Pseudorandom
Number Generation
and Stream Ciphers

Raj Jain
Washington University in Saint Louis

Saint Louis, MO 63130
Jain(@cse.wustl.edu

Audio/Video recordings of this lecture are available at:
http://www.cse.wustl.edu/~jain/cse5S71-14/

CSES71S ©2014 Raj Jain

7-1

mailto:Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/cse571-14/

Overview

1. Principles of Pseudorandom Number Generation
Pseudorandom number generators

Pseudorandom number generation using a block cipher
Stream Cipher

RC4

A

These slides are based on Lawrie Brown'’s slides supplied with William Stalling’s
book “Cryptography and Network Security: Principles and Practice,” 6! Ed, 2013.

Washington University in St. Louis CSES71S ©2014 Raj Jain

7-2

Pseudo Random Numbers

O Many uses of random numbers in cryptography
» nonces 1n authentication protocols to prevent replay
» keystream for a one-time pad
O These values should be
» statistically random, uniform distribution, independent
» unpredictability of future values from previous values
O True random numbers provide this
O Psuedo = Deterministic, reproducible, generated by a formula

Washington University in St. Louis CSES71S ©2014 Raj Jain

7-3

A Sample Generator

Tn = f(Tn_1,Tn_2,...)

a For example,
Tp =9L,—1+1 mod 16
Q Starting with x,=5:
r1=505)+1 mod 16 =26 mod 16 =10
a The first 32 numbers obtained by the above procedure 10, 3, 0,
1,6,15,12,13,2,11,8,9,14,7,4,510,3,0,1, 6, 15,12, 13,
2,11, 8,9,14, 7,4, 5.
a By dividing x's by 16:
0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500,
0.8125, 0.1250, 0.6875, 0.5000, 0.5625, 0.8750, 0.4375,
0.2500, 0.3125, 0.6250, 0.1875, 0.0000, 0.0625, 0.3750,

0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000, 0.5625,
0.8750, 0.4375, 0.2500, 0.3125.

Washington University in St. Louis CSES71S ©2014 Raj Jain

7-4

Terminology

Q Seed =x,
a Pseudo-Random: Deterministic yet would pass randomness
tests

a Fully Random: Not repeatable
a Cycle length, Tail, Period

Seed

N

*—p-a o o J -y -y -y o o o o o o

<« Talil —h—}<— Cycle length »

- Period >
Washington University in St. Louis CSES71S ©2014 Raj Jain

7-5

Linear-Congruential Generators

a Discovered by D. H. Lehmer in 1951

a The residues of successive powers of a number have good
randomness properties.

T, = a’ mod m

Equivalently,

Tp = AL,—1 mod m

a = multiplier

m = modulus

Washington University in St. Louis CSES71S ©2014 Raj Jain

7-6

Linear-Congruential Generators (Cont)

a Lehmer's choices: a =23 and m = 105+1
a Good for ENIAC, an 8-digit decimal machine.
d Generalization:

Tp, = axp,—1 + b mod m

3 Can be analyzed easily using the theory of
congruences
— Mixed Linear-Congruential Generators
or Linear-Congruential Generators (LCG)

a Mixed = both multiplication by @ and addition of b

Washington University in St. Louis CSE571S

©2014 Raj Jain

7-7

Blum Blum Shub Generator

QO Use least significant bit from 1terative equation:
» X, = X; ;2 mod n
» where n=p.q, and primes p, g=3 mod 4
Unpredictable, passes next-bit test
Security rests on difficulty of factoring N
Is unpredictable given any run of bits
Slow, since very large numbers must be used
Too slow for cipher use, good for key generation

C 0000

Washington University in St. Louis CSES71S ©2014 Raj Jain

7-8

Random & Pseudorandom
Number Generators

Source of
true
randomness

l

Conversion
to binary

l

Random
hit stream

(a) TRNG

Washington University in St. Louis

Seed

— |

Deterministic
algorithm

l

Psendorandom
hit stream

(b) PRNG

CSES71S

Context-

gpecific
Seed values

Deterministic
algorithm

l

Psendorandom
valoe

(c) PRF

©2014 Raj Jain

7-9

Using Block Ciphers as PRNGs

O Can use a block cipher to generate random numbers for
cryptographic applications,

Q For creating session keys from master key

a CTR
X; = EglVy]
1
a OFB
_ v — v]
X; = EglX;] ¥
v b J
K — Encrypt K— Encrypt
l Y
pseudorandom bits pseudorandom bits
(a) CTR Mode (b) OFB Mode
Washington University in St. Louis CSES71S ©2014 Raj Jain

7-10

ANSI X9.17 PRG

Keys
KK

Date/Time DT,—}—| EDE

Seed Vi

1/
4
D
4

EDE

Vi1

> EDE

Washington University in St. Louis

Y
R.

