
Understanding Worms, Their Behaviour and
Containing Them

Farhan Syed, farhans@cse.wustl.edu (A project report written under the
guidance of Prof. Raj Jain) Download

Abstract

Worms have emerged as one of the most potent threat to Network Security in the recent years. In this paper,
we will present a detailed introduction about worms. This paper is intended for Network Security researchers
who need a brief, yet comprehensive and technical introduction, when they start their research on worms.
The paper covers a detailed introduction to worms and discusses some of the most potent and dangerous
worms known today in brief.

Table of Contents

1. Introduction
2. Definition

2.1. Where and how does it start?
2.2. What it affects?
2.3. How does it spread?
2.4. What is it intended to do?

3. Brief History of worms
4. Understanding Popular Worms

4.1. Creeper Worm
4.2. Morris Worm
4.3. Melissa Worm
4.4. ExploreZip
4.5. ILOVEYOU
4.6. Code Red
4.7. Nimda
4.8. Mydoom
4.9. Sasser

5. Aspects of designing a worm
5.1. Finding Vulnerabilities in a system
5.2, Speed of propagation
5.3. Stealth
5.4 Propagation Vectors

6. Detecting Worms
6.1 Detection by Monitoring "mistrusted processes"
6.2. Detection by Monitoring "trusted processes"
6.3. Detection by Byte Pattern Monitoring
6.4. Detection by Monitoring IP address scanning
6.5. Detection by deploying Guardian Nodes

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 1 of 16

7. Containing and Destroying Worms
7.1 Quarantine and Monitor
7.2. Setting minimal permissions for specific processes
7.3. Installing the latest update from antivirus software and Operation System vendor

8. Summary
9. References
"10. List of Acronyms

1. Introduction

 The paper discusses worms, one of the most potent threats to Network security. Worms have the unique
ability to mimic the approach taken by biological viruses. They can infect a host and then choose a medium to
propagate to a neighboring host. Generally, the intent of the worm is assumed to be malicious. There are some
worms, which do not have malicious intent. They are referred to as anti-worms. The paper is divided into six
sections. The first section defines the worm using various criterions. Section two tabulates all the well known
worms so far. The next section discusses some of the most potent worms. In section four, we will discuss the
aspects of worm design. The next section is dedicated to discussing the methods to detect worms. The last
section talks about containment and elimination of worms. Throughout the paper we will refer to the
computer as host or PC and the person or victim as user.

2. Definition

 Worms are one of the most ill defined concepts in Network Security. There is still no universal
consensus on the definition of the worm. Usually worms and viruses display similar characteristics and their
intention is also similar. To define worms, we will use the following points and then define worm based on
these points.

2.1. Where and how does it start?

 Worms can start on a host (Computer) in various fashions. It may be an attachment to a mail and when
the attachment is opened, will execute the code written in the worm. This is called "invocation by human
intervention". It may also start without any human intervention. For example, rebooting the system.

2.2. What it affects?

 It affects the host. In contrast to computer viruses, it can affect anything on the host. It may corrupt the
files on the host. It may affect communication of the host with other systems. It may disable the anti-virus
software on the host, which will enable it to cause more damage. Computer Viruses in the other hand are very
specific to files. Worms have a broader scope of attack than viruses.

2.3. How does it spread?

 Worms are self replicating codes. This is the most distinct feature of a worm. Once they infect a host,
they will try to find a nearby host which they can access, and copy themselves to that host. There it will
perform the same actions that it performed on the original host.

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 2 of 16

2.4. What is it intended to do?

 The intention of the worm depends on what the authors of the worm designed it for. Usually, the worms
are intended to cause DoS attacks (mischief) or collect personal information from the host. It may scan the
host and send all the confidential information on the host to the authors. It may create a back door on the
host, allowing the author to remotely control the host. It may simply delete all the files on the host.

 Based on the points mentioned above, we can define the worms as,

 "A worm is a computer program, which can self-replicate and propagate over the network,
with or without human intervention, and has malicious intent."

3. Brief History of worms

 Now that we have defined worms, we will take a brief look at the worms that we have encountered until
today. A very brief description of each worm is provided in table. The next section will discuss some of these
worms in detail.

Table 1 : History of Wroms (Source [Wiki09][Darrell03][Eisenberg89][Chen04][Symantec99][Arbaugh00]
[Cliff02][Chen03][Cynthia04])

Worm(Author) Release/Discovered
Date Characteristics Damage

Creeper(Bob Thomas) Early 1970's

Infected DEC PDP-10 computers
running the TENEX OS. It replicated
copies of itself to remote systems via
ARPANET and displayed a message
"I'm the creeper, catch me if you can!"

No damage.
Was an
experimental
program.

Morris(Robert Tappan
Morris) 2-Nov-88

Infected DEC VAX and SUN machines
connected to the internet, running BSD
UNIX OS. It targeted the buffer
overflow flaw of operating systems.

