Pseudorandom
Number Generation
and Stream Ciphers

Raj Jain
Washington University in Saint Louis

Saint Louis, MO 63130
Jain(@cse.wustl.edu

Audio/Video recordings of this lecture are available at:
http://www.cse.wustl.edu/~jain/cseS71-11/

CSES71S ©2011 Raj Jain

7-1

Overview

1. Principles of Pseudorandom Number Generation
Pseudorandom number generators
Pseudorandom number generation using a block cipher

Stream Cipher
RC4

A

These slides are based on Lawrie Brown'’s slides supplied with William Stalling’s
book “Cryptography and Network Security: Principles and Practice,” 5t Ed, 2011.

Washington University in St. Louis CSES71S ©2011 Raj Jain

7-2

Pseudo Random Numbers

O Many uses of random numbers in cryptography
» nonces 1n authentication protocols to prevent replay
» keystream for a one-time pad
O These values should be
» statistically random, uniform distribution, independent
» unpredictability of future values from previous values
O True random numbers provide this
O Psuedo = Deterministic, reproducible, generated by a formula

Washington University in St. Louis CSES71S ©2011 Raj Jain

7-3

A Sample Generator

Tn = f(Tn_1,Tn_2,...)

a For example,
Tp =9L,—1+1 mod 16
Q Starting with x,=5:
r1=505)+1 mod 16 =26 mod 16 =10
a The first 32 numbers obtained by the above procedure 10, 3, 0,
1,6,15,12,13,2,11,8,9,14,7,4,5 10, 3,0, 1, 6, 15,12, 13,
2,11,8,9,14, 7,4, 5.
a By dividing x's by 16:
0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500,
0.8125, 0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375,
0.2500, 0.3125, 0.6250, 0.1875, 0.0000, 0.0625, 0.3750,

0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000, 0.5625,
0.8750, 0.4375, 0.2500, 0.3125.

Washington University in St. Louis CSES71S ©2011 Raj Jain

7-4

Terminology

Q Seed =x,

a Pseudo-Random: Deterministic yet would pass randomness

tests
a Fully Random: Not repeatable
a Cycle length, Tail, Period

Seed

N

*—p-a o o J -y -y -y o o o o o o

-« Tail — }4— Cycle length >
- Period >
Washington University in St. Louis CSES71S ©2011 Raj Jain

7-5

Linear-Congruential Generators

a Discovered by D. H. Lehmer in 1951

a The residues of successive powers of a number have good
randomness properties.

T, = a’ mod m

Equivalently,

axr,_1 mod m

L,

a = multiplier

m = modulus

Washington University in St. Louis CSES71S ©2011 Raj Jain
7-6

Linear-Congruential Generators (Cont)

a Lehmer's choices: a =23 and m = 105+1
a Good for ENIAC, an 8-digit decimal machine.
d Generalization:

Tn = AQT,_—1 + b mod m

a Can be analyzed easily using the theory of
congruences
— Mixed Linear-Congruential Generators
or Linear-Congruential Generators (LCG)

a Mixed = both multiplication by @ and addition of b

Washington University in St. Louis CSES71S ©2011 Raj Jain

7-7

Blum Blum Shub Generator

QO Use least significant bit from 1terative equation:
» X, = X._ ;> mod n
» where n=p.q, and primes p, g=3 mod 4
Unpredictable, passes next-bit test
Security rests on difficulty of factoring N
Is unpredictable given any run of bits
Slow, since very large numbers must be used
Too slow for cipher use, good for key generation

C 0000

Washington University in St. Louis CSES71S ©2011 Raj Jain

7-8

Random & Pseudorandom Number
Generators

Source of Context-
true gpecific
randomness Seed Seed values
Conversion Deterministic Deterministic
to binary algorithm algorithm
Random Psendorandom Psendorandom
hit stream hit stream value
(a) TRNG (b) PRNG (c) PRF
Washington University in St. Louis CSES71S ©2011 Raj Jain

7-9

Using Block Ciphers as PRNGs

a Can use a block cipher to generate random numbers
for cryptographic applications,

Q For creating session keys from master key
a CTR

X, = E.[V,] 1
a OFB : — L]
1
X; = ExlX;_;] : :
1 K 1-1 K —»| Encrypt K—»| Encrypt
l ¥
pseudorandom bits pseudorandom bits
(a) CTR Mode (b) OFB Mode
Washington University in St. Louis CSES71S ©2011 Raj Jain

7-10

ANSI X9.17 PRG

Keys
KK

Date/Time DT.

