Wireless Protocols for IoT Part I: Bluetooth and Bluetooth Smart

Raj Jain
Professor of CSE
Washington University in Saint Louis
Saint Louis, MO 63130

Jain@cse.wustl.edu

Audio/Video recordings of this class lecture are available on-line at:

http://www.cse.wustl.edu/~jain/cse574-18/

- 1. Bluetooth: Packet Format, Energy Management
- 2. Bluetooth Protocol Stack, Application Profiles
- 3. Bluetooth LE: Protocol Stack, PHY, MAC
- 4. Bluetooth and WiFi Coexistence

Note: This is 1st in a series of lectures on WPANs. ZigBee and other networks are discussed in subsequent lectures.

Bluetooth

- Started with Ericsson's Bluetooth Project in 1994 for radiocommunication between cell phones over short distances
- Named after Danish king Herald Blatand (AD 940-981) who was fond of blueberries
- □ Intel, IBM, Nokia, Toshiba, and Ericsson formed Bluetooth SIG in May 1998
- □ Version 1.0A of the specification came out in late 1999.
- IEEE 802.15.1 approved in early 2002 is based on Bluetooth Later versions handled by Bluetooth SIG directly
- Key Features:
 - > Lower Power: 10 mA in standby, 50 mA while transmitting
 - > Cheap: \$5 per device
 - > Small: 9 mm² single chips

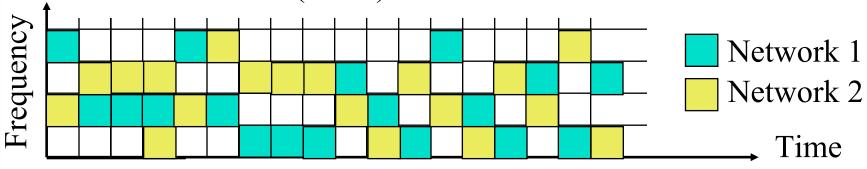
Washington University in St. Louis

Bluetooth Versions

- □ Bluetooth 1.1: IEEE 802.15.1-2002
- Bluetooth 1.2: IEEE 802.15.1-2005. Completed Nov 2003. Extended SCO, Higher variable rate retransmission for SCO + Adaptive frequency hopping (avoid frequencies with interference).
- Bluetooth 2.0 + Enhanced Data Rate (EDR) (Nov 2004): 3 Mbps using DPSK. For video applications. Reduced power due to reduced duty cycle
- □ Bluetooth 2.1 + EDR (July 2007): Secure Simple Pairing to speed up pairing
- Bluetooth 3.0+ High Speed (HS) (April 2009): 24 Mbps using WiFi PHY + Bluetooth PHY for lower rates
- Bluetooth 4.0 (June 2010): Low energy. Smaller devices requiring longer battery life (several years). New incompatible PHY. Bluetooth Smart or BLE
- □ Bluetooth 4.1: 4.0 + Core Specification Amendments (CSA) 1, 2, 3, 4
- Bluetooth 4.2 (Dec 2014): Larger packets, security/privacy, IPv6 profile

Ref: ITL, "Security of Bluetooth Systems and Devices," http://csrc.nist.gov/publications/nistbul/august-2012 itl-bulletin.pdf
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/
©2018 Raj Jain


Bluetooth 5

- 2X Data rate using a new modulation
- □ 4X range using a special coding
- 8X broadcast capacity by changing the advertising procedure
- □ +20 dBm transmit power available

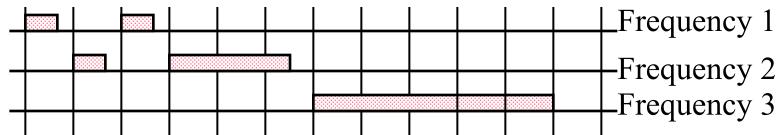
Ref: Rohde & Schwarz, "Bluetooth phusicall layer evolution: From cable replacement to the IoT," http://www.rohde-schwarz.com/appnote/1MA108

Bluetooth: Details

- □ Frequency Range: 2402 2480 MHz (total 79 MHz band) 23 MHz in some countries, e.g., Spain
- □ **Data Rate:** 1 Mbps using 1 MHz (Nominal) 720 kbps (User)
- □ Radio Frequency hopping: $1600 \text{ times/s} \Rightarrow 625 \text{ ms/hop}$
- Security: Challenge/Response Authentication. 128b Encryption
- **■** TX Output Power:
 - ➤ Class 1: 20 dBm Max. (0.1W) 100m
 - > Class 2: 4 dBm (2.5 mW)
 - > Class 3: 0 dBm (1mW) 10m

