Learning 
DNN Deep Neural Network 
GNN Graph Neural Network 
ML Machine Learning 
QoS Quality of service 
RL Reinforcement Learning 
XAI Explainable AI 
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