Intrusion
Detection

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130

Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse571-11/

Washington University in St. Louis

CSE571S

- 1. Intruders
- 2. Intrusion Detection
- 3. Password Management

These slides are based partly on Lawrie Brown's slides supplied with William Stallings's book "Cryptography and Network Security: Principles and Practice," 5th Ed, 2011.

Washington University in St. Louis

CSE571S

Concepts

- Intrusion: Break into, misuse, or exploit a system (against policy)
- Intruders: Insiders or outsiders

 Most IDS are designed for outsiders
- □ Vulnerability: Weakness that could be used by the attacker
- ☐ Threat: Party that exploits a vulnerability
- Structured Threat: Adversaries with a formal methodology, a financial sponsor, and a defined objective.
- Unstructured Threat: Compromise victims out of intellectual curiosity

Washington University in St. Louis

CSE571S

Intrusion vs. Extrusion Detection

- Intrusion Detection: Detecting unauthorized activity by inspecting inbound traffic
- Extrusion Detection: Detecting unauthorized activity by inspecting outbound traffic
- Extrusion: Insider visiting malicious web site or a Trojan contacting a remote internet relay chat channel

Washington University in St. Louis

CSE571S

Examples of Intrusion

- Remote root compromise
- Web server defacement
- Guessing / cracking passwords
- Copying viewing sensitive data / databases
- Running a packet sniffer
- Distributing pirated software
- Using an unsecured modem to access net
- ☐ Impersonating a user to reset password
- Using an unattended workstation

Washington University in St. Louis

CSE571S

Categories of Intruders

- □ Hackers: Motivated by thrill of access and status
 - > Hacking community a strong meritocracy
 - > Status is determined by level of competence
 - Computer Emergency Response Teams (CERTs) -Collect / disseminate vulnerability info / responses
- Criminal Enterprises: Organized groups of hackers
 - > E.g., Eastern European or Russian hackers
 - > Often target credit cards on e-commerce server
- □ Internal Threat
 - > May be motivated by revenge / entitlement
 - > When employment terminated
 - > Taking customer data when move to competitor

Ref: http://en.wikipedia.org/wiki/Computer_emergency_response_team
Washington University in St. Louis CSE571S

Hacker Behavior Example

- 1. Select target using IP lookup tools
- 2. Map network for accessible services
- 3. Identify potentially vulnerable services
- 4. Brute force (guess) passwords
- 5. Install remote administration tool
- 6. Wait for admin to log on and capture password
- 7. Use password to access remainder of network

Ref: http://en.wikipedia.org/wiki/Hacker_(computer_security)

Criminal Enterprise Behavior

- 1. Act quickly and precisely to make their activities harder to detect
- 2. Exploit perimeter via vulnerable ports
- 3. Use trojan horses (hidden software) to leave back doors for re-entry
- 4. Use sniffers to capture passwords
- 5. Do not stick around until noticed
- 6. Make few or no mistakes.

Washington University in St. Louis

CSE571S

Insider Behavior Example

- 1. Create network accounts for themselves and their friends
- 2. Access accounts and applications they wouldn't normally use for their daily jobs
- 3. E-mail former and prospective employers
- 4. Conduct furtive instant-messaging chats
- 5. Visit web sites that cater to disgruntled employees, such as f'dcompany.com
- 6. Perform large downloads and file copying
- 7. Access the network during off hours.

Intrusion Techniques

- Often use system / software vulnerabilities
- Key goal often is to acquire passwords
 - > So then exercise access rights of owner
- Basic attack methodology
 - > Target acquisition and information gathering
 - > Initial access
 - > Privilege escalation
 - > Covering tracks

Washington University in St. Louis

CSE571S

Password Guessing and Capture

- □ Attacker knows a login (from email/web page etc)
- ☐ Then attempts to guess password for it
 - > Defaults, short passwords, common word searches
 - User info (variations on names, birthday, phone, common words/interests)
 - > Exhaustively searching all possible passwords
- Check by login or against stolen password file
- Another attack involves password capture
 - > Watching over shoulder as password is entered
 - > Using a trojan horse program to collect
 - > Monitoring an insecure network login, E.g., FTP

Ref: http://en.wikipedia.org/wiki/Password_cracking

Washington University in St. Louis

CSE571S

Notification Alarms

- □ False Positive: Valid traffic causes an alarm
- □ False Negative: Invalid traffic does not cause an alarm

Types of IDS

- Signature Based IDS: Search for known attack patterns using pattern matching, heuristics, protocol decode
- Rule Based IDS: Violation of security policy
- Anomaly-Based IDS
- Statistical or non-statistical detection
- □ Response:
 - > Passive: Alert the console
 - Reactive: Stop the intrusion ⇒ Intrusion Prevention System
 ⇒ Blocking