Ref: http://www.bluetooth.com/, http://grouper.ieee.org/groups/802/15/index.html
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

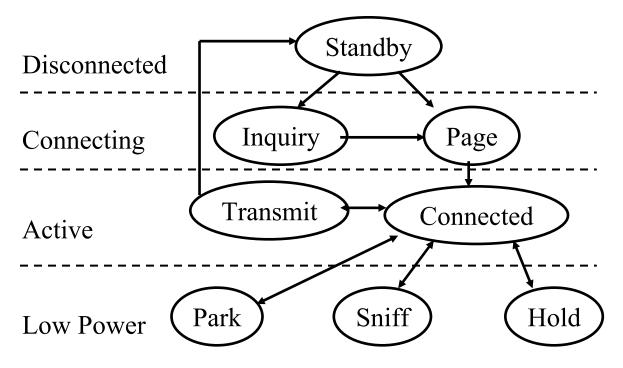

Piconet

- □ Piconet is formed by a master and many slaves
 - > Up to 7 active slaves. Slaves can only transmit when requested by master
 - > Up to 255 Parked slaves
- Active slaves are polled by master for transmission
- □ Each station gets a 8-bit parked address
 ⇒ 255 parked slaves/piconet
- □ The parked station can join in 2ms.
- Other stations can join in more time.
- Scatter net: A device can participate in multiple Pico nets ⇒ Timeshare and must synchronize to the master of the current piconet. Routing protocol not defined.

Ref: P. Bhagwat, "Bluetooth Technology for short range wireless Apps," IEEE Internet Computing, May-June 2001, pp. 96-103, bluetooth.pdf (Must read)

http://www.cse.wustl.edu/~jain/cse574-18/

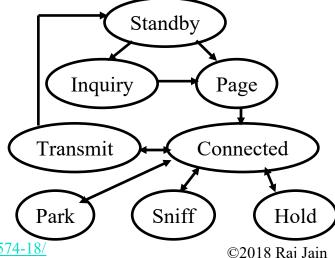
Frequency Hopping Sequences


- □ 625 ms slots using a 312.5 ms clock
- □ Time-division duplex (TDD)
 - ⇒ Downstream and upstream alternate
- Master starts in even numbered slots only.
- Slaves start in odd numbered slots only
- Slaves can transmit in one slot right after receiving a packet from master
- \square Packets = 1 slot, 3 slot, or 5 slots long
- □ The frequency hop is skipped during a packet.

Bluetooth Packet Format

	Baseband/Link	
Code	Control Header	Payload
72b	54b	0-2745b

- □ Packets can be up to five slots long. 5 slots =3125 bits.
- Access codes:
 - > Channel access code identifies the piconet
 - > Device access code for paging requests and response
 - > Inquiry access code to discover units
- Header: member address (3b), type code (4b), flow control, ack/nack (1b), sequence number, and header error check (8b) 18b Header is encoded using 1/3 rate FEC resulting in 54b
- Synchronous traffic has periodic reserved slots.
- Other slots can be allocated for asynchronous traffic

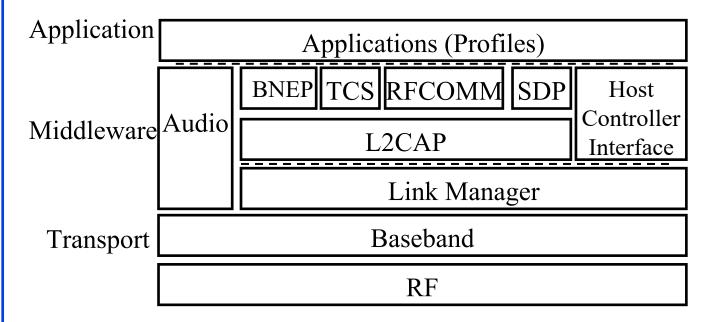

Bluetooth Operational States

- Standby: Initial state
- Inquiry: Master sends an inquiry packet. Slaves scan for inquiries and respond with their address and clock after a random delay (CSMA/CA)

Bluetooth Operational States (Cont)

