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OverviewOverview

1. The Euclidean Algorithm for GCD
2. Modular Arithmetic
3. Groups, Rings, and Fields
4. Galois Fields GF(p)
5. Polynomial Arithmetic

These slides are partly based on LawrieLawrie BrownBrown’’s s slides supplied with  William Stalling’s
book “Cryptography and Network Security: Principles and Practice,” 5th Ed, 2011.
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Euclid's AlgorithmEuclid's Algorithm
 Goal: To find greatest common divisor
Example: gcd(10,25)=5 using long division
10) 25 (2

20
--

5)10 (2
10
--
00

Test: What is GCD of 12 and 105?



4-4
©2011 Raj JainCSE571SWashington University in St. Louis

Euclid's Algorithm: Tabular MethodEuclid's Algorithm: Tabular Method

 ri = ui x + vi y
 ui = ui-2 - qi ui-1
 vi = vi-2 - qi vi-1
 Finally, If ri = 0, gcd(x,y) = ri-1
 If gcd(x, y) = 1, ui x + vi y = 1  x-1 mod y = ui

ui is the inverse of x in “mod y” arithmetic.

1. Write the first 2 rows. Set i = 2.
2. Divide ri-1 by ri, write quotient qi+1 on the next row
3. Fill out the remaining entries in the new bottom row: 

a. Multiply ri by qi+1 and subtract from ri-1
b. Multiply ui by qi+1 and subtract from ui-1
c. Multiply vi by qi+1 and subtract from previous vi-1
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EuclidEuclid’’s Algorithm Tabular Method (Cont)s Algorithm Tabular Method (Cont)

 Example 2: Fill in the blanks
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Homework 4AHomework 4A
 4.19a Find the multiplicative inverse of 5678 mod 8765
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Modular ArithmeticModular Arithmetic
 xy mod m = (x mod m) (y mod m) mod m
 (x+y) mod m = ((x mod m)+ (y mod m)) mod m
 (x-y) mod m = ((x mod m)- (y mod m)) mod m
 x4 mod m = (x2 mod m)(x2 mod m) mod m
 xij mod m = (xi mod m)j mod m
 125 mod 187 = 125
 (225+285) mod 187 = (225 mod 187) + (285 mod 187) = 

38+98 = 136 
 1252 mod 187 = 15625 mod 187 = 104
 1254 mod 187 = (1252 mod 187)2 mod 187 

= 1042 mod 187 = 10816 mod 187 = 157
 1286 mod 187 = 1254+2 mod 187 = (157104) mod 187 = 59



4-8
©2011 Raj JainCSE571SWashington University in St. Louis

Modular Arithmetic OperationsModular Arithmetic Operations
 Z = Set of all integers = {Z = Set of all integers = {……, , --2, 2, --1, 0, 1, 2, 1, 0, 1, 2, ……}}
 ZZnn = Set of all non= Set of all non--negative integers less than n negative integers less than n 

= {0, 1, 2, = {0, 1, 2, ……, n, n--1}1}
 ZZ22 = {0, 1}= {0, 1}
 ZZ88 = { 0, 1, 2, 3, 4, 5, 6, 7} = { 0, 1, 2, 3, 4, 5, 6, 7} 
 Addition, Subtraction, Multiplication, and division can all be Addition, Subtraction, Multiplication, and division can all be 

defined in Zdefined in Znn
 For Example: For Example: 

 (5+7) mod 8 = 4(5+7) mod 8 = 4
 (4(4--5) mod 8 = 75) mod 8 = 7
 (5(57) mod 8 = 37) mod 8 = 3
 (3/7) mod 8 = 5(3/7) mod 8 = 5
 (5*5) mod 8 = 1(5*5) mod 8 = 1
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Modular Arithmetic PropertiesModular Arithmetic Properties



4-10
©2011 Raj JainCSE571SWashington University in St. Louis

Homework 4BHomework 4B

Determine 128107 mod 187
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GroupGroup

 GroupGroup: A set of elements that is closed with respect to some : A set of elements that is closed with respect to some 
operation.operation.