Over 10 million
USD

Happy99(Spanska) Mid Jan 1999
Infected Windows OS. When executed,
modified Winsock and attached itself to
all the mails sent by the user.

No physical
damage

Melissa(David L. Smith) Mid March 1999

Was a MACRO in a word file that had
password to 80 pornographic websites.
When the MACRO was executed, it
picked up the first 50 entries in the
address book of the host and mailed a
copy of itself. It clogged the mail servers.

Estimated over
400 million
USD

ExploreZip(Author not
known) 6-Jun-99

Propagated as a zipped attachment in
Microsoft Outlook and registered itself
to Windows NT Registry. Re-executed
itself upon system reboot and mailed
itself to all the people in the Outlook's
address book. Also deleted Microsoft
Documents and C and C++ source files

Not known.

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 3 of 16

on the host.

ILOVEYOU([alleged]Irene
and Onel de Guzman,
Reomel Lamores)

4-May-00

Propagated as a .VBS attachment in
Outlook Mails and mailed itself to all the
users on the users' mailing list. Changed
the extensions of many files to .VBS and
over wrote some others. Also was known
to steal passwords and credit card
information.

5.5 to 10 billion
USD

SandMind(Author not
known) 8-May-01

Attacked Sun Solaris and Microsoft IIS
servers. Defaced US Government and
anti-China Websites.

Not known.

Sircam(Author not known) Jul-01

Propagated as an attachment in the mail
and when file was opened, installed itself
on to the host. It then scanned the drive
for .xls and .doc files and randomly
selected a file to email the people on the
users' contacts list. It also scanned the
shared network drives and copied itself
to the shared drives. It them used
Remote Procedure Calls to trigger the
worm on the remote machine.

No physical
damage

Code Red(Author not
known) 13-Jul-01

Affected IIS servers and defaced
websites that it hacked. Scanned all the
hosts in the vicinity of the hosts and
propagated itself. It did not check if the
next host had the IIS Server or not. Used
buffer overflow to execute binary code.

1.2 billion USD

Code Red II(Author not
known) 4-Aug-01 Similar to Code Red, but infected the

machines on the same subnet as the host
Over 2 billion
USD

Nimda(Author not known) 18-Sep-01

Had 4 different propagation vectors.
Compromised websites, LAN, Emails
and executables. Caused worldwide DoS
attacks.

8.75 billion
USD

Klez(Author not known) 26-Oct-01

Exploited Microsoft IE's Trident Engine.
Propagated as an attachment in mails
and depended upon either buggy HTML
engines or user action to execute. Once
executed, would pick up a file randomly
and mail it to the addresses on the users'
mailing list.

Not known.

Slammer(Author not
known) 25-Jan-03

Exploited buffer overflow in Microsoft
SQL Server. Slowed internet traffic
worldwide.

Over 1 billion
USD

Blaster(Jeffrey Lee Parson
of B variant) 12-Aug-03 Used Syn Flood attacks on

windowsupdate.com causing DDoS
Over 500
million USD

Sobig(Author not known) 19-Aug-03
Scaned 20 IP address in the vicinity of
the host and sent unsolicited mails via
UDP port 8998. Caused major clogging

Over 5.5 billion
USD

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 4 of 16

in the mail servers.

Sober(Author not known) 24-Oct-03

Affected Windows Operating System.
Initiated as an email from FBI
mentioning that user has been caught
downloading pirated software. The user
was asked to fill out a questionnaire.
When the user opened the attachment,
the worm installed itself into many
windows directories. It then disabled
firewalls and antivirus on the host and
disabled access to assistance websites. It
used Users' contacts list to send identical
mails to everyone in the contact list. It
was also suspected of stealing personal
information from the host machine.

Not known.

Mydoom(Author not
known) 26-Jan-04

Attacked Windows OS. Propagated as a
"Sending Fail" mail and asked user to
resend the mail by clicking on the
attachment. Once the user did that, it
installed a copy of the worm on the host
and sent a copy of itself to the email
address. Once installed, sends mail to
different contacts in the users address
book and also copied itself to shared
folders of Peer-to-Peer networks. It also
opened a backdoor on the compromised
PC to allow access to the hacker at
anytime.

Over 22 billion
USD

Witty(Author not known) 19-Mar-04

Disabled the antivirus and firewalls made
by Internet Security Systems on the host.
Propagated via UDP in batches of
20,000. Generated traffic of 9 giga bytes
per second in some cases. Spread at the
maximum speed of data communication
the host can offer.

Not known.

Sasser(Sven Jaschan) 30-Apr-04

The worm was reverse engineered from
a Windows patch that was suppose to fix
the LSASS component that represents
buffer overrun. This vulnerability was
supposed to allow remote execution of
code on the host without the knowledge
of the user. The worm attacked all the
Systems that had not installed this update
from windows.