- Page: Master in page state invites devices to join the piconet. Page message is sent in 3 consecutive slots (3 frequencies). Slave enters page response state and sends page response including its device access code.
- Master informs slave about its clock and address so that slave can participate in piconet. Slave computes the clock offset.
- **Connected**: A short 3-bit logical address is assigned
- **Transmit**:

Energy Management in Bluetooth


Three inactive states:

- Hold: No Asynchronous Connection List (ACL). Synchronous Connection Oriented (SCO) continues.
 Node can do something else: scan, page, inquire
- 2. Sniff: Low-power mode. Slave listens after fixed sniff intervals
- 3. Park: Very Low-power mode. Gives up its 3-bit active member address and gets an 8-bit parked member address. Wake up periodically and listen to beacons. Master broadcasts a train of beacons periodically

Sniff

Bluetooth Protocol Stack

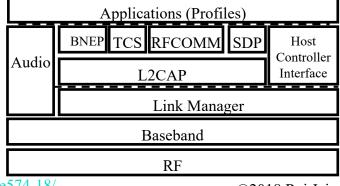
- RF: Frequency hopping Gaussian Frequency Shift Keying (GFSK) modulation
- **Baseband**: Frequency hop selection, connection, MAC

http://w

http://www.cse.wustl.edu/~jain/cse574-18/

Baseband Layer

- Each device has a 48-bit IEEE MAC address
- □ 3 parts:
 - \triangleright Lower address part (LAP) 24 bits
 - ➤ Upper address part (UAP) 8 bits
 - > Non-significant address part (NAP) 16 bits
- UAP+NAP = Organizationally Unique Identifier (OUI) from IEEE
- □ LAP is used in identifying the piconet and other operations
- □ Clock runs at 3200 cycles/sec or 312.5 ms (twice the hop rate)

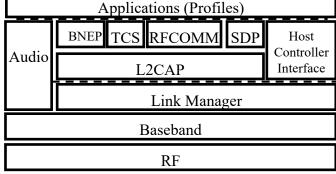

Upper Address Part	Non-sig. Address Part	Lower Address Part
8b	16b	24b

Bluetooth Protocol Stack (Cont)

- □ Link Manager: Negotiate parameters, Set up connections
- □ Logical Link Control and Adaptation Protocol (L2CAP):
 - Protocol multiplexing
 - Segmentation and reassembly
 - > Controls peak bandwidth, latency, and delay variation
- □ Host Controller Interface: Chip independent interface to Bluetooth chip. Allows same software to run on all chips.
- □ **RFCOMM Layer**: Presents a virtual serial port

Sets up a connection to another RFCOMM

■ Service Discovery Protocol (SDP):
Devices can discover the services
offered and their parameters


http://www.cse.wustl.edu/~jain/cse574-18/

Bluetooth Protocol Stack (Cont)

- Bluetooth Network Encapsulation Protocol (BNEP): To transport Ethernet/IP packets over Bluetooth
- □ IrDA Interoperability protocols: Allow existing IrDA applications to work w/o changes. IrDA object Exchange (IrOBEX) and Infrared Mobile Communication (IrMC) for synchronization
- Audio is carried over 64 kbps over SCO links over baseband
- □ Telephony control specification binary (TCS-BIN): Call control including group management (multiple extensions, call forwarding and group sells)

forwarding, and group calls)

■ **Application Profiles**: Set of algorithms, options, and parameters.

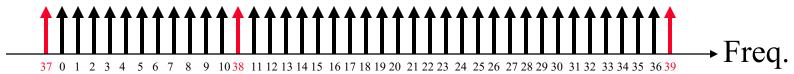
Application Profile Examples

- Headset Profile
- Global Navigation Satellite System Profile
- Hands-Free Profile
- □ Phone Book Access Profile
- □ SIM Access Profile
- Synchronization Profile
- Video Distribution Profile
- Blood Pressure Profile
- Cycling Power Profile
- □ Find Me Profile
- Heart Rate Profile
- Basic Printing Profile
- Dial-Up Networking Profile
- □ File Transfer Profile

Ref: Bluetooth SIGn, "Adopted Bluetooth Profiles, Services, Protocols and Transports," https://www.bluetooth.org/en-us/specification/adopted-specifications

Washington University in St. Louis

Bluetooth Smart

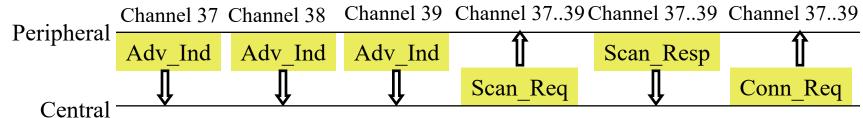

- □ Low Energy: 1% to 50% of Bluetooth classic
- For short broadcast: Your body temperature, Heart rate, Wearables, sensors, automotive, industrial.