Seed Vi

> EDE

B T
>— ~ EDE

V(11

> EDE

Washington University in St. Louis

Y
R.

Random Stream

CSES71S

Next Seed

©2011 Raj Jain

7-11

Natural Random Noise

QO Best source is natural randomness in real world
a Find a regular but random event and monitor
a Do generally need special h/w to do this

» E.g., radiation counters, radio noise, audio noise, thermal
noise in diodes, leaky capacitors, mercury discharge tubes
etc

Q Starting to see such h/w in new CPU's
O Problems of bias or uneven distribution in signal

» Have to compensate for this when sample, often by passing
bits through a hash function

» Best to only use a few noisiest bits from each sample
» RFC4086 recommends using multiple sources + hash

Washington University in St. Louis CSES71S ©2011 Raj Jain

7-12

Stream Ciphers

O Process message bit by bit (as a stream)
O A pseudo random keystream XOR’ed with plaintext bit by bit

C; = M; XOR StreamKey;

O But must never reuse stream key otherwise messages can be

Key Key
K K

Y Y

Pseudorandom byte Pseudorandom byte
generator generator
(key stream generator) (key stream generator)
7 k k7 k
Plaintext T . Ciphertext LT
byte stream AL "byte stream AL
M ENCRYPTION C DECRYPTION

Washington University in St. Louis

%yt e stream

CSES71S

©2011 Raj Jain

7-13

RC4

A proprietary cipher owned by RSA DSI

Another Ron Rivest design, simple but effective
Variable key size, byte-oriented stream cipher
Widely used (web SSL/TLS, wireless WEP/WPA)

Key forms random permutation of all 8-bit values

U O 0 0 0O O

Uses that permutation to scramble input info processed a byte
at a time

Washington University in St. Louis CSES71S ©2011 Raj Jain

7-14

RC4 Key Schedule

a Start with an array S of numbers: 0..255

O Use key to well and truly shuffle

O S forms internal state of the cipher
for1=0to 255 do

S[1] =1
T[1] = K[1 mod keylen])
1=0

for1=0 to 255 do
7= + S[i1] + T[1]) (mod 256)
swap (S[1], S[j])

Washington University in St. Louis CSE571S

©2011 Raj Jain

7-15

RC4 Encryption

Q Encryption continues shuffling array values

O Sum of shuffled pair selects "stream key" value from
permutation

O XOR S[t] with next byte of message to en/decrypt
1i=7=0
for each message byte M.
1=(1+1) (mod 256)
1= * S[1]) (mod 256)
swap(S[i], S[j])
t = (S[i] + S[j]) (mod 256)
C, =M. XOR S[t]

Washington University in St. Louis CSES71S ©2011 Raj Jain

7-16

RC4 Overview

Washington University in St. Louis

(c) Stream Generation

CSES71S

S|lo|1]2]|3]|4 “es 253| 254|255
«—keylen—»
K -ee
L4 L4 L4 L4 L4 L4 L4 L4 L4 4‘ Y L4 L4 L4 4‘
T [N] " Ea [N W] " Ea
(a) Initial state of S and T
T e Tm—l ces
= J=j+ S[i] + T[i] =
s e S[i]—T s S[il -
* i > Swa
(b) Initial permutation of §
= i=1i+5Ii] =
S R S[i]—T 'E R s[j] - S[t_] aaow
* i > l\‘ Swail"/J l
+ t = 5[i] + S[j]
k

©2011 Raj Jain

7-17

1. Pseudorandom number generators use a seed and a formula to
generate the next number

2. Stream ciphers xor a random stream with the plain text.

3. RC4 i1s a stream cipher

Washington University in St. Louis CSES71S ©2011 Raj Jain

7-18

Homework 7

a. Find the period of the following generator using seed x,=1:
r, = 5x,_1 mod 2°
b. Now repeat part a with seed x, =2

c. What RC4 key value will leave S unchanged during
initialization? That 1s, after the initial permutation of S, the
entries of S will be equal to the values from 0 through 255 in
ascending order.

Washington University in St. Louis CSES71S ©2011 Raj Jain

7-19

