Electronic Mail Security

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130

Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-11/

Washington University in St. Louis

CSE571S

- 1. Pretty Good Privacy (PGP)
- 2. S/MIME
- 3. DomainKeys Identified Mail (DKIM)

These slides are based partly on Lawrie Brown's slides supplied with William Stallings's book "Cryptography and Network Security: Principles and Practice," 5th Ed, 2011.

Washington University in St. Louis

CSE571S

Email Security Enhancements

- 1. Confidentiality: Protection from disclosure
- Authentication: Of sender of message
- Message integrity: Protection from modification
- Non-repudiation of origin: Protection from denial by sender

Washington University in St. Louis

CSE571S

Pretty Good Privacy (PGP)

- Widely used de facto secure email
- Developed by Phil Zimmermann
- Selected best available crypto algorithms
- □ Integrated into a single program
- On Unix, PC, Macintosh and other systems
- Originally free, now also have commercial versions available
- Published as an OCRable book from MIT Press to allow export
- OpenPGP standard from IETF

Ref: http://en.wikipedia.org/wiki/Pretty_Good_Privacy

PGP Operation – Authentication

- 1. Sender creates message
- 2. Make SHA-1 160-bit hash of message
- 3. Attached RSA signed hash to message
- 4. Receiver decrypts & recovers hash code
- 5. Receiver verifies received message hash

PGP Operation – Confidentiality

- 1. Sender forms 128-bit random session key
- 2. Encrypts message with session key
- 3. Attaches session key encrypted with RSA
- 4. Receiver decrypts & recovers session key
- 5. Session key is used to decrypt message

Confidentiality & Authentication

- □ Can use both services on same message
 - > Create signature & attach to message
 - > Encrypt both message & signature
 - > Attach RSA/ElGamal encrypted session key

Washington University in St. Louis

CSE571S

PGP Operation – Compression

- By default PGP compresses message after signing but before encrypting
 - Uncompressed message & signature can be stored for later verification
- Compression is non deterministic
 - > Uses ZIP compression algorithm

Washington University in St. Louis

CSE571S

PGP Operation – Email Compatibility

- □ PGP segments messages if too big
- □ PGP produces binary (encrypted) data appends a CRC
- Email was designed only for text
 - > Need to encode binary into printable ASCII characters
- □ Uses radix-64 or base-64 algorithm
- Maps 3 bytes to 4 printable chars

Text content	M				a							n								
ASCII	77					97								110						
Bit pattern	0 1 0 0 1 1		0	1	0	1	1	0	0	0	0	1	0	1	1	0	1	1	1	0
Index	19			22				5					46							
Base64-encoded	Т			W				F					u							

Ref: http://en.wikipedia.org/wiki/Base64

Washington University in St. Louis

CSE571S

PGP Operation – Summary

PGP Session Keys

- Need a session key of varying sizes for each message:
 - > 56-bit DES,
 - > 168-bit Triple-DES
 - > 128-bit CAST (<u>Carlisle Adams and Stafford Tavares</u>)
 - > IDEA (International Data Encryption Algorithm)
- □ Generated with CAST-128 using random inputs taken from previous uses and from keystroke timing of user

Ref: http://en.wikipedia.org/wiki/Idea_encryption

PGP Public & Private Keys

- Users are allowed to have multiple public/private keys
 - ⇒ Need to identify which key has been used
 - > Use a key identifier = Least significant 64-bits of the key
- Signature keys are different from encryption keys (Encryption keys may need to be disclosed for legal reasons)

Washington University in St. Louis

CSE571S

PGP Message Format

PGP Key Rings

- Private keys encrypted by a passphrase
- Public keys of all correspondents

Private Key Ring

Timestamp	Key ID*	Public Key	Encrypted Private Key	User ID*
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
Ti	$PU_i \mod 2^{64}$	PU_i	$E(H(P_i), PR_i)$	User i
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Public Key Ring

Timestamp	Key ID*	Public Key	Owner Trust	User ID*	Key	Signature(s)	Signature
					Legitimacy		Trust(s)
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
Ti	$PU_i \mod 2^{64}$	PU_i	trust_flag _i	User i	trust_flag _i		
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•

^{* =} field used to index table

Washington University in St. Louis

CSE571S

PGP Message Generation

PGP Message Reception

Web of Trust

- There is no need to buy certificates from companies
- □ A user can sign other user's certificates
- □ If you trust someone, you can trust users that they sign for.
- You can assign a level of trust to each user and hence to the certificate they sign for
- □ For example,
 - > A certificate that is signed by a fully trusted user is fully trusted
 - > A certificate signed by two half trusted users is fully trusted
 - > A certificate signed by one half trusted user is half trusted
 - > Some certificates are untrusted.

