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OverviewOverview

1.

 

Prime numbers
2.

 

Fermat’s and Euler’s Theorems
3.

 

Testing for primality
4.

 

The Chinese Remainder Theorm
5.

 

Discrete Logarithms
These slides are partly based on Lawrie BrownLawrie Brown’’s s slides supplied with  William Stallings’s 
book “Cryptography and Network Security: Principles and Practice,”

 

6th

 

Ed, 2013.
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Fermat's Little TheoremFermat's Little Theorem



 

Given a prime number p:
ap-1

 

= 1 (mod p)
For all integers a≠p

Or
ap

 

= a (mod p)


 

Example:


 

14

 

mod 5=1 


 

24

 

mod 5=1 


 

34

 

mod 5=1 


 

44

 

mod 5=1
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Euler Euler TotientTotient
 

Function Function øø(n(n))



 

When doing arithmetic modulo n  complete set of residues
 

is: 
0..n-1



 

Reduced set of residues
 

is those residues which are relatively 
prime to n, e.g., for n=10, 
complete set of residues is {0,1,2,3,4,5,6,7,8,9} 
reduced set of residues is {1,3,7,9} 



 

Number of elements in reduced set of residues is called the 
Euler Totient

 
Function ø(n)



 

In general need prime factorization, but


 

for p (p prime) ø(p)=p-1


 

for p.q
 

(p,q
 

prime)   ø(p.q)=(p-1)x(q-1)


 

Examples: ø(37) = 36
ø(21) = (3–1)x(7–1) = 2x6 = 12
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Euler's TheoremEuler's Theorem



 

A generalisation of Fermat's Theorem 


 

aø(n)

 

= 1 (mod n)


 

for any a, n
 

where gcd(a,n)=1


 

Example:
a=3; n=10; ø(10)=4; 

hence 34 = 81 = 1 mod 10
a=2; n=11; ø(11)=10;

hence 210 = 1024 = 1 mod 11


 

Also have: aø(n)+1

 

= a
 

(mod n)
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Miller Rabin Algorithm for Miller Rabin Algorithm for PrimalityPrimality


 

A test for large primes based on 
Fermat’s Theorem



 

TEST (n) is:
1. Find integers k, q, k > 0, q odd, 

so that (n–1)=2kq
2. Select a random integer a, 
1<a<n–1

3. if aq

 

mod n = 1

 

then return 
(“inconclusive");

4. for j = 0 to k – 1 do
5. if

 

(a2jq

 

mod n = n-1)
then return(“inconclusive")

6. return (“composite")


 

If inconclusive after t tests with 
different a’s:

 
Probability (n is Prime after t

 

tests)

 
= 1-

 

4-t



 

E.g., for t=10 this probability is > 
0.99999

aq

 

mod n = 1?

(aq)2

 

mod n = n-1?

(aq)4

 

mod n = n-1?

In
co

nc
lu

si
ve

Composite

Y

Y

Y

Y(aq)2
k−1

mod n = n-1?

aq

 

mod n = n-1?
Y
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Miller Rabin Algorithm ExampleMiller Rabin Algorithm Example


 

Test 29 for primality


 

29-1 = 28 = 227 = 2kq  k=2, q=7


 

Let a = 10 


 

107

 

mod 29 = 17


 

172

 

mod 29 = 28  Inconclusive


 

Test 221 for primality


 

221-1=220=22

 

55


 

Let a=5


 

555

 

mod 221 =112


 

1122 mod 221 =168  Composite
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Prime DistributionPrime Distribution



 

Prime numbers: 1 2 3 5 7 11 13 17 19 23 29 31


 

Prime number theorem states that primes occur roughly every 
(ln

 
n) integers



 

But can immediately ignore even numbers


 

So in practice need only test 0.5 ln(n) numbers of size n to 
locate a prime


 

Note this is only the “average”


 

Sometimes primes are close together


 

Other times are quite far apart



8-9
©2014 Raj JainCSE571SWashington University in St. Louis

Chinese Remainder TheoremChinese Remainder Theorem


 

If working modulo a product of numbers 


 

E.g., mod M = m1

 

m2

 

..mk


 

Chinese Remainder theorem lets us work in each moduli
 

mi 
separately 



 

Since computational cost is proportional to size, this is faster



 

