Cryptographic Hash Functions

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130

Jain@cse.wustl.edu

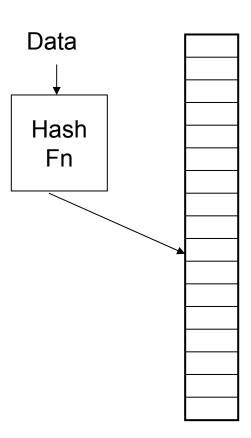
Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-11/

Washington University in St. Louis

CSE571S

- 1. Cryptographic Hash Functions
- 2. Applications of Crypto Hash Functions
- 3. Birthday Problem
- 4. Secure Hash Algorithm (SHA)

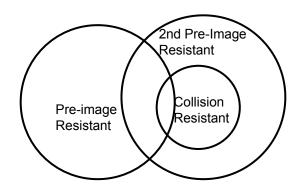

These slides are based partly on Lawrie Brown's slides supplied with William Stallings's book "Cryptography and Network Security: Principles and Practice," 5th Ed, 2011.

Washington University in St. Louis

CSE571S

Hash Function

- Hash tables used in data searches
- □ The hash function should
- 1. Take variable size input
- 2. Produce fixed output size (Size of the table)
- 3. Be easy to compute
- 4. Be pseudorandom so that it distributes uniformly over the table
 - ⇒ Minimizes collisions



Washington University in St. Louis

CSE571S

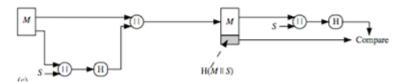
Cryptographic Hash Functions

- 1. Variable Size Input
- 2. Fixed output size
- 3. Efficient computation
- 4. Pseudorandom
- 5. Pre-image Resistant = one-way It is not possible to find M, given h.
- 6. 2^{nd} Pre-image Resistant: = Weak Collision Resitant It is not possible to find y, such that h(y)=h(x)
- 7. Strong Collision Resistant: It is not possible to find any two x and y, such that h(y)=h(x)

Examples of Crypto Hash Functions

- □ MD4 = Message Digest 4 [RFC 1320] 32b operations
- □ MD5 = Message Digest 5 [RFC 1321] 32b operations
- □ SHA = Secure hash algorithm [NIST]
- □ SHA-1 = Updated SHA
- □ SHA-2 = SHA-224, SHA-256, SHA-384, SHA-512 SHA-512 uses 64-bit operations

Washington University in St. Louis


CSE571S

Applications of Crypto Hash Fn

1. **Message Authentication** = Integrity MD5 has is used to check if a file has been modified.

M H(M)

Use a secret value before hashing so that no one else can modify M and hash

Can encrypt Message, hash, or both for confidentiality

- 2. **Digital Signatures**: Encrypt hash with private key
- 3. Password storage: Hash of the user's password is compared with that in the storage. Hackers can not get password from storage.

M $E(PR_A, H(M))$

4. Pseudorandom number generation: Hash an IV, Hash the hash, ..., repeat
Washington University in St. Louis

CSE571S

Birthday Problem

■ What is the probability that two people have the same birthday (day and month)

K	Total	Different					
2	365^{2}	365×364					
3	365^{3}	$365 \times 364 \times 363$					
•••							
k	365^k	$365 \times 364 \times 363 \times \cdots \times (365 - k + 1)$					

$$P(\text{No common day}) = \frac{365 \times 364 \times 363 \times ... \times (365 - k + 1)}{365^k}$$
$$= \frac{365!}{365^k (365 - k)!}$$

Washington University in St. Louis

CSE571S

Birthday Problem (Cont)

- With 22 people in a room, there is better than 50% chance that two people have a common birthday
- With 40 people in a room there is almost 90% chance that two people have a common birthday
- \square If there k people, there are k(k-1)/2 pairs

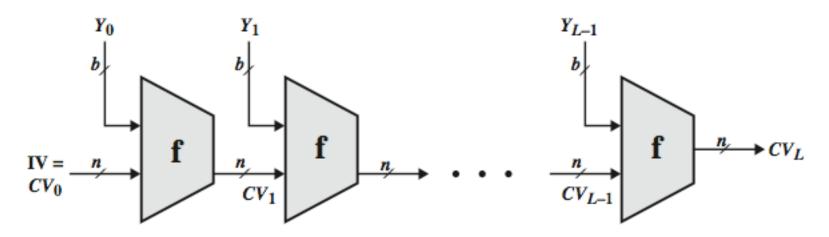
P(1 pair having common birthday) =
$$\frac{k(k-1)}{2 \times 365}$$

 $k \ge \sqrt{365} \Rightarrow P > 0.5$

□ In general, n possibilities $\Rightarrow \sqrt{n}$ trials to find a collision

k	Р
2	.01
3	.02
4	.03
• • •	• • •
19	.41
20	.44
21	.48
22	.51
23	.54
• • •	
38	.88
39	.89
40	.90