 Not for voice/video, file transfers, ...
- □ Small messages: 1Mbps data rate but throughput not critical.
- Battery life: In years from coin cells
- □ Simple: Star topology. No scatter nets, mesh, ...
- □ Lower cost than Bluetooth classic
- New protocol design based on Nokia's WiBree technology Shares the same 2.4GHz radio as Bluetooth
 - \Rightarrow Dual mode chips
- □ All new smart phones (iPhone, Android, ...) have dual-mode chips

Washington University in St. Louis

Bluetooth Smart PHY

- □ 2.4 GHz. 150 m open field
- Star topology
- □ 1 Mbps Gaussian Frequency Shift Keying Better range than Bluetooth classic
- Time Time FSK GFSK
- Adaptive Frequency hopping. 40 Channels with 2 MHz spacing.
- □ 3 channels reserved for advertizing and 37 channels for data
- Advertising channels specially selected to avoid interference with WiFi channels

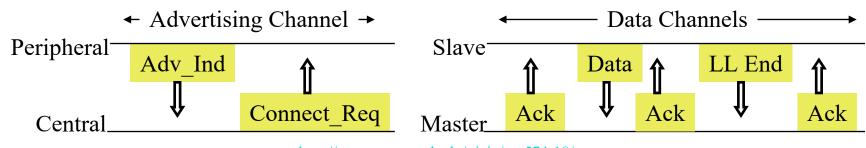

Ref: J. Decuir, "Bluetooth 4.0: Low Energy," 2010,

 $\underline{https://californiaconsultants.org/wp\text{-}content/uploads/2014/05/CNSV\text{-}1205\text{-}Decuir.pdf}$

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-18/

Bluetooth Smart MAC

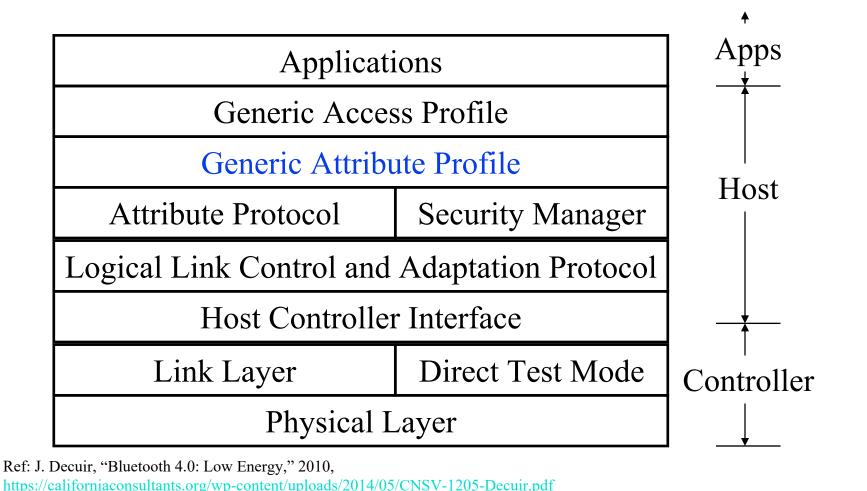
- ☐ Two Device Types: "Peripherals" simpler than "central"
- ☐ Two PDU Types: Advertising, Data
- □ Non-Connectable Advertising: Broadcast data in clear
- □ **Discoverable Advertising**: Central may request more information. Peripheral can send data without connection
- □ **General Advertising**: Broadcast presense wanting to connect. Central may request a short connection.
- □ **Directed Advertising**: Transmit signed data to a previously connected master


Ref: J. Decuir, "Bluetooth 4.0: Low Energy," 2010,

https://californiaconsultants.org/wp-content/uploads/2014/05/CNSV-1205-Decuir.pdf

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-18/

Bluetooth Smart MAC (Cont)