Random Stream

CSES71S

Next Seed

©2014 Raj Jain

7-11

Natural Random Noise

QO Best source is natural randomness in real world
a Find a regular but random event and monitor
a Do generally need special h/w to do this

» E.g., radiation counters, radio noise, audio noise, thermal
noise in diodes, leaky capacitors, mercury discharge tubes
etc

Q Starting to see such h/w in new CPU's
O Problems of bias or uneven distribution in signal

» Have to compensate for this when sample, often by passing
bits through a hash function

» Best to only use a few noisiest bits from each sample
» RFC4086 recommends using multiple sources + hash

Washington University in St. Louis CSES71S ©2014 Raj Jain

7-12

Stream Ciphers

O Process message bit by bit (as a stream)
O A pseudo random keystream XOR’ed with plaintext bit by bit
C;, = M; XOR StreamKey;

O But must never reuse stream key otherwise messages can be

Key Key

K K

A4 Y

Pseudorandom byte Pseudorandom byte
generator generator
(key stream generator) (key stream generator)
v k v k
Plaintext T . Ciphertext LT Plaintext
byte stream AL/ "byte stream AL/ %yte stream
M ENCRYPTION C DECRYPTION M

Washington University in St. Louis

CSES71S

©2014 Raj Jain

7-13

RC4

A proprietary cipher owned by RSA DSI

Another Ron Rivest design, simple but effective
Variable key size, byte-oriented stream cipher
Widely used (web SSL/TLS, wireless WEP/WPA)

Key forms random permutation of all 8-bit values

U O 0 0 0O O

Uses that permutation to scramble input info processed a byte
at a time

Washington University in St. Louis CSES71S ©2014 Raj Jain

7-14

RC4 Key Schedule

a Start with an array S of numbers: 0..255
a Use key to well and truly shuffle

O S forms internal state of the cipher
for1=0to 255 do

S[i] =i

T[1] = K[1 mod keylen])

1=0

for1=0to 255 do
7= + S[i] + T[1]) (mod 256)
swap (S[1], S[j])

Washington University in St. Louis

CSES71S

©2014 Raj Jain

7-15

RC4 Encryption

Q Encryption continues shuffling array values

O Sum of shuffled pair selects "stream key" value from
permutation

O XOR S[t] with next byte of message to en/decrypt
1i=7=0
for each message byte M.
1=(1+1) (mod 256)
1= * S[1]) (mod 256)
swap(S[i], S[j])
t = (S[1] + S[j]) (mod 256)
C, =M. XOR S[t]

Washington University in St. Louis CSES71S ©2014 Raj Jain

7-16

RC4 Overview

Slofl1]2]|3]|4 s 253| 254|255
= keylen =
K -ae
L J L J L J L J L J L} L} L} L} 4‘ L J L J L J L J +
T - .. - " a - .. - " e

{(a) Initial state of S and T

T P Tm—l e

i=J+S[il+ T[]

S ees S[i]—T ans S[jl

* i r Swa

&

Y

LN]

{(b) Initial permutation of §

» j=i+Siil >

S vee s si| +-- [sm] .-
< i > "\'\‘M l
- t = Sfi] + S[j] .

(c) Stream Generation

Washington University in St. Louis CSES71S ©2014 Raj Jain

7-17

1. Pseudorandom number generators use a seed and a formula to
generate the next number

2. Stream ciphers xor a random stream with the plain text.

3. RC4 i1s a stream cipher

Washington University in St. Louis CSES71S ©2014 Raj Jain

7-18

Homework 7

a. Find the period of the following generator using seed x,=1:
r, = 5x,_1 mod 2°
b. Now repeat part a with seed x, =2

c. What RC4 key value will leave S unchanged during
initialization? That 1s, after the initial permutation of S, the
entries of S will be equal to the values from 0 through 255 in
ascending order.

Washington University in St. Louis CSES71S ©2014 Raj Jain

7-19

	Pseudorandom Number Generation and Stream Ciphers
	Overview
	Pseudo Random Numbers
	A Sample Generator
	Terminology
	Linear-Congruential Generators
	 Linear-Congruential Generators (Cont)
	Blum Blum Shub Generator
	Random & Pseudorandom Number Generators
	Using Block Ciphers as PRNGs
	ANSI X9.17 PRG
	Natural Random Noise
	Stream Ciphers
	RC4
	RC4 Key Schedule
	RC4 Encryption
	RC4 Overview
	Summary
	Homework 7