Over 14 billion
USD

Santy(Author not known) 20-Dec-04

Santy was the first Web based worm that
exploited vulnerability in the PHP
scripting language. The PHP scripting
language had a feature to provide a file
on remote PC to be appended to the

Not known.

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 5 of 16

URL. When the website opens, the file
would get executed. The worm used this
vulnerability to propagate.

Nyxem/Blackworm(Author
not known) 3-Feb-06

It was programmed to trigger on 3rd of
every month, 30 minutes after startup. It
was designed to replace all document
files on the host with DATAERROR.txt.

No known
damage.

Stration(Author not
known) Sept, 2006

Propagated as a mail from mail server
asking to install a security update. This
itself was the worm. It opened
connections to the servers already
compromised by the hackers and used
those servers to propagate faster. It also
used the information from the contact
list of the user on the host which it used
to propagate via emails.

Not known.

Storm(Author not known) 17-Jan-07

Propagated as news attachment in
Europe and US. The user was asked to
open the attachment to see the news.
The virus then compromised the host and
placed the host in to a botnet. The worm
created a new network much similar to
Peer-to-Peer networks. It used this
network for propagation.

Not known.

Koobface(Author not
known) 31-Jul-08

Propagated as a message to the people
on facebook. Once the user opens the
message he/she is redirected to a website
that is affiliated to facebook and asks the
user to download the update on Adobe
Flash. The downloaded file was the
worm. Once installed, it directs the user
to all malicious websites.

Not known.

Conficker(Author not
known) Oct-08

Had a specially crafted Remote
Procedure Call that forced a buffer
overflow and executed a shell code on
the host. It then installs a HTTP server
on the host and downloads the worm in
the form of DLL and attaches it to the
windows processes. It also tries to hack
shared drives and if the drive is password
protected, it uses brute force to hack the
password. This generates large amount
of network traffic and also causes user
account lockouts.

1.2 million USD

 Now that we have a general idea of what some of the worms are and what they did, we will take a few
of these worms and discuss them a bit more in detail.

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 6 of 16

4. Understanding Popular Worms

 We will now discuss some of the worms that used new techniques. We will discuss only those worms
that were non derivative and showed a new technique to attack the system. This section is important to
understand how worm writers approach the system to attack. It will also give us an idea about how we can
build security measures to avoid them.

4.1 Creeper Worm:

 Released in early 1970's and written by Bob Thomas, it was an experimental program to demonstrate
the power of programming. Most of the worms written at the time were a result of fascination for self
replicating programs by the programmers. There was not malicious intent and the worms did not hide. They
were sent in clear. The Creeper worm was written to infect DEC PDP-10 computers running the TENEX
operating system. The program used the ARPANET to propagate from node to node and display a message
"I'm the creeper, catch me if you can!" A program, Reaper, was written to counter Creeper.

4.2 Morris Worm[Eisenberg89]:

 Released in 1988 and authored by Robert Tappen Morris, was the first known worm that had malicious
intent. According to the author, the worm was not suppose to cause any damage and was intended to gauge
the size of the internet. It however, did cause DoS attacks. The worm exploited the vulnerabilities of Unix
sendmail, rsh/rexec and weak passwords. The worm initiated a process on the host and found new hosts to
propagate the code. Once it found a new host it would copy itself to the new host and start an additional
process there. The worm has a condition to check if the worm is already running on the host. But Morris has
programmed in such a way that the worm propagated to the new host even if the answer was "Yes". Every
new instance of the worm on the host caused an additional process to be launched. And each new process
slowed the system down until the system was unusable. The Morris worm is also considered as the Great
Worm as it was first of its kind and it demonstrated the amount of impact such programs can have if they are
not secured. It also changed the perception of system Downtime and Internet Security forever.

4.3 Melissa Worm[Chen04]:

 This was a worm that caused wide spread damage to the internet and for the first time huge losses to
everyone around the planet. It caused over 400 million USD in damages across the globe and shutdown many
organizations. It was written as a MACRO on Microsoft Word Document and this helped its widespread
propagation. It was released in Mid March 1999 and was authored by David L. Smith. The worm was very
simple in its concept, but demonstrated a new technique to propagate. Many of the worms that were written
in the years to come, were derived from this concept in one way or another. The worm was present in the
MACRO of a MS-WORD document and propagated as a document that supposedly contained passwords for
80 pornographic sites. If the user opened this document, and many of them did, it would execute the
MACRO. Once the MACRO was executed, it would pick up the first 50 contacts from the users address book
and mail a copy of itself to all the addresses. Since the worm was essentially an email worm and it mailed 50
address every time it infected a new host, many mail servers were clogged with the mails. This caused a wide
spread DoS attack. Most of the techniques used by this worm laid the foundation or methodology for many
variants and newer worms. Papa and Syndicate are two such variants.