- After connecting, master tells slave about hopping sequence and wake up cycle
- All subsequent data transfers in 37 data channels
- Both devices can sleep between transactions
- Data can be encrypted.
- \sim 3 ms per transaction, 15 mW Power = 10 mA using 1.5V
 - \Rightarrow 30mAs/transaction
 - ⇒ 21.6 M transactions using 180 mAh battery
 - \Rightarrow 41.1 years with 1 transaction/minute

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Bluetooth Smart Protocol Stack

Washington University in St. Louis

Generic Attribute (GATT) Profile

- Defines data formats and interfaces with the Attribute Protocol
- □ Type-Length-Value (TLV) encoding is used
- Each attribute has a 16-bit Universally Unique ID (UUID) standardized by Bluetooth SIG
- □ 128-bit UUID if assigned by a manufacturer
- Allows any client to find a server, read/write data Allows servers to talk to generic gateways
- Allows security up to AES-128
- Each to encode in XML
- Makes profile (application) development easier

Bluetooth Gateway Devices

- □ A gateway device helps connect a Bluetooth device to the Internet. Smart phone, Tablets, PC, ...
- A generic app can forward the data to the URL sent by the device

Bluetooth Smart Applications

- □ Proximity: In car, In room 303, In the mall
- □ Locator: Keys, watches, Animals
- ☐ Health devices: Heart rate monitor, physical activities monitors, thermometer
- Sensors: Temperature, Battery Status, tire pressure
- □ Remote control: Open/close locks, turn on lights

Ref: E. Vlugt, "Bluetooth Low Energy, Beacons and Retail," Verifone White paper, 2013, 12 pp.,

https://www.slideshare.net/verifone/bluetooth-low-energy-beacons-and-retail-final

Washington University in St. Louis

Beacons

- Advertizing based on proximity
- □ Peripherals (your phone) broadcasts its presence if Bluetooth is turned on
- Primary aim of these broadcasts is to allow device discovery
- Advertising packets consist of a header and max 27B of payload with multiple TLV-encoded data items
 - > May include signal strength Þ Distance
- □ iOS7 iPhones can send/received iBeacons
- Can be used for customized advertising, indoor location, geofencing
- PayPal uses this to identify you.You can pay using a PIN and your phone.

Summary

- 1. Bluetooth basic rate uses frequency hoping over 79 1-MHz channels with 1, 3, 5 slots packets.
- 2. Three inactive states: hold, sniff, park. Has a fixed set of applications called "Profiles"
- 3. Bluetooth and WiFi co-exist by time-sharing or adaptive frequency notching
- 4. Bluetooth Smart is designed for short broadcasts by sensors. 40 2-MHz channels with 3 channels reserved for advertising. One or two-message exchanges
- 5. Generic attribute profile allows new applications using UUID for data types

Homework 11

Assume that in one slot in Bluetooth 256 bits of payload could be transmitted. How many slots are needed if the payload size is (a) 512 bits, (b) 728 bits, and (c) 1024 bits. Assume that the non-payload portions do not change.

Reading List: Bluetooth

- Kevin Townsend, Carles Cufi, Akiba, Robert Davidson, "Getting Started with Bluetooth Low Energy," O'Reilly Media, Inc., May 2014, 180 pp., ISBN:978-1-4919-4951-1 (Safari Book), Chapter 2.
- □ J. Decuir, "Bluetooth 4.0: Low Energy," 2010, 62 pp., https://californiaconsultants.org/wp-content/uploads/2014/05/CNSV-1205-Decuir.pdf
- E. Vlugt, "Bluetooth Low Energy, Beacons and Retail," Verifone White paper, 2013, 12 pp., https://www.slideshare.net/verifone/bluetooth-low-energy-beacons-and-retail-final
- P. Bhagwat, "Bluetooth Technology for short range wireless Apps," IEEE Internet Computing, May-June 2001, pp. 96-103, http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?arnumber=93518
- □ Logitech, "Bluetooth FAQ," http://www.logitech.com/images/pdf/userguides/bluetooth-faq.pdf

