Block Cipher Operation

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130

Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-11/

Washington University in St. Louis

CSE571S

- 1. Double DES, Triple DES, DES-X
- 2. Encryption Modes for long messages:
 - 1. Electronic Code Book (ECB)
 - 2. Cipher Block Chaining (CBC)
 - 3. Cipher Feedback (CFB)
 - 4. Output Feedback (OFB)
 - 5. Counter (CTR) Mode
 - 6. XTS-AES Mode for Block-oriented Storage Devices

These slides are based partly on Lawrie Brown's slides supplied with William Stallings's book "Cryptography and Network Security: Principles and Practice," 5th Ed, 2011.

Washington University in St. Louis

CSE571S

Double-DES

- \Box C = E_{K2} (E_{K1} (P))
- □ Meet-in-the-middle attack
 - > Developed by Diffie and Hellman in 1977
 - > Can be used to attack any composition of 2 functions

$$X = E_{K1}(P) = D_{K2}(C)$$

- > Attack by encrypting P with all 2⁵⁶ keys and storing
- > Then decrypt C with keys and match X value
- > Verify with one more pair
- > Takes max of $O(2^{56})$ steps \Rightarrow Total 2^{57} operations
- Only twice as secure as single DES

Washington University in St. Louis

CSE571S

Triple-DES

- Use DES 3 times: $C = E_{K3} (D_{K2} (E_{K1} (P)))$
- □ E-D-E provides the same level of security as E-E-E
- □ E-D-E sequence is used for compatibility with legacy
 - \rightarrow K1=K2=K3 \Rightarrow DES
- □ PGP and S/MIME use this 3 key version
- Provides 112 bits of security
- □ Two keys with E-D-E sequence
 - \triangleright C = E_{K1} (D_{K2} (E_{K1} (P)))
 - > Standardized in ANSI X9.17 & ISO8732
 - > No current known practical attacks
 - Several proposed impractical attacks might become basis of future attacks

Washington University in St. Louis

CSE571S

DES-X

- Proposed by Ron Rivest in May 1984
- XOR 64-bit key K₁ before DES encryption and xor another 64-bit key K₂ after encryption

$$C = K_2 \oplus E_K(P \oplus K_1)$$

□ Total Key size = 56+64+64 = 184 bits But increases security by 88 to 119 bits

Ref: http://en.wikipedia.org/wiki/DESX

Electronic Codebook Book (ECB)

- How to encode multiple blocks of a long message?
- Each block is encoded independently of the others

$$C_i = E_K(P_i)$$

■ Each block is substituted like a codebook, hence name.

Washington University in St. Louis

CSE571S

ECB Limitations

- □ Using the same key on multiple blocks makes it easier to break
- ☐ Identical Plaintext Identical Ciphertext Does not change pattern:

Original ECB Better

□ NIST SP 800-38A defines 5 modes **that** can be used with any block cipher

Ref: http://en.wikipedia.org/wiki/Modes_of_operation

Cipher Block Chaining (CBC)

- Add random numbers before encrypting
- Previous cipher blocks is chained with current plaintext block
- □ Use an Initial Vector (IV) to start process

$$C_i = E_K (P_i \text{ XOR } C_{i-1})$$

$$C_i = TV$$

Washington University in St. Louis

CSE571S

Advantages and Limitations of CBC

- □ Any change to a block affects all following ciphertext blocks
- Need Initialization Vector (IV)
 - > Must be known to sender & receiver
 - > If sent in clear, attacker can change bits of first block, and change IV to compensate
 - > Hence IV must either be a fixed value, e.g., in Electronic Funds Transfers at Point of Sale (EFTPOS)
- > Or must be sent encrypted in ECB mode before rest of message
 Washington University in St. Tage ©2011 Rai Jain

CSE571S

□ Sequential implementation Cannot be parallelized

Message Padding

- \square Last block may be shorter than others \Rightarrow Pad
- Pad with count of pad size [ANSI X.923]
 - 1. E.g., [b1 b2 b3 0 0 0 0 5] = 3 data, 5 pad w 1 count byte
- 1. A 1 bit followed by 0 bits [ISO/IEC 9797-1]
- 2. Any known byte value followed by zeros, e.g., 80-00...
- 3. Random data followed by count [ISO 10126]
 - 1. E.g., [b1 b2 b3 84 67 87 56 05]
- 4. Each byte indicates the number of padded bytes [PKCS]
 - 1. E.g., [b1 b2 b3 05 05 05 05 05]
- 5. Self-Describing Padding [RFC1570]
 - > Each pad octet contains its index starting with 1
 - > E.g., [b1 b2 b3 1 2 3 4 5]

Ref: http://en.wikipedia.org/wiki/Padding %28cryptography%29

Washington University in St. Louis

CSE571S

Cipher Text Stealing (CTS)

- Alternative to padding
- Last 2 blocks are specially coded
- □ Tail bits of (n-1)st encoded block are added to nth block and order of transmission of the two blocks is interchanged.