 Closed Closed  The result of the operation is also in the setThe result of the operation is also in the set
 The operation obeys:The operation obeys:

 Obeys associative Obeys associative law:law:(a.b).c(a.b).c = = a.(b.ca.(b.c))

 Has identity Has identity ee:: e.ae.a = = a.ea.e = a= a

 Has inverses Has inverses aa--11:: a.aa.a--11 = e= e

 AbelianAbelian GroupGroup: The operation is commutative: The operation is commutative
a.ba.b = = b.ab.a

 Example: ZExample: Z88, + modular addition, identity =0 , + modular addition, identity =0 
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Cyclic GroupCyclic Group

 ExponentiationExponentiation: : Repeated application of operatorRepeated application of operator
 example:example: aa33 = = a.a.aa.a.a

 Cyclic GroupCyclic Group: Every element is a power of some : Every element is a power of some 
fixed element, i.e., fixed element, i.e., 

b =b = aakk for some for some aa and every and every bb in groupin group
aa is said to be a generator of the groupis said to be a generator of the group

 Example: {1, 2, 4, 8} with Example: {1, 2, 4, 8} with mod 12mod 12 multiplication, the multiplication, the 
generator is 2.generator is 2.

 2200=1, 2=1, 211=2, 2=2, 222=4, 2=4, 233=8, 2=8, 244=4, 2=4, 255=8=8
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RingRing

 Ring: 
1. A group with two operations: addition and multiplication
2. The group is abelian with respect to addition: a+b=b+a
3. Multiplication and additions are both associative:

a+(b+c)=(a+b)+c
a.(b.c)=(a.b).c

1. Multiplication distributes over addition
a.(b+c)=a.b+a.c

 Commutative Ring: Multiplication is commutative, i.e.,
a.b = b.a

 Integral Domain: Multiplication operation has an identity 
and no zero divisors

Ref: http://en.wikipedia.org/wiki/Ring_%28mathematics%29
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Homework 4CHomework 4C
 4.3 Consider the set S = {a, b, c} with addition and 

multiplication defined by the following tables:

 Is S a ring? Justify your answer.

+ a b c
a a b c
b b a c
c c c a

× a b c
a a b c
b b b b
c c b c
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FieldField

 FieldField: An integral domain in which each element has : An integral domain in which each element has 
a multiplicative inverse.a multiplicative inverse.
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Finite Fields or Galois FieldsFinite Fields or Galois Fields

 Finite Field: A field with finite number of elementsFinite Field: A field with finite number of elements
 Also known as Galois FieldAlso known as Galois Field
 The number of elements is always a power of a prime number. The number of elements is always a power of a prime number. 

Hence, denoted as Hence, denoted as GF(pGF(pnn))
 GF(pGF(p) is the set of integers {0,1, ) is the set of integers {0,1, …… , p, p--1} with arithmetic 1} with arithmetic 

operations modulo prime poperations modulo prime p
 Can do addition, subtraction, multiplication, and division Can do addition, subtraction, multiplication, and division 

without leaving the field without leaving the field GF(pGF(p))
 GF(2) = Mod 2 arithmetic GF(2) = Mod 2 arithmetic 

GF(8) = Mod 8 arithmeticGF(8) = Mod 8 arithmetic
 There is no GF(6) since 6 is not a power of a prime.There is no GF(6) since 6 is not a power of a prime.
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GF(7) Multiplication Example GF(7) Multiplication Example 

 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1
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Polynomial ArithmeticPolynomial Arithmetic

ff((xx) = ) = aannxxnn + a+ ann--11xxnn--11 + + …… + a+ a11x + x + aa00 = = ∑∑ aaiixxii

1.1. Ordinary polynomial arithmetic: Ordinary polynomial arithmetic: 
 Add, subtract, multiply, divide polynomials,Add, subtract, multiply, divide polynomials,
 Find remainders, quotient. Find remainders, quotient. 
 Some polynomials have no factors and are prime.Some polynomials have no factors and are prime.