Probability of Hash Collisions


- □ Arbitrary length message ⇒ Fixed length hash
 - ⇒ Many messages will map to the same hash
- □ Given 1000 bit messages \Rightarrow 2¹⁰⁰⁰ messages
- □ 128 bit hash \Rightarrow 2¹²⁸ possible hashes \Rightarrow 2¹⁰⁰⁰/2¹²⁸ = 2⁸⁷² messages/hash value
- □ n-bit hash \Rightarrow Need avg $2^{n/2}$ tries to find two messages with same hash
- \bigcirc 64 bit hash \Rightarrow 2³² tries (feasible)
- 128 bit hash \Rightarrow 2⁶⁴ tries (not feasible)

Washington University in St. Louis

CSE571S

Hash Function Cryptanalysis

- Hash functions use iterative structure
 - > Process message in blocks
- Compression function f takes previous output and next block to produce next output
- ☐ If compression function is collision resistant, the entire structure is collision resistant [Merkle 89]

Washington University in St. Louis

CSE571S

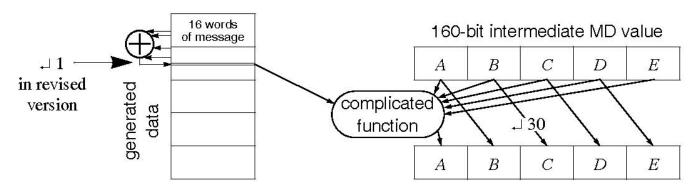
Block Ciphers as Hash Functions

- Can use block ciphers as hash functions
 - > Using $H_0=0$ and zero-pad of final block
 - ightharpoonup Compute: $H_i = E_{M_i} [H_{i-1}]$
 - > And use final block as the hash value
 - > Similar to CBC but without a key
- Resulting hash is too small (64-bit)
 - > Both due to direct birthday attack
 - > And to "meet-in-the-middle" attack
- Other variants also susceptible to attack

Washington University in St. Louis

CSE571S

Secure Hash Algorithm (SHA)


- Successor to and similar to MD5 (by Ron Rivest)
- □ SHA-0: FIPS PUB 180, 1993. Withdrawn shortly after publ.
- □ SHA-1: FIPS PUB 180-1, 1995. 160 bit hash
- □ SHA-2: FIPS PUB 180-2, 2002
 - > SHA-224
 - > SHA-256
 - > SHA-384
 - > SHA-512
- □ SHA-1 is used in TLS, SSL, PGP, SSH, S/MIME, and IPsec
 - > Required by law in US Govt applications
 - > Used in Digital Signature Standard
- □ Pseudo-codes for SHA algorithms are available.
- NIST certifies implementations.

Washington University in St. Louis

CSE571S

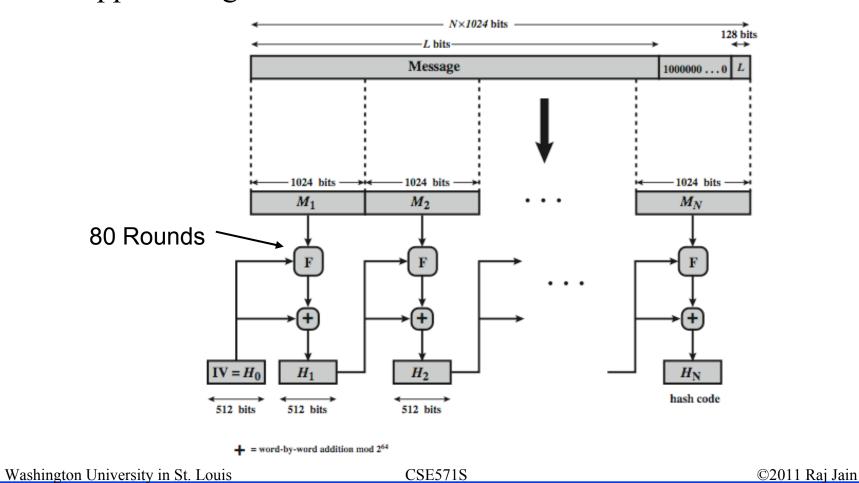
SHA-1 Algorithm

- □ 160 bit hash using 512 bit blocks and 32 bit operations
- □ Five passes (4 in MD5 and 3 in MD4) of 16 operations each
- \square Maximum message size is 2^{64} bit
- □ 512 bits are expanded to 5x512 bits:
 - \rightarrow nth word = xor of n-3, n-8, n-14, and n-16
- □ In SHA-1 these words are rotated left by one bit before xor
- \square Total 80 words: $W_0, ..., W_{79}$

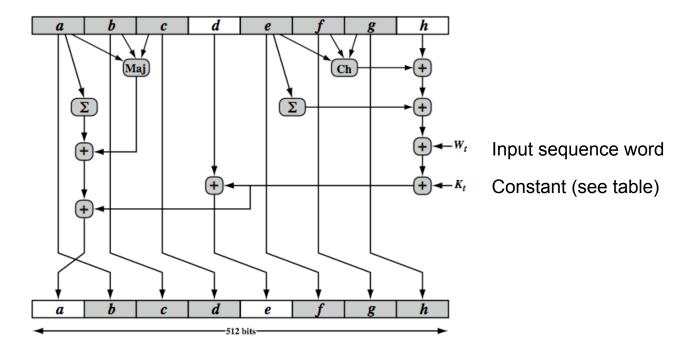
Washington University in St. Louis

CSE571S

SHA-2


- □ SHA-256 uses 32-bit operations
- □ SHA-512 uses 64-bit operations
- □ Use different shift amounts and additive constants
- □ SHA-224 and SHA-384 are simply truncated versions of SHA-256 and SHA-512 using different initial values.
- □ SHA-224 matches the key length of two-key triple-DES