Ref: http://en.wikipedia.org/wiki/Web_of_trust

Washington University in St. Louis

CSE571S

PGP Trust Model Example

Certificate Revocation

- Owners can revoke public key by issuing a "revocation" certificate signed with the revoked private key
- □ New Web-of-trust certificates have expiry dates

Washington University in St. Louis

CSE571S

S/MIME

- Secure/Multipurpose Internet Mail Extensions
- Original Internet RFC822 email was text only
- MIME for varying content types and multi-part messages
 - > With encoding of binary data to textual form
- S/MIME added security enhancements
 - > Enveloped data: Encrypted content and associated keys
 - > Signed data: Encoded message + signed digest
 - Clear-signed data: Clear text message + encoded signed digest
 - Signed & enveloped data: Nesting of signed & encrypted entities
- Have S/MIME support in many mail agents
 - > E.g., MS Outlook, Mozilla, Mac Mail etc

Washington University in St. Louis

CSE571S

MIME Functions

- Types: Text/Plain, Text/Enriched, Multipart/Mixed, Image/jpeg, Image/gif, Video/mpeg, audio/basic, ...
- □ Encodings: 7bit, 8bit, binary, quoted-printable, base64

```
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="frontier"

This is a message with multiple parts in MIME format.
--frontier
Content-Type: text/plain

This is the body of the message.
--frontier
Content-Type: application/octet-stream
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+CiAgPGh1YWQ+CiAgPC9oZWFkPgogIDxib2R5PgogICAgPHA+VGhpcyBpcyB0aGUg
Ym9keSBvZiB0aGUgbWVzc2FnZS48L3A+CiAgPC9ib2R5Pgo8L2h0bWw+Cg==
--frontier--
```

□ Quoted-Printable: non-alphanumerics by =2 hex-digits, e.g.,

"=09" for tab, "=20" for space, "=3D" for =
Ref: http://en.wikipedia.org/wiki/MIME, http://en.wikipedia.org/wiki/Quoted-printable

Ref: http://en.wikipedia.org/wiki/Quoted-printable http://en.wikipedia.org/wiki/Quoted-printable

Washington University in St. Louis

CSE571S

S/MIME Cryptographic Algorithms

- □ Digital signatures: DSS & RSA
- □ Hash functions: SHA-1 & MD5
- □ Session key encryption: ElGamal & RSA
- Message encryption: AES, Triple-DES, RC2/40 and others
- MAC: HMAC with SHA-1
- Have process to decide which algorithms to use

Washington University in St. Louis

CSE571S

S/MIME Messages

- S/MIME secures a MIME entity with a signature, encryption, or both
- □ Forming a MIME wrapped PKCS object
 (Public Key Cryptography Standard originally by RSA Inc Now by IETF)

Type	Subtype	Smime parameter	Meaning
Multipart	Signed		clear msg w signature
Application	Pkcs7-mime	signedData	Signed entity
Application	Pkcs7-mime	envelopedData	Encrypted entity
Application	Pkcs7-mime	Degenerate signedData	Certificate only
Application	Pkcs7-mime	CompressedData	Compressed entity
Application	Pkcs7-signature	signedData	Signature

Content-Type: application/pklcs7-mime; smime-type=signedData; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

Ref: http://en.wikipedia.org/wiki/PKCS

Washington University in St. Louis

CSE571S

S/MIME Certificate Processing

- S/MIME uses X.509 v3 certificates
- Managed using a hybrid of a strict X.509 CA hierarchy and enterprise's CAs
- Each client has a list of trusted CA's certificates and his own public/private key pairs & certificates
- Several types of certificates with different levels of checks:
- □ Class 1: Email and web browsing
- Class 2: Inter-company email
- □ Class 3: Banking, ...

Washington University in St. Louis

CSE571S

S/MIME Enhanced Security Services

- □ RFC2634 (1999) describes enhanced security services:
 - > Signed receipts: Request a signed receipt
 - > Security labels: Priority, which users (role) can access
 - > Secure mailing lists: Request a list processor to encrypt

Washington University in St. Louis

CSE571S

Domain Keys Identified Mail

- Emails signed by the enterprise, e.g. WUSTL rather than the sender
- Company's mail system signs the message
- So spammers cannot fake that companies email addresses

DNS = domain name system MDA = mail delivery agent MSA = mail submission agent MTA = message transfer agent

MUA = message user agent

Ref: http://en.wikipedia.org/wiki/DKIM

Washington University in St. Louis

CSE571S

DCIM Functional Flow

Summary

- 1. Email can be signed, encrypted or both
- 2. PGP is a commonly used system that provides integrity, authentication, privacy, compression, segmentation, and MIME compatibility
- 3. PGP allows Web of trust in addition to CA certificates
- 4. S/MIME extends MIME for secure email and provides authentication and privacy
- 5. DKIM allows originating companies to sign all emails from their users

Washington University in St. Louis

CSE571S

Homework 18

- □ A. [18.4] The first 16 bits of the message digest in a PGP signature are transmitted in the clear. To what extent does this compromise the security of the hash algorithm?
- B. [18.9] Encode the text "plaintext" using Radix-64 and quoted-printable

Washington University in St. Louis

CSE571S