SOFTWARE REQUIREMENT SPECIFICATION
NET VIGILANT
NETWORK MONITOR

V1.1
Printed On: 3rd Dec 2007

C:\Washington University\ProjectDocument2.doc

Department Of Computer Science & Engineering

Washington University in Saint Louis

Submitted By
Subharthi Paul
Madhuri Kulkarni
Table of Contents

	1
	INTRODUCTION
	3

	1.1
	Abstract__
	4

	1.2
	Introduction___
	5

	1.3
	Product Overview__
	6

	
	
	

	2
	SPECIFIC REQUIREMENTS
	8

	2.1
	External Interface Requirements___
	9

	
	2.1.1 User Interfaces___
	9

	
	2.1.2 Hardware Interfaces___
	9

	
	2.1.3 Software Interfaces__
	9

	
	2.1.4 Communications Protocols__
	9

	
	
	

	2.2
	Software Product Features__
	9

	2.3
	Software System Attributes___
	10

	
	2.3.1 Reliability___
	10

	
	2.3.2 Availability__
	10

	
	2.3.3 Security___
	10

	
	2.3.4 Maintainability___
	10

	
	2.3.5 Portability___
	11

	
	2.3.6 Performance___
	11

	
	
	

	3
	ADDITIONAL INFORMATION
	12

	3.1
	Definitions, Acronyms and Abbreviations_________________________________
	13

	3.2
	References__
	13

	
	
	

INTRODUCTION

ABSTRACT

Packet sniffing or packet capture software is extensively used as tools for protocol analysis and security. In protocol design research, such a tool comes handy in analyzing, debugging and testing of a new protocol implementation. In Security, as is true for any tools, it may be used both as a positive way to detect intrusions or attacks on a system as well as in the malicious way to hack for private and personal data of others. Even though use of upper layer encryption techniques make it difficult to gather data directly, yet these tools are important in learning about existing sessions, collecting encrypted data to launch offline attacks to generate the encryption key and any such attack limited only by ones imagination. Hence, packet sniffer software is one of the most essential tools required to get started to be able to perform any of the above mentioned activities. The goal of our project is to write a packet sniffer “Net Vigilant”, capable of sniffing across wired and wireless interfaces and provide additional packet aggregation, filtering and analysis capabilities. The goal of the project is not to provide a novel approach towards sniffing on the network but rather to provide a basic understanding to the challenges involved in writing such a software and also to build up from the knowledge and experience gained to design more advanced security tools.

INTRODUCTION

Packet sniffing is an essential activity for network engineers as well as security experts. If, used in a positive way, it is the most essential tool for network analysis, protocol analysis, network troubleshooting, intrusion detection and hundreds of such other applications. The key challenge in writing such software is to collect raw packets directly from the interface cards and parsing them to reveal useful information. In normal network programming through sockets, a software module listens on a particular socket for packets intended for its use, hence for a module wanting to sniff for all packets, it shall have to listen on all the TCP ports so that TCP does not throw away packets on finding no module attached to the intended port number in the packet. Also, each protocol layer performs filtering of the traffic, for example, any TCP control packet will not be passes above the TCP layer, any IP control packet is consumed by the IP layer and so on. Moreover, the hardware network interface does an initial filtering of packets not intended for it. Hence, it is almost certain that the normal programming methods will not allow for the capabilities that we seek to capture in a packet sniffing software. The way out of this situation is to have some type of a software hook which can gather packets before it is passed through the protocol layer processing. Also, to be able to capture packets not intended for the current network interface, the software should set the interface to the “promiscuous mode” provided such a mode is supported by the hardware and the device driver of the network card.

The “software hook”, that we mentioned above, exists, in UNIX as the PF_PACKET socket (libpcap library) and in Windows as the Winpcap library. In our work we make use of the Winpcap library to be able to capture raw packets from the interface. The story does not end at being able to capture raw packet. In fact, it is the most basic step. There are certain hurdles in being able to analyze correctly the raw packets which are nothing but a set of hexadecimal gibberish to the uninformed. There are challenges in being able to serialize the data coming in, in network byte order, for storage in the file systems. Also, a major task is to be able to provide an easy to use and elegant user interface for running the software as well as present the packet data in a more human readable form.

With all this in mind, we designed “Net Vigilant”, a packet sniffer and analyzer tool for wired and wireless interfaces. “Net vigilant” has a state-of-the-art graphical user interface, designed on the .NET platform. All the code has been written in C# over the .NET platform to ensure interoperability across windows systems.

