Public Key Infrastructures (PKI)

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-07/

Washington University in St. Louis

CSE571S

- □ PKI, X.509 and PKIX
- PKI Trust Models
- □ Object ID and X.509 Policies
- □ X.500
- □ X.509 Certificate Fields and Extensions
- □ Authorizations, Anonymous groups, Blind Signatures

Washington University in St. Louis

CSE571S

What is PKI?

- □ Infrastructure to find public keys
- □ S/MIME, PGP, SSL use asymmetric cryptography and make use of PKI
- Certificate authorities
- □ Standards for certificates

Washington University in St. Louis

CSE571S

X.509 and **PKIX**

- X.509 is the ISO standard for Certificate formats
- □ PKIX is the IETF group on PKI
- □ PKIX adopted X.509 and a subset of its options
- □ PKIX is a "Profile" of X.509
- □ TLS, IPSec, SSH, HTTPS, Smartcard, EAP, CableLabs, use X.509

Washington University in St. Louis

CSE571S

Concepts

- **Subject**: Whose certificate is it?
- □ **Target**: Whose certificate do we want?
- □ Relying Party: Who wants to check the certificate
- □ **Verifier**: Relying Party
- □ **Issuer**: Who issued the certificate?
- **□** Certification Authority: Issuer
- □ **Trust Anchor**: The CA that we trust
- □ Root CA: Issuer = Self
- □ **Principal**: Subject, Verifier, Issuer

Washington University in St. Louis

CSE571S

PKI Trust Models

- How Many CAs?
 - > Monopoly = One
 - > Oligarchy = Many
 - > Anarchy = Any
- □ How is the name space divided among CAs?
 - > Top-Down
 - > Bottom-Up

Washington University in St. Louis

CSE571S

Monopoly Model: Single Root CA

- Registrars to check identity
- Delegated CAs

- ☐ Issues:
 - > Single point of failure
 - > Whole world cannot trust just one organization
 - You may not want internal principals to be certified by external CA

Washington University in St. Louis

CSE571S

Oligarchy

- Multiple Root CA's
- Used in browsers
- Can select which root CA's to trust
- □ No Monopoly ⇒ Price efficient

Oligarchy Example

Anarchy Model

- □ User driven
- □ Used in PGP
- □ Trust Ring, Web of Trust
- Volunteer Databases

Washington University in St. Louis

CSE571S

Name Constraints

- □ Which part of name space?
- □ 1. Top Down:
- □ 2. Bottom-Up:
 - ➤ Two-way certification:
 Parent → Child, Child → Parent
 - > Cross links

Washington University in St. Louis

CSE571S

Relative Names

H to J:

- □ Absolute: D/B/E/J or A/B/E/J
- □ Relative:../../E/J
 - ⇒ No changes required if the parents change name

Washington University in St. Louis

CSE571S

OID

- Object Identifier
- □ Identify objects by a universally unique sequence of numbers
- □ Similar to what is done in SNMP to name objects

Washington University in St. Louis

CSE571S

X.509 Policies

- □ Policies in X.509 are identified by OID
- Company X
- □ X.1 = Security Level
- \square X.1.1 = Confidential
- \square X.1.2 = Secret
- \square X.1.3 = Public

Washington University in St. Louis

CSE571S

X.509 Revocations

□ Certificate Revocation Lists:

- > Too much work on the client
- > Too much traffic on the net
 - \Rightarrow Not used

□ On-Line Revocation Server (OLRS):

- > On-line Certificate Status Protocol (OCSP)
- > RFC 2560
- > Provides current information
- > Saves traffic on the net
- > Also allows chaining of OCSP responders

Washington University in St. Louis

CSE571S

X.500

- Series of standards covering directory services
- □ Similar to white/yellow pages
- □ Directory Access Protocol (DAP) designed by ISO
- □ Lightweight Directory Access Protocol (LDAP) designed by IETF
- □ LDAPv3 is RFC4510
- Each entry has a "Distinguished Name" and a set of attributes
- □ Formed by combining Relative distinguished names
- □ X.500 Example: C= US, O=WUSTL, OU=CSE, CN=Raj Jain
- □ DNS Example: jain@cse.wustl.edu

Washington University in St. Louis

CSE571S

X.509 Certificate Fields

- □ Version: X.509 Version 1, 2, or 3
- □ Serial Number: Certificate Serial #
- □ Signature: Signing algorithm
- ☐ Issuer:
- Validity:
- Subject: Issued to
- □ Subject Public Key Info: Algorithm/parameters, and Public Key
- ☐ Issuer Unique Identifier: OID of the Issuer (not used)
- Subject Unique Identifier: OID of the subject (not used)
- □ Algorithm Identifier: Signature algorithm (again)
- Encrypted: Signature
- Extensions: Only in Version 3. Specified by OID

Washington University in St. Louis

CSE571S

X.509 Extensions

- Authority Key Identifier: Serial # of CA's key
- Subject Key Identifier: Uniquely identifies the subjects key. Serial # or hash.
- □ Key Usage: Allowed usage email, business, ...
- □ Private Key Usage Period: Timestamps for when key can be used (similar to validity)
- Certificate Policies
- □ Policy Mappings: from Issuer's domain to subject's domain
- □ Subject Alt Name: Alternative name. DNS.
- Subject Directory Attributes: Other attributes