Ref: http://en.wikipedia.org/wiki/Intrusion_detection_system, http://en.wikipedia.org/wiki/Intrusion_detection

Washington University in St. Louis

CSE571S

Sample Signatures

- □ ICMP Floods directed at a single host
- Connections of multiple ports using TCP SYN
- □ A single host sweeping a range of nodes using ICMP
- □ A single host sweeping a range of nodes using TCP
- □ Connections to multiple ports with RPC requests between two nodes

Washington University in St. Louis

CSE571S

Anomaly Based IDS

- □ Traffic that deviates from normal, e.g., routing updates from a host
- □ Statistical Anomaly: sudden changes in traffic characteristics
- Machine Learning: Learn from false positives and negatives
- □ Data Mining: Develop fuzzy rules to detect attacks

Washington University in St. Louis

CSE571S

Statistical Anomaly Detection

- Threshold detection
 - > Count occurrences of specific event over time
 - > If exceed reasonable value assume intrusion
 - > Used alone, it is a crude and ineffective detector
- Profile based
 - > Characterize past behavior of users
 - > Detect significant deviations from this
 - > Profile usually multi-parameter

Washington University in St. Louis

CSE571S

Audit Records

- □ Fundamental tool for intrusion detection
- Native audit records: Part of all common multi-user O/S
- Detection-specific audit records
 - > Created specifically to collect wanted info
- Audit Record Analysis: Foundation of statistical approaches
- Analyze records to get metrics over time
 - > Counter, gauge, interval timer, resource use
- Use various tests on these to determine if current behavior is acceptable
 - Mean & standard deviation, multivariate, markov process, time series, operational
- Key advantage is no prior knowledge used

Ref: http://en.wikipedia.org/wiki/Audit_trail
Washington University in St. Louis CSE571S ©2011 Raj Jain

Rule-Based Intrusion Detection

- Rule-based anomaly detection
 - > Analyze historical audit records to identify usage patterns and auto-generate rules for them
- Rule-based penetration identification
 - > Uses expert systems technology
 - > With rules identifying known penetration, weakness patterns, or suspicious behavior
 - > Compare audit records or states against rules
 - > Rules usually machine & O/S specific
 - > Rules are generated by experts who interview & codify knowledge of security admins
 - > Quality depends on how well this is done

Washington University in St. Louis

CSE571S

Types of IDS

- □ IDS Sensor: SW/HW to collect and analyze network traffic
- Host IDS: Runs on each server or host

http://en.wikipedia.org/wiki/Network intrusion detection system

Washington University in St. Louis

■ Network IDS: Monitors traffic on the network Network IDS may be part of routers or firewalls

CSE571S

Host vs. Network IDS

IDS Type	Pros	Cons
Host IDS	Verification of success or	OS/HW dependent
	failure of an attack pos-	
	sible	
	Specific to a system	Impacts performance of
		the host
	Not limited by network	One per host \Rightarrow Expen-
	bandwidth or encryption	sive
Network	Protects all hosts	Challenging to see all
IDS		traffic in a switched en-
		vironment
	Independent of OS/HW	Too much traffic to ana-
	·	lyze
	Useful against probes	Not effective against sin-
	and DoS attacks	gle packet attacks and
		encrypted traffic

Washington University in St. Louis

CSE571S

Honeypots

- Decoy systems to lure attackers
 - > Away from accessing critical systems
 - > To collect information of their activities
 - > To encourage attacker to stay on system so administrator can respond
- Are filled with fabricated information
- Instrumented to collect detailed information on attackers activities
- Single or multiple networked systems

Ref: http://en.wikipedia.org/wiki/Honeypot_(computing)

Washington University in St. Louis

CSE571S

Password Management

- □ Front-line defense against intruders
- Users supply both:
 - > Login determines privileges of that user
 - > Password to identify them
- Passwords often stored encrypted
 - > Unix uses multiple DES (variant with salt)
 - > More recent systems use crypto hash function
- □ Should protect password file on system

Ref: http://en.wikipedia.org/wiki/Salt_(cryptography)

Managing Passwords

- Education:
 - > Give guidelines for good passwords
 - > Require a mix of upper & lower case letters, numbers, punctuation
- Computer Generated Passwords
 - > Not memorisable, so will be written down (sticky label syndrome)
 - > FIPS PUB 181: Random pronounceable syllables
- Reactive Checking: Run offline password guessing tools
- □ Proactive Checking: Check when users select passwords
 - > Compare against dictionary of bad passwords

Washington University in St. Louis

CSE571S

- 1. Intruders can be both internal, external or organized
- 2. IDS can be signature based, anomaly based, or statistical Should minimized false positives and false negatives.
- 3. IDS can be host based or network based. Host based is more scalable.
- 4. Honeypots can be used to detect intruders
- 5. Password management requires education and proactive checking

Washington University in St. Louis

CSE571S