4.4 ExploreZip[Symantec99]:

 This worm took the concept of Melissa worm one step further. Melissa worm was not designed to reside
on the system. ExploreZip was. The worm propagated via email, just like Melissa, and was present in an

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 7 of 16

attachment called ZIPPED_FILES.exe. Once the user opened the attachment, the worm would seem like a
self extracting zip archive and then error out. Behind the scenes it would install itself on to the system and
register itself in the Windows Registry. The worm would then stay dormant and do nothing. When the user
reboots the system, the worm would get activated and mail a copy of itself to all the people in the address
book of the user on the host. It would also delete all the C and C++ source files from the hard drive. There is
no record of the amount of damage done by this worm. Since all the computers are not started at the same
time, it is unlikely that this worm could have caused any DoS attack. It was not instantaneous like Melissa.

4.5 ILOVEYOU[Darrell03]:

 This was the first worm to take the cost of damage to billions of USD. An estimated damage caused by
this worm was between 5 and 10 billion USD. The worm was written in VB Script and propagated as an
attachment in the email with a message "ILOVEYOU". When users opened this attachment, it would register
itself onto the Windows Registry. This would activate the worm after every restart of the system. It would
then, search all the drives connected to the host for all files with extensions *.JPG, *.JPEG, *.VBS, *.VBE,
*.JS, *.JSE, *.CSS, *.WSH, *.SCT, *.DOC *.HTA, *.MP3, *.MP2 and rename them to .VBS. It also had a
component called WIN-BUGSFIX.EXE" or "Microsoftv25.exe". This was a password stealing program. The
worm propagated across the network by using the addresses present in the address book of the user. Since the
worm activated immediately and also on restart of the PC, the amount of email it generated crippled many
mail servers and also individual PCs. The worm was allegedly authored by Irene, Onel de Guzman and
Reomel Lamores from Philipines.

4.6 Code Red[Cliff02]:

 This worm took the approach to attacking in a completely different direction. Instead of relying on mails
address in the user's contact list, it performed network scanning and used the IP addresses connected to the
host as a vector for propagation. It attacked the IIS servers and defaced many websites. It used the
vulnerability of buffer overflows on IIS servers to execute binary code on the hosts. The initial worm did not
check if the new host has windows or was running IIS. It also did not check if the IP address it was trying to
access exists. The later versions of this worm were more inclined towards the local subnet rather than
accessing some random IP. The total cost of damage was about 1.2 billion USD. It demonstrated a new
technique or worm propagation.

4.7 Nimda[Chen03]:

 This was the next generation worm in its own league. It had 4 different propagation vectors. It could
propagate via Websites, LAN, Emails and as executables. In emails it was disguised as a BASE-64(Binary)
file readme.exe in the MIME Section. It would pick up the address retrieved from the user's MAPI Service. In
the browser mode of propagation, the worm would rename many of the system files to .htm, .html and .asp.
These pages would get executed and download the worm onto the machine, thus infecting the host. In the
LAN Mode, it would copy itself on to all the writable shared directories that it could find. If the remote user
opened these shared drives and if the "auto preview" option was enabled, the worm would infect the remote
computer. It would them repeat the same process on the remote PC. The estimated cost of damage of this
worm was about 8.75 billion USD.

4.8 Mydoom[Cynthia04]:

 This was the most notorious worms of all times with the highest damage of 22 billion USD. It propagated
as a "Sending Failed" mail from the mail server and asked the user to click on the attachment to resent the
mail. If the user opened the attachment, it would show that it's resending the mail and in parallel, installed the

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 8 of 16

worm. The worm would then send a copy of itself to all the address in the address book and also copy itself to
Peer-to-Peer shared drives. The worm also opened a back door for the hacker to get back anytime.

4.9 Sasser:

 This worm was unique in the manner in which it was developed. The worm was reverse engineered from
one of the patches provided for Microsoft Windows. The worm would exploit the vulnerability the patch was
suppose to address and was targeted at systems that had not installed the update yet. It did not portray any
new technological advance from the way the worm behaved. But the design of the worm was a step further in
worm innovation. It targeted the LSASS component that represents Buffer Overflow and executed binary
code on the hosts. Since buffer overflow causes erratic behavior or shutdown of the system, many
organizations across the globe went down almost instantaneously. It caused a damage of over 14 billion USD
and was authored by Sven Jaschan.

 Now that we have discussed many of the worms of the past and understood what they employed to
cause maximum damage, the next step is to understand the aspects that need to be considered to designing a
worm. The next section will discuss some of the aspects of worm design.

5. Aspects of designing a worm:

 In this section we will discuss various areas that a worm will need to address in its design, so that it can
cause maximum damage. The success of a worm relies on how well these areas are implemented. If any one
of these areas is not designed properly, the worm is rendered useless.