Washington University in St. Louis

CSE571S

X.509 Extensions (Cont)

- □ Basic Constraints: Whether CA and length of chain
- □ Name Constraints: Permitted and excluded subtrees
- Policy Constraints: OIDs
- Extended Key Usage: Additional key usages
- □ CRL Distribution Points:
- □ Inhibit Any Policy: "Any Policy" is not allowed
- □ Freshest CRL: How to obtain incremental CRLs
- □ Authority Info Access: How to find info on issuers
- □ Subject Info Access: How to find info on subject

Washington University in St. Louis

CSE571S

Sample X.509 Certificate

Internet Explorer

Washington University in St. Louis

X.50	9 Sample (Cont)	
Field	Value	
Version	V3	
🖃 Serial number	18 da d1 9e 26 7d e8 bb 4a 21	
🔚 Signature algorithm	sha1RSA	
I ssuer	VeriSign Class 3 Public Primary	
💳 Valid from	Tuesday, November 07, 2006	
💳 Valid to	Wednesday, July 16, 2036 6:	
Subject	VeriSign Class 3 Public Primary	
🛅 Public key	RSA (2048 Bits)	
version	V3	
Serial number	18 da d1 9e 26 7d e8 bb 4a 21	
🖃 Signature algorithm	sha1RSA	
🖃 Issuer	VeriSign Class 3 Public Primary	
🖃 Valid from	Tuesday, November 07, 2006	
🖃 Valid to	Wednesday, July 16, 2036 6:	
Subject	VeriSign Class 3 Public Primary	
Public key	RSA (2048 Bits)	
Washington University in St. Louis	CSE571S	©2007 Raj Jain

X.509 CRL Fields

- □ Signature: Signature Algorithm for this CRL
- ☐ Issuer: X.500 name of issuing CA
- □ This Update: Time of this CRL
- Next Update: Time next CRL will be issued
- For each revoked Certificate:
 - > User Certificate: Serial Number of revoked Certificate
 - > Revocation Date:
 - > CRL Entry Extensions: Reason code, etc.
- CRL Extensions: optional information
- Algorithm Identifier: Repeat of signature
- Encrypted: Signature

Washington University in St. Louis

CSE571S

Entrusted Certificates

Field	Value
Version	V3
💳 Serial number	75 0e 40 ff 97 f0 47 ed f5 56 c
🖃 Signature algorithm	md5RSA
💳 Issuer	VeriSign Commercial Software
💳 Valid from	Tuesday, January 30, 2001 7:
🖃 Valid to	Thursday, January 31, 2002 6
💳 Subject	Microsoft Corporation, Microso
🛅 Public key	RSA (1024 Bits)
Basic Constraints	Subject Type=End Entity, Pat
Key Usage	Digital Signature, Key Encipher
💽 Authority Key Identifier	KeyID=7b 96 e4 d1 43 fd 68 9
🔯 Basic Constraints	Subject Type=End Entity, Pat
Certificate Policies	[1]Certificate Policy:Policy Ide
🔯 SpcFinancialCriteria	Financial Information=Availabl
🔂 Key Usage Restriction	[1]Cert PolicyId=1.3.6.1.4.1
SpcSpAgencyInfo	Policy Information:URL=https:
🔯 Thumbprint algorithm	sha1
🚾 Thumbprint	7d 7f 44 14 cc ef 16 8a df 6b f
🚾 Friendly name	Fraudulent, NOT Microsoft
Extended Error Information	Revocation Status : The certifi
versity in St. Louis	CSE571S

Authorizations

- Access Control Lists: List of users
- □ Groups: User provides certificate of membership
- □ Role: User provides credentials

Washington University in St. Louis

CSE571S

Anonymous Groups

- □ User could authenticate to group server
- □ Certificate ⇒ the owner of the private key is a member of group
- □ User will need lots of public/private key pairs
- □ Group servers need not know key/member association
- ☐ Group server can do a blind signature

Blind Signature

- Client wants server to sign a certificate C
- □ Server's public key is <e, n>
- □ Client picks a random number R and computes C(Re mod n)
- □ Server decrypts it with his private key C^{d} (R^{ed}) mod $n = C^{d}R$
- \Box Client just divides by R and gets C^d = Certificate signed by server

Washington University in St. Louis

CSE571S

Summary

- □ PKIX is a profile of the X.509 PKI standard
- Browsers have a built-in list of **root CAs**
 - ⇒ Oligarchy
- □ X.509 uses X.500 names. DNS names in Alternate Name field.
- X.509 policies are specified using OIDs.
- **OCSP** is used to check revocation
- Authorization is best done by user, group, role level
- □ Anonymous group certification is possible.

 Blind signatures allow even the group server to not know the public key

Washington University in St. Louis

CSE571S

Homework 12

- □ Read chapter 15 of the textbook.
- □ Study the root certificates in your Internet Explorer Find the certificate for "Thawte Premium Server CA"
 - > What is the X.500 name of the CA?
 - > What version of X.509 does this CA use?
 - > What are the two key usage of the certificates issued by this CA?
- □ What is the title of RFC810?