Stream Modes of Operation

- Use block cipher as some form of **pseudo-random number** generator
- □ The random number bits are then XOR'ed with the message (as in stream cipher)
- Convert block cipher into stream cipher
 - 1. Cipher feedback (CFB) mode
 - 2. Output feedback (OFB) mode
 - 3. Counter (CTR) mode

Washington University in St. Louis

CSE571S

Cipher Feedback (CFB)

- □ Message is added to the output of the block cipher
- □ Result is feed back for next stage (hence name)
- □ Standard allows any number of bit (1, 8, 64 or 128 etc) to be feed back, denoted CFB-1, CFB-8, CFB-64, CFB-128 etc
- Most efficient to use all bits in block (64 or 128)

Output Feedback (OFB)

- Output of the cipher is feed back (hence name)
- ☐ Feedback is independent of message
- Can be computed in advance

$$O_i = E_K (O_{i-1})$$
 $C_i = P_i XOR O_i$
 $O_{-1} = IV$

Washington University in St. Louis

CSE571S

Advantages and Limitations of OFB

- Needs an IV which is unique for each use
 - > if ever reuse attacker can recover outputs
- Bit errors do not propagate
- More vulnerable to message stream modification
- Sender & receiver must remain in sync
- Only use with full block feedback
 - > Subsequent research has shown that only **full block feedback** (i.e., CFB-64 or CFB-128) should ever be used

Washington University in St. Louis

CSE571S

Counter (CTR)

- Encrypt counter value rather than any feedback value
- □ Different key & counter value for every plaintext block (never reused)

$$O_i = E_K(i)$$

 $C_i = P_i XOR O_i$

Washington University in St. Louis

C 4 C

Advantages and Limitations of CTR

- Efficiency
 - > Can do parallel encryptions in h/w or s/w
 - > Can preprocess in advance of need
 - > Good for bursty high speed links
- Random access to encrypted data blocks
- Provable security (good as other modes)
- But must never reuse key/counter values, otherwise could break

Washington University in St. Louis

CSE571S

Storage Encryption

- □ File encryption:
 - > Different keys for different files
 - > May not protect metadata, e.g., filename, creation date,
 - > Individual files can be backed up
 - > Encrypting File System (EFS) in NTFS provides this svc
- □ Disk encryption:
 - > Single key for whole disk or separate keys for each partition
 - > Master boot record (MBR) may or may not be encrypted
 - > Boot partition may or may not be encrypted.
 - Operating system stores the key in the memory Can be read by an attacker by cold boot
- □ Trusted Platform Module (TPM): A secure coprocessor chip on the motherboard that can authenticate a device
 - \Rightarrow Disk can be read only on that system.

Recovery is possible with a decryption password or token ©2011 Raj Jain

Storage Encryption (Cont)

- ☐ If IV is predictable, CBC is not usable in storage because the plain text is chosen by the writer
- □ Ciphertext is easily available to other users of the same disk
- Two messages with the first blocks= $b \oplus IV_1$ and $b \oplus IV_2$ will both encrypt to the same ciphertext
- Need to be able to read/write blocks without reading/writing other blocks

Washington University in St. Louis

CSE571S

XTS-AES Mode

- XTS = XEX-based Tweaked Codebook mode with Ciphertext
 Stealing (XEX = Xor-Encrypt-xor)
- □ Creates a unique IV for each block using AES and 2 keys

$$T_j = E_{K2}(i) \otimes \alpha^j$$
 Size of K2 = size of block $C_j = E_{K1}(P_j \oplus T_j) \oplus T_j$ K1 256 bit for AES-256

where *i* is logical sector # & *j* is block # (sector = n blocks) α = primitive element in GF(2¹²⁸) defined by polynomial x

Advantages and Limitations of XTS-AES

- Multiplication is modulo $x^{128}+x^7+x^2+x+1$ in GF(2¹²⁸)
- Efficiency
 - > Can do parallel encryptions in h/w or s/w
 - > Random access to encrypted data blocks
- ☐ Has both nonce & counter
- □ Defined in IEEE Std 1619-2007 for block oriented storage use
- □ Implemented in numerous packages and operating systems including TrueCrypt, FreeBSD, and OpenBSD softraid disk encryption software (also native in Mac OSX Lion's FileVault), in hardware-based media encryption devices by the SPYRUS Hydra PC Digital Attaché and the Kingston DataTraveler 5000.

Ref: http://en.wikipedia.org/wiki/Disk_encryption_theory

Washington University in St. Louis

CSE571S

Summary

- □ 3DES generally uses E-D-E with 2 keys \Rightarrow 112b protection
- ightharpoonup ECB: Same ciphertext for the same plaintext \Rightarrow Easier to break

Homework 6

- **6.4** For each of the modes ECB, CBC and CTR:
- Identify whether decrypted plaintext block P_3 will be corrupted if there is an error in block C_1 of the transmitted cipher text.
- Assuming that the ciphertext contains N blocks, and that there was a bit error in the source version of P_1 , identify through how many ciphertext blocks this error is propagated.