It may be argued, that such tools already exist in plenty and that a new endeavor may not be justified. However, “Net Vigilant” has been designed to be the stepping stone for further design of more complicated tools and also a learning experience for novice programmers to design and implement their own network software. It is basically the foundation bed for more advanced innovations in the future.

1.1 Product Overview

The project will be implemented in Microsoft ©.NET technologies using C# language. Following are some of the functionalities we will implement:

Basic Functionality:

1 Network Monitor [Basic packet capture]
2 Packet Filtering
3 Network Utilities [Ping, TCP Statistics, UDP Statistics]
4 Packet Analysis
5 Graphical Interface
Advanced Functionality:

Although the advanced functionalities are not a part of the project, we plan to implement them in future.

1. Port Scanner
Port Scanner will provide basic functionality of searching a network host for open ports.

This will be used by administrators to check the security of their networks.

2. Network Mapping
The network mapping functionality will map the network and provide a network map.

3. Client Configuration Monitor
Client configuration monitor will provide the list of processes, resources and the status of a node on the network.
Please note that the advanced functionality is not a part of the project and will be implemented only if time permits.

SPECIFIC REQUIREMENTS
2 SPECIFIC REQUIREMENTS
2.1 External Interface Requirements:

2.1.1 User Interfaces

· Help and Tooltips are available for easy understanding.

· Graphical interface is available for ease and convenience of the user.

· Most functions require mouse click thus simplifying operations.

· Tools strip menu is available for faster access of menus.
· Shortcut keys are available for experienced users.
2.1.2 Hardware Interfaces
· Mouse is required for use of application
· Keyboard is required for use of application
· Monitor is required for use of application
· Network interface card is required for packet capture
· 1.5 MB of hard disk space.

· 1 GB RAM (Random Access Memory).
2.1.3 Software Interfaces
This software requires following software interfaces:

· WinPcap V4.0.1

· .NET Framework 2.0

· SharpPcap V1.5

2.1.4 Communications Protocols

Net Vigilant should capture packets on wired as well as wireless networks.
2.2 Software Product Feature:

The following features are included in Net Vigilant Network Monitor:
a) Network Monitor for wired networks [Ethernet]

This feature will provide the facility to capture network packets. The details of the packet will be listed in a table. These packets can be stored in XML serialized formats. Packets can be retrieved later for viewing and analysis.

b) Network monitor for wireless networks [802.11]

This feature will provide the facility to capture network packets. The details of the packet will be listed in a table. These packets can be stored in xml serialized formats. Packets can be retrieved later for viewing and analysis.

c) Network Utilities [Ping, TCP Statistics, UDP Statistics]
The above mentioned utilities will be provided for network traffic analysis.
d) Packet Store/Retrieve

Packets can be stored in an XML file and later retrieved for viewing or analysis.

e) Packet Filtering

The packets can be filtered by protocol type TCP (Transmission Control Protocol), UDP (User Datagram Protocol), ARP (Address Resolution Protocol), ICMP (Internet Control Message Protocol) and IGMP (Internet Group Management Protocol).

f) Windows based Graphical User Interface (GUI)
Windows based GUI for better user experience will be provided.

2.3 Software System Attributes:

2.3.1 Reliability
This software has been tested and found to be reliable.

2.3.2 Availability
Since this system has been tested for defects and fixed, the downtime is low and therefore is available.

2.3.3 Security
Security features are also provided by .NET.
2.3.4 Maintainability
Ease of maintenance is one of the advantages of .NET.
2.3.5 Portability
This application is supported on following Operating Systems.

Windows 9X, Windows 2000, Windows Vista.

2.3.6 Performance
Performance of this application is good on a small network. It has yet to be tested on a larger network.
ADDITIONAL INFORMATION
3 ADDITIONAL INFORMAITON

3.1 Acronyms

	UDP
	User Datagram Protocol

	TCP
	Transmission Control Protocol

	ARP
	Address Resolution Protocol

	ICMP
	Internet Control Message Protocol

	IGMP
	Internet Group Message Protocol

	XML
	Extensible Markup Language

	GB
	Gigabytes

	MB
	Megabytes

	RAM
	Random Access Memory

	IP
	Internet Protocol

	GUI
	Graphical User Interface

3.2 References
· -
	
	

	
	

[image: image1][image: image2][image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11][image: image12][image: image13]
1