5.1 Finding Vulnerabilities in a system[Arbaugh00][Manual05]:

 The most important step that every worm writer must follow is identifying the weakness of the system.
When we talk about vulnerability of a system, we intend to ask, "What can do the worms job in the system
with minimal actions?" If a worm needs to run millions of line of code to do an operation, the effectiveness of
the worm is reduced. More lines of code will employ more logic, hence more ways to counter a worm. The
ideal vulnerability would be such that one command will render the system useless or do the intended job. If a
worm, for example, is written to modify a file that is read only by default, the effect of the worm will be near
zero. It will only affect those hosts on which the file is manually changed to writable by the user. On the other
hand, if the worm can change the permissions on the file by itself, or use an unsecured system function to do
the job, the worm would affect all the hosts that it encounters. Worm designers, by convention, do not write
worms on simple glitches in the system. The idea behind writing a worm is to cause maximum damage. So, the
worm authors look for holes in the system that would cause maximum damage to the system or render the
system useless.
 System components like, Remote Procedure Calls (remote execution of a program), Buffer Overflows
(where in data is stored in memory location other than the memory allocated by the programmer), Remote
Command Execution (running a shell command remotely on a different host) etc, provide the worm authors
the ability of using one worm to do as many things as it can. If we had a vulnerability, where a system
component could delete all the files on the system, the worm writers could use this to write a worm that
would stay dormant until a specific date and trigger in all systems at the same time. This would definitely
cause tremendous damage to users across the globe. This however has two drawbacks. If the hacker deletes
all the files from the system, he/she cannot use a back door to enter the system as the system would not come
up and also cannot steal and personal information from the host. This is another aspect that the worm writes
keep in mind. If the worm is intended to just steal information or create a back door, it will ensure that

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 9 of 16

nothing is deleted from the system. If the intention of the worm is to cause DoS attack, then this approach is
best suited.
 If a user wants to create a back door on the host, which they can use to enter the host and take complete
control of the host, the worm writers will try to find the most secure way into the system, quietly install the
back door and terminate itself, after it has successfully propagated a copy of itself to another host. These
types of worms do not cause havoc at once and there is not known data about the amount of damages they
cause. These types of worms are carefully crafted to slip through holes in the firewalls, antivirus software and
operating system components. Most of these worms try not to rely on user activity. Depending on the user
activity means reduction in the speed of propagation. These worms try to keep the system intact so that the
hacker can get the most out of the system.

5.2 Speed of propagation[Chen04][Cynthia04][Cliff02]:

 This is fundamentally the top priority for worm writers. Since worms have a very short life span before
they are detected and contained, worm writers go to a great extent to ensure that worms propagate from host
to host at the maximum speed allowed on the connection. Whatever the worm's intention may be, this is one
area where they will all try to show similar design characteristics.
 The earliest worms used emails to propagate. This has the slowest rate of propagation. The worms will
have to propagate from the host to the mail server and then will be sent to the next host where the user has to
open the email to infect the machine. This process takes time of the order of minutes in the best case. Also, if
the worm floods the mail server, the worms' speed of propagation is diminished by the damage caused by the
worm. Even though this is a big bottle neck for worm writers, it has its own advantages. These types of worms
can spread very rapidly over the globe across different mail servers in a very short span of time. This is due to
the fact that the user's contacts usually belong to different mail servers and they way they are distributed over
the demographics are fairly uniform compared to other approaches. The term "demographics" is used because
using mail servers, the worms can propagate to different networks. If the worm has used IP Address scanning,
it would affect mostly the internet connected hosts. Given the fact that everyone uses mailing services, most
of the damage has been caused by worms in this category.
 More speedy worms do not rely on emails, but reply on direct interaction with the network. They follow
a root-to-braches approach in propagation. Here, they infect the first host (root) and propagate to its
neighbors. They usually rely on faster network services like TCP and UPD. UDP uses single root topology
(one host) and TCP uses dual root topology (one host and one server). Worms written to use TCP connects
are slower than the ones using UDP. The worms using TCP connections, except the new host to either accept
a TCP connection from the infected host to propagate the worm, or expect the new host to establish a
connection to the server to download the worm. In this case, the speed of propagation is three times slower
than UDP in the best case. Even though the TCP handshake does not consume a lot of time, it is important to
remember that the worm propagation is a single call. Also, the TCP connections are dependent on network
congestion. On a congested network, they will not propagate faster.
 Worms using UDP are the fastest. They put the worm as a payload load on the UDP packet and send it
to the next host. UDP packets are connectionless; hence they are three times faster than TCP worms.
Moreover, they are not subjected to congestion as the worm writers usually send multiple copies to the same
host to ensure delivery. The only time wasted by UDP worms is in scanning the network to find hosts. Since
the UDP will need to start at a host and traverse the network node by node, they might take a lot of time to
affect everyone around the globe. But, the worm will affect a very high number of hosts from the place it
starts. The speed of propagation of UDP worms is limited only by the speed of the network.

5.3 Stealth[Darrell03][Symantec99][Cliff02][Chen03]:

 The stealthier the worm is, the longer can it can go undetected. Hence, this is the next factor worm
designers consider after Vulnerability and Speed of propagation. And longer times means, it can infect many
more hosts. Many of the worms are not designed to withstand the securities built by the Operating System and

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 10 of 16

Antivirus Software. Worms are designed based on the vulnerability of the system. If the vulnerability is
patched, the worm is rendered useless. Most of the worms are detected and countered within hours. Various
techniques have been devised by worm writers here. A few of them disable the firewall and the antivirus
software.
 The best way is to compromise a trusted system process and use that process to do the job. A trusted
process is one that meets a certain standard of security. These standards are defined and maintained by
United States Department of Defense. A trusted process usually has full considerable access to the system and
minimal blockage by firewalls and anti-virus programs. If a worm attaches itself to the trusted process, it will
not trigger any alarm and will not need to disable any security. Stealth of the worm lies in going undetected,
rather than disabling the security.

5.4 Propagation Vectors[Manual05]:

 Propagation vector is the number of different ways a worm can spread. For example, some of the
propagation vectors are port scanning and emails. This area of the worm design is dedicated to decide the
medium through which the worm will propagate. The speed of propagation of a worm also depends on
choosing a right medium of propagation at the right time. For example, if a worm is designed to propagate via
Email and UDP, the speed of propagation is multiplied hundred folds. The worm would first send itself as an
email to various contacts on the user's address book. It would then quickly spread on the local subnet. If we
consider this operation globally, we can see that the distant reach of emails, coupled with speed of UDP will
cause the worm to spread across the globe within hours. Sticking to a single propagation vector will reduce
the propagation speed of the worm. The more the number of propagation vectors, the faster the worms can
spread.

 Now that we are familiar with different aspects of worm design, we can use same ideas to understand
how the worms can be detected. Detection of a worm is the first and crucial step for containment of a worm.
In the next section we will discuss some of the methods to worm detection.

6. Detecting Worms:

 In this section we will discuss how we can detect worms in the system. This will give us an idea to
device mechanisms to counter or contain the worms upon infection.

6.1 Detection by Monitoring "mistrusted processes"[Manual05]:

 A mistrusted process is one that does not meet the security standards defined by United States
Department of Defense. A mistrusted process has limited access to the system and is constantly monitored by
the operating system security and anti-virus software.
 The worm will either attach itself to a trusted process or will use another process to execute its task. If
the worm uses a mistrusted process to execute its task, we can monitor those processes and detect any
anomalies. For example, if the operating system defines a set of rules that every mistrusted process will need
to follow, the worm will most likely violate at least one of the rules in order to do its job. In case the worm
does not violate any rules, it will not be able to cause any damage as the rules will ensure that no critical
functionality of the operating system is hampered via a mistrusted process. If at any point we see that a
mistrusted process is violating any rule in the operating system, we can safely say that a worm has been
detected. If the mistrusted process is buggy, it may cause false alarms. This may make the system believe that

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 11 of 16

there is worm when there is none.

6.2. Detection by Monitoring "trusted processes"[Manual05]:

 The trusted processes are not easy to monitor as they usually have more privileges in the system and
perform a variety of tasks. But most of the trusted processes are designed for a specific task. If we see that
any trusted process is performing a task it is not suppose to perform, we can say that a worm as been
detected. For example, when the trusted processes is about to execute a program, we can check if the trusted
process is executing a different program than the one it was suppose to execute. This approach is colloquially
referred to as trusted process hijacking. If we detect a trusted process hijack, we can conclude that a worm
has been detected.

6.3. Detection by Byte Pattern Monitoring[Newsome05]:

 Byte Pattern, in simple terms, can be defined as the binary representation of the worm program. Let is
consider that the worm propagates via UDP. All the UDP packets that the worm will send will have the same
payload. Only the UDP Header will differ. If we have one packet that was sent by the worm, we can reject all
the packets that contain the information as indicated by the sample packet.
 While monitoring a byte pattern on the network, if we already know that a specific worm is active on
the network and we know the byte pattern of the worm, we can detect packets that contain these worms and
selectively quarantine these packets. This would decrease network speed, but it will prevent any known worm
from propagating in the network. This is also known as signature based detection or anomaly detection. For
example, on a broader scale, if we had employed this technique for ILOVEYOU worm, the mail server could
have detected all the mails that contained the worm.
 This approach will reduce network speed as every packet will need to be checked. It is most suitable for
quick detection and containment of the worm. This check can be removed once the most optimal solution for
worm containment is deployed.

