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Overview

1. Principles of Pseudorandom Number Generation
Pseudorandom number generators
Pseudorandom number generation using a block cipher

Stream Cipher
RC4

A

These slides are based on Lawrie Brown'’s slides supplied with William Stalling’s
book “Cryptography and Network Security: Principles and Practice,” 5t Ed, 2011.
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Pseudo Random Numbers

O Many uses of random numbers in cryptography
» nonces 1n authentication protocols to prevent replay
» keystream for a one-time pad
O These values should be
» statistically random, uniform distribution, independent
» unpredictability of future values from previous values
O True random numbers provide this
O Psuedo = Deterministic, reproducible, generated by a formula
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A Sample Generator

Tn = f(Tn_1,Tn_2,...)

a For example,
Tp =9L,—1+1 mod 16
Q Starting with x,=5:
r1=505)+1 mod 16 =26 mod 16 =10
a The first 32 numbers obtained by the above procedure 10, 3, 0,
1,6,15,12,13,2,11,8,9,14,7,4,5 10, 3,0, 1, 6, 15,12, 13,
2,11,8,9,14, 7,4, 5.
a By dividing x's by 16:
0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500,
0.8125, 0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375,
0.2500, 0.3125, 0.6250, 0.1875, 0.0000, 0.0625, 0.3750,

0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000, 0.5625,
0.8750, 0.4375, 0.2500, 0.3125.
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Terminology

Q Seed =x,

a Pseudo-Random: Deterministic yet would pass randomness

tests
a Fully Random: Not repeatable
a Cycle length, Tail, Period

Seed

N

*—p-a o o J -y -y -y o o o o o o

-« Tail — }4— Cycle length >
- Period >
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Linear-Congruential Generators

a Discovered by D. H. Lehmer in 1951

a The residues of successive powers of a number have good
randomness properties.

T, = a’ mod m

Equivalently,

axr,_1 mod m

L,

a = multiplier

m = modulus
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Linear-Congruential Generators (Cont)

a Lehmer's choices: a =23 and m = 105+1
a Good for ENIAC, an 8-digit decimal machine.
d Generalization:

Tn = AQT,_—1 + b mod m

a Can be analyzed easily using the theory of
congruences
— Mixed Linear-Congruential Generators
or Linear-Congruential Generators (LCG)

a Mixed = both multiplication by @ and addition of b
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Blum Blum Shub Generator

QO Use least significant bit from 1terative equation:
» X, = X._ ;> mod n
» where n=p.q, and primes p, g=3 mod 4
Unpredictable, passes next-bit test
Security rests on difficulty of factoring N
Is unpredictable given any run of bits
Slow, since very large numbers must be used
Too slow for cipher use, good for key generation

C 0000
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Random & Pseudorandom Number
Generators

Source of Context-
true gpecific
randomness Seed Seed values
Conversion Deterministic Deterministic
to binary algorithm algorithm
Random Psendorandom Psendorandom
hit stream hit stream value
(a) TRNG (b) PRNG (c) PRF
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Using Block Ciphers as PRNGs

a Can use a block cipher to generate random numbers
for cryptographic applications,

Q For creating session keys from master key
a CTR

X, = E.[V,] 1
a OFB : — L ]
1
X; = ExlX;_;] : :
1 K 1-1 K —»| Encrypt K—»| Encrypt
l ¥
pseudorandom bits pseudorandom bits
(a) CTR Mode (b) OFB Mode
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Natural Random Noise

QO Best source is natural randomness in real world
a Find a regular but random event and monitor
a Do generally need special h/w to do this

» E.g., radiation counters, radio noise, audio noise, thermal
noise in diodes, leaky capacitors, mercury discharge tubes
etc

Q Starting to see such h/w in new CPU's
O Problems of bias or uneven distribution in signal

» Have to compensate for this when sample, often by passing
bits through a hash function

» Best to only use a few noisiest bits from each sample
» RFC4086 recommends using multiple sources + hash
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Stream Ciphers

O Process message bit by bit (as a stream)
O A pseudo random keystream XOR’ed with plaintext bit by bit

C; = M; XOR StreamKey;

O But must never reuse stream key otherwise messages can be

Key Key
K K

Y Y

Pseudorandom byte Pseudorandom byte
generator generator
(key stream generator) (key stream generator)
7 k k7 k
Plaintext T . Ciphertext LT
byte stream AL "byte stream AL
M ENCRYPTION C DECRYPTION

Washington University in St. Louis

%yt e stream

CSES71S

©2011 Raj Jain

7-13




RC4

A proprietary cipher owned by RSA DSI

Another Ron Rivest design, simple but effective
Variable key size, byte-oriented stream cipher
Widely used (web SSL/TLS, wireless WEP/WPA)

Key forms random permutation of all 8-bit values

U O 0 0 0O O

Uses that permutation to scramble input info processed a byte
at a time
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RC4 Key Schedule

a Start with an array S of numbers: 0..255

O Use key to well and truly shuffle

O S forms internal state of the cipher
for1=0to 255 do

S[1] =1
T[1] = K[1 mod keylen])
1=0

for1=0 to 255 do
7= + S[i1] + T[1]) (mod 256)
swap (S[1], S[j])
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RC4 Encryption

Q Encryption continues shuffling array values

O Sum of shuffled pair selects "stream key" value from
permutation

O XOR S[t] with next byte of message to en/decrypt
1i=7=0
for each message byte M.
1=(1+1) (mod 256)
1= * S[1]) (mod 256)
swap(S[i], S[j])
t = (S[i] + S[j]) (mod 256)
C, =M. XOR S[t]
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RC4 Overview

Washington University in St. Louis

(c) Stream Generation
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1. Pseudorandom number generators use a seed and a formula to
generate the next number

2. Stream ciphers xor a random stream with the plain text.

3.  RC4 i1s a stream cipher
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Homework 7

a. Find the period of the following generator using seed x,=1:
r, = 5x,_1 mod 2°
b. Now repeat part a with seed x, =2

c. What RC4 key value will leave S unchanged during
initialization? That 1s, after the initial permutation of S, the
entries of S will be equal to the values from 0 through 255 in
ascending order.
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