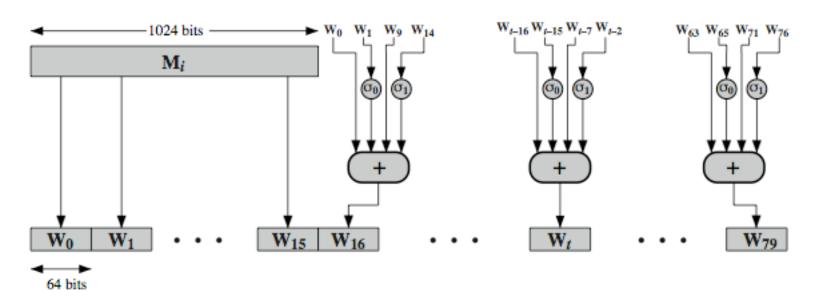
Algorithm	Output size (bits)	Internal state size (bits)	Block size (bits)	Max message size (bits)	Word size (bits)	Rounds	Operations	Collision
SHA-0	160	160	512	2 ⁶⁴ – 1	32	80	+,and,or,xor,rotl	Yes
SHA-1	160	160	512	2 ⁶⁴ – 1	32	80	+,and,or,xor,rotl	2 ⁶³ attack
SHA-256/224	256/224	256	512	2 ⁶⁴ – 1	32	64	+,and,or,xor,shr,rotr	None yet
SHA-512/384	512/384	512	1024	2 ¹²⁸ – 1	64	80	+,and,or,xor,shr,rotr	None yet


[Source: Wikipedia]

SHA-512 Overview

- □ 1. Append padding bits
- □ 2. Append length

SHA-512 Round Function



- □ Conditional fn Ch(e,f,g): if e then f else g = (e AND f) \oplus (Not e and g)
- Majority Fn Maj(a, b, c): True if 2 of 3 args are true=(a AND b) ⊕(a AND c) ⊕(b AND c)

Washington University in St. Louis

CSE571S

80-Word Input Sequence

- $W_{t} = \sigma_{1}(W_{t-2}) + W_{t-7} + \sigma_{0}(W_{t-15}) + W_{t-16}$
- $\sigma_0(x) = ROTR^1(x) + ROTR^8(x) + SHR^7(x)$
- \Box $\sigma_1(x) = ROTR^{19}(x) + ROTR^{61}(x) + SHR^6(x)$
- \square ROTRⁿ(x)=rotate right by n bits
- \square SHRⁿ(x)=Left shift n bits with padding by 0's on the right
- \rightarrow += Addition modulo 2^{64}

Washington University in St. Louis

CSE571S

SHA-3

- □ SHA-2 (esp. SHA-512) seems secure
 - > Shares same structure and mathematical operations as predecessors so have concern
- NIST announced in 2007 a competition for the SHA-3
 - > Has had 3 rounds of narrowing down the selections
 - > Five algorithms advanced to the third (and final) round in December 2010
 - > Final selection to be announced by 2012

Ref: http://en.wikipedia.org/wiki/NIST_hash_function_competition

SHA-3 Requirements

- □ Replace SHA-2 with SHA-3 in any use
 - > So use same hash sizes
- □ Preserve the online nature of SHA-2
 - > So must process small blocks (512 / 1024 bits)
- Evaluation criteria
 - > Security close to theoretical max for hash sizes
 - > Cost in time & memory
 - > Characteristics: such as flexibility & simplicity

Washington University in St. Louis

CSE571S

- 1. Hash functions are used to get a digest of a message Must take variable size input, produce fixed size pseudorandom output, be efficient to compute
- 2. Cryptographic hash functions should be preimage resistant, 2nd preimage resistant, and collision resistant
- 3. Cryptographic hashes are used for message authentication, digital signatures, password storage
- 4. SHA-1 produces 160 bit output, SHA-224, SHA-256, SHA-384, and SHA-512 produce 224, 256, 384, and 512 bit outputs. All consist of 80 rounds.
- 5. SHA-3 competition is underway

Washington University in St. Louis

CSE571S

Homework 11

□ Compute the following hash function:

$$h = \left(7 + \sum_{i=1}^{k} (m_i)^2\right) \mod 251$$

for a 4-byte message $M=\{m_1, m_2, m_3, m_4\}=\{128, 252, 33, 19\}$ All are decimal numbers.

- □ Check if the hash function is:
 - > A. Collision Resistant
 - > B. Pre-image resistant
 - > B. Second Pre-image Resistant
- □ Show counter examples for any property that is not satisfied.