2.2. Polynomial arithmetic with Polynomial arithmetic with mod pmod p coefficientscoefficients
3.3. Polynomial arithmetic with Polynomial arithmetic with mod pmod p coefficients and coefficients and 

mod mod m(xm(x) operations) operations
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Polynomial Arithmetic with Mod 2 CoefficientsPolynomial Arithmetic with Mod 2 Coefficients

 All coefficients are 0 or 1, e.g.,All coefficients are 0 or 1, e.g.,
let let ff((xx) = ) = xx33 + + xx22 and and gg((xx) = ) = xx22 + + x x + 1+ 1

ff((xx) + ) + gg((xx) = ) = xx33 + + x x + 1+ 1
ff((xx) )  gg((xx) = ) = xx55 + + xx22

 Polynomial Division: ff((xx) = ) = qq((xx) ) gg((xx) + ) + rr((xx))
 can interpret can interpret rr((xx) ) as being a remainderas being a remainder
 rr((xx) = ) = ff((xx) mod ) mod gg((xx))
 if no remainder, say if no remainder, say gg((xx) divides ) divides ff((xx))
 if if gg((xx) has no divisors other than itself & 1 say it is ) has no divisors other than itself & 1 say it is 

irreducibleirreducible (or prime) polynomial(or prime) polynomial
 Arithmetic modulo an irreducible polynomial forms a finite Arithmetic modulo an irreducible polynomial forms a finite 

fieldfield
 Can use EuclidCan use Euclid’’s algorithm to find s algorithm to find gcdgcd and inverses.and inverses.
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Example GF(2Example GF(233))
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Computational Example in GF(2Computational Example in GF(2nn))
 Since coefficients are 0 or 1, any polynomial can be Since coefficients are 0 or 1, any polynomial can be 

represented as a bit stringrepresented as a bit string
 In GF(2In GF(233), (x), (x22+1) is 101+1) is 10122 & (x& (x22+x+1) is 111+x+1) is 11122
 Addition:Addition:

 (x(x22+1) + (x+1) + (x22+x+1) = x +x+1) = x 
 101 XOR 111 = 010101 XOR 111 = 01022

 Multiplication:Multiplication:
 (x+1).(x(x+1).(x22+1) = x.(x+1) = x.(x22+1) + 1.(x+1) + 1.(x22+1) +1) 

= x= x33+x+x+x+x22+1 = x+1 = x33+x+x22+x+1 +x+1 
 011.101 = (101)<<1 XOR (101)<<0 = 011.101 = (101)<<1 XOR (101)<<0 = 

1010 XOR 101 = 11111010 XOR 101 = 111122
 Polynomial modulo reduction (get Polynomial modulo reduction (get q(xq(x) & ) & r(xr(x)) is)) is

 (x(x33+x+x22+x+1 ) mod (x+x+1 ) mod (x33+x+1) = 1.(x+x+1) = 1.(x33+x+1) + (x+x+1) + (x22) = x) = x22

 1111 mod 1011 = 1111 XOR 1011 = 01001111 mod 1011 = 1111 XOR 1011 = 010022
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Homework 4DHomework 4D

 4.25d Determine the gcd of the following pairs of 
polynomials over GF(11)

5x3+2x2-5x-2 and 5x5+2x4+6x2+9x
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Using a GeneratorUsing a Generator

 A A generatorgenerator g is an element whose powers generate g is an element whose powers generate 
all nonall non--zero elementszero elements
 in F have 0, gin F have 0, g00, g, g11, , ……, g, gqq--22

 Can create generator from Can create generator from rootroot of the of the irreducible irreducible 
polynomial then adding exponents of generatorpolynomial then adding exponents of generator
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SummarySummary

1.1. EuclidEuclid’’s tabular method allows finding s tabular method allows finding gcdgcd and inversesand inverses
2.2. Group is a set of element and an operation that satisfies Group is a set of element and an operation that satisfies 

closure, closure, associativityassociativity, identity, and inverses, identity, and inverses
3.3. AbelianAbelian group: Operation is commutativegroup: Operation is commutative
4.4. Rings have two operations: addition and multiplicationRings have two operations: addition and multiplication
5.5. Fields: Commutative rings that have multiplicative identity Fields: Commutative rings that have multiplicative identity 

and inversesand inverses
6.6. Finite Fields or Galois Fields have Finite Fields or Galois Fields have ppnn elements where p is elements where p is 

primeprime
7.7. Polynomials with coefficients in GF(2n) also form a field.Polynomials with coefficients in GF(2n) also form a field.