References

- □ Bluetooth SIG, http://www.bluetooth.com/lowenergy
- Bluetooth SIG, "BLUETOOTH 4.1 Features and Technical Description," 2013,
 - https://www.bluetooth.org/enus/Documents/Bluetooth%204.1%20Technical%20Description.pdf
- Bluetooth SIG, "Adopted Bluetooth Profiles, Services, Protocols and Transports," https://www.bluetooth.org/en-us/specification/adopted-specifications
- □ <u>http://whatis.techtarget.com/definition/Bluetooth-20EDR</u>
- □ ITL, "Security of Bluetooth Systems and Devices," http://csrc.nist.gov/publications/nistbul/august-2012_itl-bulletin.pdf
- E. Ferro and F. Potorti, ""Bluetooth and Wi-Fi wireless protocols: a survey and a comparison", Volume: 12 Issue: 1, Pages: 12-26, IEEE Wireless Communications, 2005,
 - http://ieeexplore.ieee.org/iel5/7742/30466/01404569.pdf?tp=&arnumber=14 04569&isnumber=30466

References (Cont)

- □ P. McDermott-Wells, "What is Bluetooth?", Volume 23, Issue 5, Page(s):33 35, IEEE Potentials, 2005, http://ieeexplore.ieee.org/iel5/45/29958/01368913.pdf?tp=&arnumber=1368913&isnumber=29958
- K.V.S.S.S. Sairam, N. Gunasekaran, and S.R. Redd,
 "Bluetooth in wireless communication" Volume 40, Issue 6,
 Page(s):90 96, IEEE Communications Magazine, June 2002,
 http://ieeexplore.ieee.org/iel5/35/21727/01007414.pdf?tp=&arnumber=1007414&isnumber=21727
- B. Chatschik, "An overview of the Bluetooth wireless technology", Volume 39, Issue 12, Page(s):86 94, IEEE Communications Magazine, 2001, http://ieeexplore.ieee.org/iel5/35/20896/00968817.pdf?tp=&arnumber=968817&isnumber=20896

Acronyms

ACL Asynchronous Connection List

□ AD Anno Domini (Latin for *in the year of the Lord*)

□ AES-128 Advanced Encryption Standard w 128 bit keys

□ BIN Binary

□ BLE Bluetooth Low Energy

■ BNEP Bluetooth Network Encapsulation Protocol

CAP Connection Access Profile

CSA Core Specification Amendment

□ dBm Deci-bel milli-watt

DPSK Differential Phase Shift Keying

□ EDR Enhanced Data Rate,

□ FEC Forward Error Correction

□ FSK Frequency Shift Keying

□ GATT Generic Attribute

□ GFSK Gaussian Frequency Shift Keying

☐ GHz Giga Hertz

HS High Speed,

Washington University in St. Louis

□ IBM International Business Machines

□ ID Identifier

□ IEEE Institution of Electrical and Electronics Engineers

iOS Apple's idevices Operating System

□ IoT Internet of Things

□ IP Internet Protocol

□ IPv6 Internet Protocol version 6

□ IrDA Infrared Data Association

□ IrMC Infrared Mobile Communications

□ IrOBEX Infrared Object Exchange

LAN Local Area Network

□ LAP Lower address part

□ LE Low Energy

□ LL Logical Link

MAC Media Access Control

MAN Metropolitan Area Network

Washington University in St. Louis

MHz
Mega Hertz

□ mW milli Watt

□ NAP Non-significant address part

OUI Organizationally Unique Identifier

PAL Protocol Adaptation Layer

PC Personal Computer

PDU Protocol Data Unity

PHY Physical Layer

PIN Personal Identification Number

□ RF Radio Frequency

□ RFCOMM Radio Frequency Communication

□ RFID Radio Frequency Identifier

SCO Synchronous Connection Oriented

□ SDP Service Discovery Protocol

□ SG Study Group

□ SIG Special Interest Group

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

□ SIM Subscriber Identity Module

□ TCS Telephony Control Specification

□ TDD Time-division duplex

□ TLV Type-Length-Value

□ TV Television

□ TX Transmit

□ UAP Upper address part

□ UCD Unicast Connectionless Data

URL Uniform Resource Locator

□ UUID Universally Unique Identifier

□ uW Micro-Watt

WAN
Wide Area Network

□ WBS Wide Band Speed

■ WiFi Wireless Fidelity

□ WiMax Worldwide Interoperability for Microwave Access

WPAN Wireless Personal Area Networks

WRAN Wireless Regional Area Network

XML Extensible Markup Language

Scan This to Download These Slides

Raj Jain http://rajjain.com

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Recent Advances in Networking (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/