6.4. Detection by Monitoring IP address scanning[Cliff05]:

 The worm, after infecting a host, will try to scan neighboring IP addresses to find the next targets. The
worm writers do not depend on standard commands, as monitoring and restricting the commands might lead
to containment of the worm. Instead they try to evaluate the next host by scanning all the IP addresses in the
address space of the host. This can be a good place to detect if a host is infected with a worm. Generally, any
legitimate program exactly knows where to go on a network. Worms, on the other hand, need to find targets.
If we monitor the number of IP address scanned by the host, and if it exceeds a certain threshold, then we can
safely say that a worm has been detected.
 Another method is to monitor the number of times a process tries to access an IP address that does not
exist. This would happen if the worm designers randomly send packets to many IP addresses from a host. On
the same lines, we can also monitor if the same byte pattern is being sent to multiple IP addresses from the
host. This would be true for all the worms that spread via scanning IP addresses.

6.5. Detection by deploying Guardian Nodes[Lidong05]:

 On every subnet, if we have one host, which employs the highest level of security possible and also
installs a honey pot or any other monitoring process, we can trap all the packets that are intended to intrude
the system. The probability that a worm will attack the guardian node is same as the probability with which
the worm would attack a non guardian node. Since we use the guardian node as a decoy, we need not have
the same amount of security on all the hosts on the subnet. If a worm gets detected by the guardian node, it
would alert all the hosts on the subnet about the infection and also will provide a containment plan for the

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 12 of 16

worm. Since the hosts are now expecting this attack, they can either reject such packets individually or,
choose to update their antivirus software with the worm information. The same information can be used to
trigger the antivirus software to eliminate the worm if it already exists on the host. This approach would
initially load the network, but it will contain the worm within the subnet.

 Now that we have seen how we can detect worms using various techniques, the next step is to
determine how these programs can be contained once they are detected.

7. Containing and Destroying Worms:

 Detecting the worm is fairly is simpler compared to containing the worm. If the designers of the worm
choose to embed the worm into a system process, we will need to get the actual source code to remove the
worm from the system process. We will need to destroy the existing file and replace it with a new one. We
can also try to find the byte pattern of the worm within the system file and try to remove it. But this may lead
to some instability in the system process. The best way to contain a worm is to contain the worm and block its
access.

7.1. Quarantine and Monitor[Manual05]:

 In this approach, we aggressively quarantine any process that shows erratic behavior. After isolating the
process, we monitor it for a period of time corresponding to the erratic behavior shown by the process. If the
process does not show any behavior during the time it's monitored, it is released. If it shows the same
behavior again and again, it is quarantined and labeled as a worm. This is a very good approach when we are
dealing with a very dangerous worm. But it will also mean that many healthy processes will also get
quarantined even if they show a tiny erratic behavior due to some bugs. It costs a lot of money and resources
to contain the worm. This method will be far cheaper than if the worm actually caused the damage. This
method can be installed on guardian nodes to generate alert messages.

7.2. Setting minimal permissions for specific processes.

 If a host can determine whether a process is infected by a worm or not, it can selectively filter that
process and prevent it from performing any execution on the heap and stack pages on the host. Other
permissions, like establishing a connection, ability to scan the network of the host, accessing and writing to
the file system, ability to influence any other process that communicates outside the host like an email
program etc can be restricted to the infected process. The restriction imposed by the operation system or
antivirus program will depend on what erratic behavior the worm shows. In this case only one host falls prey
to the worm. It's not the worm that will disable the system; it will be the worm containment program that will
disable the system to a certain extent. This is better than infecting all the hosts and disabling them.

7.3. Installing the latest update from antivirus software and Operation System
vendor[Darrell03][Arbaugh00][Cliff02][Cynthia04][Niels06]:

 Once the system understands that it's under threat, the antivirus organizations and OS vendors are
usually quick to respond to the attack. They provide a patch to counter the worm within a very short period of
time. This is the best way to counter the worm. All the other techniques used are very generic as they need to
detect any kind of worm in any form. But the patches provided to fix a worm are very specific to the worm
and are aimed at either containing the worm or destroying it. This reduces the number of erratic processes in
the system and hence far less discomfort and losses to the user. All users need to regularly update their

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 13 of 16

antivirus software and their Operating Systems. Since worms are designed to attack known vulnerability of
the system, taking precaution usually ensures that the worm is contained in the initial stages itself. Eliminating
the vulnerability of the system is the most potent way of protecting the system against a worm attack. The
initial methods of containment are like "first aid" in case of a worm infection. They are intended to provide
quick protection from the worm damage at the cost of system disability and user inconvenience.

 So far we have discussed the definition of worms, took a brief look at some popular worms, understood
the designing aspects of the worm and discussed some methods to detect and contain the worms; we can now
summarize the worms in brief.

8. Summary:

 We have defined worms and took a brief look at some of the most popular worms known to date. We
have discussed some of these worms in detail and understood their approach to attack the system. Next we
discussed the various aspects that need to be considered in worm designing. Various methods of worm
detection were discussed. The different methods of worm containment were also covered. All approaches to
contain a worm do cause certain amount of harm to the system. This damage is well defined and is far less
severe than the damage caused by the worm.
 We have seen that worms are getting very innovative in the way they attack systems and also the
increasing extent of damage they cause. We also saw that they best way to counter the worm is not very
quick or light. It involves very heavy weight programs to detect a worm and counter them. The best way to
counter a worm is to destroy it from the system, although, this is not always possible.

9. References

[Wiki09] "Timeline of computer viruses and worms". Wikipedia. 2009.
http://en.wikipedia.org/wiki/Timeline_of_notable_computer_viruses_and_worms

[Darrell03] Darrell M. Kienzle and Matthew C. Elder "Recent Worms : A Survey and Trends" ACM
workshop on Rapid malcode. 2003.
http://portal.acm.org/citation.cfm?id=948189

[Eisenberg89] T. Eisenberg et al. "The Cornell commission: on Morris and the worm" Communications
of the ACM. 1989.
http://allan.friedmans.org/papers/P2Psecurity.pdf

[Chen04] Chen, T.M. Robert, J.-M. "Worm epidemics in high-speed networks" IEEE. 2004.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1306386

[Symantec99] "Worm.ExploreZip" Symantec. 1999.
http://www.symantec.com/security_response/writeup.jsp?docid=2000-121514-1418-99&tabid=1

[Arbaugh00] Arbaugh, W.A. Fithen, W.L. McHugh, J. "Windows of vulnerability: a case study
analysis." IEEE. 2000.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=889093

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 14 of 16

[Cliff02] by Cliff Changchun Zou, Weibo Gong and Don Towsley. "Code red worm propagation
modeling and analysis." 9th ACM conference on Computer and communications security. 2002.
http://portal.acm.org/citation.cfm?id=586130

[Chen03] Chen, Z. Gao, L. Kwiat, K "Modeling the spread of active worms." INFOCOM. 2003.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1209211

[Cynthia04] Cynthia Wong et. al. "A study of mass-mailing worms." 2004 ACM workshop on Rapid
malcode. 2004.
http://portal.acm.org/citation.cfm?id=1029620

[Niels06] Niels Provos, Joe McClain, Ke Wang. "Search Worms" Helsinki University of Technology.
2006.
http://portal.acm.org/citation.cfm?id=1179542.1179544&coll=GUIDE&dl=&type=series&
idx=SERIES320&part=series&WantType=Proceedings&title=CCS

[Manual05] Manual Costa et. al. "Vigilante: end-to-end containment of internet worms" ACM SIGOPS
Operating Systems Review. 2005.
http://portal.acm.org/citation.cfm?id=1095809.1095824

[Newsome05] Newsome, J. Karp, B. Song, D "Polygraph: automatically generating signatures for
polymorphic worms" 2005 IEEE Symposium on Security and Privacy. 2005.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1425070

[Cliff05] Cliff C. Zou et.al. "The monitoring and early detection of internet worms." IEEE/ACM
Transactions on Networking (TON). 2005.
http://portal.acm.org/citation.cfm?id=1103543.1103546

[Lidong05] Lidong Zhou et. al. "A First Look at Peer-to-Peer Worms: Threats and Defenses" Springer
Berlin / Heidelberg. 2005.

10. List of Acronyms

ARPANET - Advanced Research Projects Agency NETwork
BSD UNIX OS - Berkeley Software Distribution UNIX Operating System
DDoS - Distributed Denial of Service
DEC PDP-10 - Digital Equipment Corporation Programmed Data Processor model 10
DEC VAX - Virtual Address eXtension Virtual Address eXtension
DLL - Dynamic Link Library
DoS - Denial of Service
DOS - Disk Operating System
FBI - Federal Bureau of Investigation
HTML - HyperText Markup Language
HTTP - HyperText Transfer Protocol
IIS - Internet Information Services
LAN - Local Area Network
LSASS - Local Security Authority Subsystem Service
MAPI - Messaging Application Programming Interface

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 15 of 16

SQL Server - Structured Query Language Server
UDP - User Datagram Protocol
USD - United States Dollar

Last Modified: April 2009
This and other papers on latest advances in network security are available on line at http://www.cse.wustl.edu
/~jain/cse571-09/index.html

 Back to Raj Jain's Home Page

Understanding Worms, Their Behavior and Containing Them

http://www.cse.wustl.edu/~jain/cse571-09/ftp/worms/index.html 16 of 16