Example: 452 mod 105 
= (452 mod 3)(105/3){(105/3)-1

 

mod 3}

 
+(452 mod 5)(105/5){(105/5)-1

 

mod 5} 
+(452 mod 7)(105/7){(105/7)-1

 

mod 7} 
= 235(35-1

 

mod 3) +2x21(21-1

 

mod 5) +415(15-1

 

mod 7) 
= 2352 +2211 +4151 
= (140+42+60) mod 105 = 242 mod 105 = 32

A mod M =

kX
i=1

(A mod mi)
M

mi

Ã·
M

mi

¸−1
mod mi

!
35-1 =x mod 3
35x=1 mod 3  x=2
21x=1 mod 5  x=1
15x=1 mod 7  x=1
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Chinese Remainder TheoremChinese Remainder Theorem


 

Alternately, the solution to the following equations:
x

 
= a1

 

mod m1

x
 

= a2

 

mod m2

x
 

= ak

 

mod mk

where m1

 

, m2

 

, ... , mk

 

are relatively prime is found as follows:
M = m1

 

m2

 

... Mk

 

then

x =

kX
i=1

ai
M

mi

Ã·
M

mi

¸−1
mod mi

!
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Chinese Remainder TheoremChinese Remainder Theorem
 

ExampleExample


 

For a parade, marchers are arranged in columns of seven, but one

 

person is 
left out. In columns of eight, two people are left out. With columns of nine, 
three people are left out. How many marchers are there?

Ref: http://demonstrations.wolfram.com/ChineseRemainderTheorem/

x = 1 mod 7
x = 2 mod 8
x = 3 mod 9
N = 7× 8× 9 = 504
x =

³
1× 504

7 × £ 5047 ¤−17 + 2× 504
8 × £5048 ¤−18

+3× 504
9 × £ 5049 ¤−19 ´

mod 7× 8× 9
= (1× 72× (72−1 mod 7) + 2× 63× (63−1 mod 8)

+3× 56× (56−1 mod 9)) mod 504
= (1× 72× 4 + 2× 63× 7 + 3× 56× 5) mod 504
= (288 + 882 + 840) mod 504
= 2010 mod 504
= 498

http://demonstrations.wolfram.com/ChineseRemainderTheorem/
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Primitive RootsPrimitive Roots



 

From Euler’s theorem have aø(n)mod
 

n=1 


 

Consider am = 1 (mod n), GCD(a,n)=1


 

For some a’s, m can smaller than
 

ø(n)


 

If the smallest m is ø(n)
 

then a
 

is called a primitive root


 

If n
 

is prime, then successive powers of a
 

"generate" the group 
mod n



 

These are useful but relatively hard to find 
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Powers mod 19Powers mod 19



 

2, 3, 10, 13, 14, 15 are primitive roots of 19
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Discrete LogarithmsDiscrete Logarithms



 

The inverse problem to exponentiation is to find the The inverse problem to exponentiation is to find the discrete discrete 
logarithmlogarithm

 
of a number modulo p of a number modulo p 



 

That is to find That is to find ii
 

such that such that b = b = aaii

 

(mod p)(mod p)



 

This is written as This is written as i = i = dlogdlog

 
aa

 

b (mod p)b (mod p)



 

If If aa
 

is a primitive root then it always exists, otherwise it may is a primitive root then it always exists, otherwise it may 
not, e.g.,not, e.g.,
x = logx = log33

 

4 mod 13 has no answer 4 mod 13 has no answer 
x = logx = log22

 

3 mod 13 = 4 by trying successive powers 3 mod 13 = 4 by trying successive powers 


 

While exponentiation is relatively easy, finding discrete While exponentiation is relatively easy, finding discrete 
logarithms is generally a logarithms is generally a hardhard

 
problem problem 
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Discrete Logarithms Discrete Logarithms mod 19mod 19
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SummarySummary

1.

 

Fermat’s little theorem: ap-1=1 mod p
2.

 

Euler’s Totient
 

Function ø(p) =
 

# of a<p relative prime to p
3.

 

Euler’s Theorem: aø(p)

 

=1 mod p
4.

 

Primality
 

Testing: n-1=2kq, aq=1, a2q=n-1, …,            =n-1
5.

 

Chinese Remainder Theorem: x=ai

 

mod mi

 

, i=1,…,k, then you 
can calculate x by computing inverse of Mi

 

mod mi
6.

 

Primitive Roots: Minimum m such that am=1 mod p is m=p-1
7.

 

Discrete Logarithms: ai=b mod p  i=dlogb,p

 

(a)

(aq)2
k−1
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Homework 8Homework 8

a.

 

Use Fermat’s theorem to find a number x
 

between 0 
and 22, such that x111

 
is congruent to 8 modulo 23.

 Do not use bruteforce
 

searching.
b.

 

Use Miller Rabin test to test 19 for primality
c.

 

X = 2 mod 3 = 3 mod 5 = 5 mod 7, what is x?
d.

 

Find all primitive roots of 11
e.

 

Find discrete log of 17 base 2 mod 29
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