Supplement to Wireless LANs

Part II: 802.11a/b/g/n/ac

Raj Jain

Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130

Jain@cse.wustl.edu

Audio/Video recordings of this class lecture are available at:

http://www.cse.wustl.edu/~jain/cse574-20/

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

- 1. Wi-Fi Generations
- 2. Wi-Fi 6
- 3. White-Fi or Super Wi-Fi
- 4. Wi-Fi HaLow
- 5. Other upcoming standards

Note: This is a supplement to Modules 5 and 6 on Wi-Fi. All modules are available on the course URL below.

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

Wi-Fi Generations

- □ 802.11n vs 802.11ac
- General public has no idea of which one of these is superior
- Wi-Fi Alliance: Wi-Fi Interoperability and Marketing organization solved it by assigning generations 1=2 Mbps, 2=11 Mbps, 3=56 Mbps, ...
- Wi-Fi Alliance renamed 802.11n and 802.11ac retroactively as Wi-Fi 4, Wi-Fi 5
- □ Similar to 4G/5G, Bluetooth 4.0/Bluetooth 5.0, ...
- □ Wi-Fi 4: IEEE 802.11n Wi-Fi 5: IEEE 802.11ac
- Easier for public to remember when comparing products with different versions of Wi-Fi
- Most products were developed before the name Wi-Fi 5 was announced. So all products still say 802.11n and 802.11ac

 $Ref: \underline{https://www.duckware.com/tech/wifi-in-the-us.html}\\$

Washington University in St. Louis

nttp://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

Wi-Fi 6

- ☐ IEEE P802.11ax: Named Wi-Fi 6 by Wi-Fi Alliance
- ☐ To be fully approved by IEEE in September 2020
- More efficient $802.11ac \Rightarrow 4 \times Throughput$
- \square 1/4th subcarrier spacing \Rightarrow 4 × subcarriers
 - \geq 20 MHz = 4 × 64 = 256 subcarriers
 - \gt 40 MHz = 4 × 128 = 512 subcarriers
 - \gt 80 MHz = 4 × 256 = 1024 subcarriers
 - \geq 160 MHz = 4 \times 512 = 2048 subcarriers
- \square 1/4th subcarrier spacing \Rightarrow 4 × symbol size (in time)
 - \geq 4 × 32. μ s = 12.8 μ s \Rightarrow More inter-symbol interference

Ref: E. Khorov, A. Kiryanov, A. Lyakhov and G. Bianchi, "A Tutorial on IEEE 802.11ax High Efficiency WLANs," in *IEEE Communications Surveys & Tutorials*, vol. 21, no. 1, pp. 197-216, Firstquarter 2019, https://ieeexplore.ieee.org/document/8468986

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

Wi-Fi 6E

- □ Wi-Fi 6 extended to 6 GHz band
- More contiguous Spectrum: FCC approved all 1200
 MHz spectrum at 6 GHz for unlicensed use
 - ⇒ 14 additional 80 MHz channels or 7 160 MHz channels
- \square Wider Channels \Rightarrow Less queueing \Rightarrow Low latency
- \square Shorter range \Rightarrow Less Interference

Student Questions

Ref: https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-6

White-Fi or Super Wi-Fi

- □ IEEE 802.11af-2014
- □ Operates in TV white spaces in 54 and 790 MHz.
- Uses cognitive radio technology
- Stations determine their position using GPS to determine what bands are available in that location and use it while the TV station is not transmitting
- □ Lower frequency \Rightarrow Longer range than 11-11ax
- □ 26.7 Mbps to 568.9 Mbps
- □ Significant market confusion with popular 802.3af power over Ethernet capability
- \square Spectrum in USA but not globally \Rightarrow No products so far

Ref: <a href="https://www.mwrf.com/technologies/active-components/article/21846205/whats-the-difference-between-ieee-80211af-and-80211ah-a

https://en.wikipedia.org/wiki/IEEE 802.11af

washington University in St. Louis

____j Jai

Wi-Fi HaLow

- □ IEEE 802.11ah-2016
- □ Wi-Fi for Internet of Things (IoT)
- □ Designed for 900 MHz spectrum
- □ Can reach 3 times longer than 2.6 Ghz
- □ 900 MHz is available in USA but not globally
 - > No global standard
 - > US and proprietary products

Student Questions

Ref: https://en.wikipedia.org/wiki/IEEE_802.11ah

Wi-Fi 7

- Extremely High Throughput
- □ Bands between 1 and 7.125 GHz
- □ Study group approved in July 2018
- □ Not a Task Group yet

Student Questions

Ref: E. Khorov, I. Levitsky and I. F. Akyildiz, "Current Status and Directions of IEEE 802.11be, the Future Wi-Fi 7," in *IEEE Access*, vol. 8, pp. 88664-88688, 2020, https://ieeexplore.ieee.org/document/9090146

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

IEEE 802.11 Activities

- **P802.11ay**: Increase the data rate in 60 GHz band Enhancement of 802.11ad
- P802.11az: Next generation positioning with improved accuracy, scalability, and directionality
- □ P802.11ba: Low power control stations
- **P802.11bb**: Light Communications
- □ **P802.11bc**: Enhanced broadcase service
- **P802.11bd**: Next Generation Vehicle-to-X
- Real time applications: Latency and stability issues with mobile and multiplayer games, robotics and industrial automation

Student Questions

Summary

- 1. Wi-Fi Generations: 1=802.11, 2=11b, 3=11a/11g, 4=11n, 5=11ac, 6=11ax
- 2. Wi-Fi 6 is here. 6E is coming.
- 3. Wi-Fi 7 is in works.
- 4. White-Fi or Super Wi-Fi uses TV spectrum, but may not come.
- 5. Wi-Fi HaLow is designed for IoT but may not come.

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

Wikipedia Links

- □ https://en.wikipedia.org/wiki/IEEE_802.11
- □ https://en.wikipedia.org/wiki/IEEE_802.11ax
- □ https://en.wikipedia.org/wiki/Super Wi-Fi
- □ https://en.wikipedia.org/wiki/IEEE 802.11ah

Student Questions

http://www.cse.wustl.edu/~jain/cse574-20/

Optional Reading

- E. Khorov, A. Kiryanov, A. Lyakhov and G. Bianchi, "A Tutorial on IEEE 802.11ax High Efficiency WLANs," in *IEEE Communications Surveys & Tutorials*, vol. 21, no. 1, pp. 197-216, Firstquarter 2019, https://ieeexplore.ieee.org/document/8468986
- E. Khorov, I. Levitsky and I. F. Akyildiz, "Current Status and Directions of IEEE 802.11be, the Future Wi-Fi 7," in *IEEE Access*, vol. 8, pp. 88664-88688, 2020, https://ieeexplore.ieee.org/document/9090146

Student Questions

Scan This to Download These Slides

Raj Jain

rajjain.com/cse574-18

http://www.cse.wustl.edu/~jain/cse5/4-20/j_06lan.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n 1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e 10TiDw

Recent Advances in Networking (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain