
Wide-SIMD Parallelization of
Streaming Dataflow, with

Applications to Bioinformatics

Jeremy Buhler
For CSE 591

NSF Awards CNS-1500173, CNS-1763503

Take-Home Message

• Biological sequence analysis is a source of
high-impact computational problems

• Using SIMD parallel computing for these
problems requires dealing with irregularity

• MERCATOR is an ongoing research effort to
make irregular application development on
SIMD platforms easier.

2

Who Am I?
• I study how to accelerate high-

impact bioinformatics problems.

• One way to do this is via
parallelization on modern
architectures (FPGAs, GPUs, …)

• Along the way, many interesting CS questions…
– Streaming computation [FCCM’07, JVSP’07,M&M’09]
– Systolic array design [FPL’09,FCCM’10,ASAP’10]
– Deadlock avoidance [SPAA’10,PPoPP’12,DFM’13,JPDC’17]
– SIMD mapping [ISPDC’14,DFM’15,HPCS’17]

3

Talk Overview

• Problems: DNA comparison and read mapping

• Algorithmic approach – Why SIMD?

• MERCATOR overview and performance

• Research challenges

4

Molecular Biology is Fundamental

• Genetic basis of disease
and disease risk

• Systems biology – what
are your cells doing?

• Studying natural history
and evolution

• Engineering cells’
behavior for medicine,
industry, agriculture

5

The First Step: DNA Sequencing

• Sequencing can tell us
what is in a genome…

• … but also the basis of
experiments to probe
gene expression, protein
binding, chromosome

conformation, epigenetic marks,
polymorphism, copy number variants …

…acaggatagtaccgataccat
cacccggataggacctatgag
ggacacaggacttatggcattt… 6

7

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Bi
lli

on
s o

f D
N

A
Ba

se
s

NIH Sequence Read Archive Size
(Open Access Only)

http://www.ncbi.nlm.nih.gov/Traces/sra/

8

Problem: Classical Similarity Search

• Given
– a genome-sized or larger DNA

sequence database D
– a “query” sequence q of some

length L << |D|

• Does q appear in D with at
most k differences, and if so,
where?

9

Typical Parameters

• Database D has size 109 – 1010 bases

• Query q has size 102 – 104 bases

• # differences k is 5-25% of |q| (bases added,
deleted, changed)

10

Tools for Similarity Search

• BLAST [Altschul et al. 1990, 1996]

• BLAT [Kent 2002]

These tools use variants of same
basic search algorithm.

11

Problem: Short-Read Mapping

• Given
– a genome-sized or larger DNA

sequence database D
– N “reads” – DNA seqs of some

length L << |D|

• For each read, does it appear
in D with at most k
differences, and if so, where?

12

Typical Parameters

• Database D has size 109 – 1010 bases

• Number of reads N is 106 – 108

• Length L is 75-150 (may vary among reads)

• # differences k is 0-3 (added, deleted, changed)

13

Tools for Mapping

• Bowtie [Langmead et al. 2009, 2012]

• BWA [Li & Durbin 2009, 2010]

• SOAP2 [Li et al. 2009]

All these tools use variants of same
basic search algorithm.

14

Why Short-Read Mapping?

• Some experimental procedure selects a subset
of everything in the database

• Reads are sampled from this subset by your
sequencing machine

• Mapping tells you which parts of database are
present in your sample

15

Problem: Alignment-Free Organism ID

• Given
– a metagenome-sized DNA

sequence database D
– N microbial genomes – DNA seqs

of some length L << |D|

• For each genome, do (some of)
its sequences appear in D?

16

Alignment-Free Techniques

• Min-Hash Sketching – convert a seq to a small
sample (m ~ 1000) of hash values

• Approximate Containment: how much of (the
sketch for) a genome overlaps (the sketch for) a
metagenome?

• MASH (Ondov et al. 2016)
• SourMASH (Brown et al. 2016)

17

Talk Overview

• Problems: DNA alignment and read mapping

• Algorithmic approach – Why SIMD?

• MERCATOR overview and performance

• Research challenges

18

How BLAST Works

19

Substring

Matching

Gapped

Filter
Ungapped

Filter

SEQUENCES REMAINING

COMPUTATIONAL COST

BLAST operates as a pipeline of computational stages.

Stages of BLAST

• Stage 1: identify potential match locations
between q, D

• Stage 2: keep only those locations that look
somewhat promising

• Stage 3: keep only those locations that
actually yield high-similarity alignments

20

Generating Possible Matches

• Every place where some 11-mer from q
matches an 11-mer from D exactly is a
candidate.

• Can rapidly find all such matching locations
using hash table of 11-mers in sequence q

21

accagatacatagcactcgctacgtcagatgggtaca
gttaagtcagatgggtagactcaggatgacagtggaca

Filtering Candidates

• Uses explicit edit distance computation
between q, part of D (Smith-Waterman algo)

• Expensive dynamic programming!

• “Easy” version (substitutions only), followed
by hard version (add/delete chars allowed)

22

BLAST Parallelization

• Can generate candidates in parallel at each DB
location, then filter them in parallel.

23

Gen Candidates

Filter Ungapped

Filter Gapped

What About Read Mapping?

• Uses an index (virtual suffix tree) of database

• Matching involves tracing a path down index tree
for each read

• (must try several paths if differences are allowed)

• Can do in parallel for many reads at once!

24

Suffix Tree Example

D = acagaccaga$
0 1 2 3 4 5 6 7 8 9 10

10 $

 9 a$

 0 aca…

 4 acc…

 7 aga$

 2 agac…

 6 caga$

 5 cca…

 1 cagac…

 8 ga$

 3 gac…

A

9 0 4 7 2 6 1 5 8 3

a c g
a

$ c g
a

a
g
a

c

$ c

$ c

a c
$ c

…

…

…

…

…

…

T

25

Rapid Matching vs Suffix Tree

• Can find all
matches to a
read in D in time
proportional to
read length L.

9 0 4 7 2 6 1 5 8 3

a c g
a

$ c g
a

a
g
a

c

$ c

$ c

a c
$ c

…

…

…

…

…

…

Where is cag?

26

Rapid Matching vs Suffix Tree

• Can find all
matches to a
read in D in time
proportional to
read length L.

9 0 4 7 2 6 1 5 8 3

a c g
a

$ c g
a

a
g
a

c

$ c

$ c

a c
$ c

…

…

…

…

…

…

Where is cag?

27

Rapid Matching vs Suffix Tree

• Can find all
matches to a
read in D in time
proportional to
read length L.

9 0 4 7 2 6 1 5 8 3

a c g
a

$ c g
a

a
g
a

c

$ c

$ c

a c
$ c

…

…

…

…

…

…

Where is cag?

28

Rapid Matching vs Suffix Tree

• Can find all
matches to a
read in D in time
proportional to
read length L.

9 0 4 7 2 6 1 5 8 3

a c g
a

$ c g
a

a
g
a

c

$ c

$ c

a c
$ c

…

…

…

…

…

…

Where is cag?

29

Rapid Matching vs Suffix Tree

• Can find all
matches to a
read in D in time
proportional to
read length L.

9 0 4 7 2 6 1 5 8 3

a c g
a

$ c g
a

a
g
a

c

$ c

$ c

a c
$ c

…

…

…

…

…

…

Where is cag?

D = acagaccaga$
0 1 2 3 4 5 6 7 8 9 10

30

Extension to Inexact Matching

• To permit matches with k substitutions, try
multiple paths, but charge for each mismatch.

• To permit matches with k differences, we do
dynamic programming to compute edit distance
of read against each path in tree.

• Descent stops for a read when we hit bottom of
tree or find that path requires > k differences.

31

Parallel Alignment is a SIMD
Computation

• We process every BLAST starting loc / every
read through same filtering computation

• Single Instruction stream, Multiple Data items

Thread 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SIMD Targets

• Our work: NVIDIA GPUs
(32 SIMD lanes x 4+ threads x 2-64 cores)

• Other possibilities: any multicore with wide
vector instructions (Intel Xeon, AMD, ARM, …)

• ~All modern processors have wide SIMD!

33

Batched Traversal (Short Reads)

34 9 0 4 7 2 6 1 5 8 3

Batched Traversal

35 9 0 4 7 2 6 1 5 8 3

Batched Traversal

36 9 0 4 7 2 6 1 5 8 3

x x x

Some reads may
accumulate > k
diffs before others

Batched Traversal

37 9 0 4 7 2 6 1 5 8 3

x x x x x

Batched Traversal

38 9 0 4 7 2 6 1 5 8 3

x x x x x x

Stop descending
when all reads
either have > k
diffs or are
completely
matched with
fewer diffs

Batched Traversal

39 9 0 4 7 2 6 1 5 8 3

x x x x x x

Continue on
next branch
starting from
batch on top
of stack

Batched Traversal

40 9 0 4 7 2 6 1 5 8 3

x x x x x x

x x x x x x x x

Batched Traversal

41 9 0 4 7 2 6 1 5 8 3

x x x x x x

Batched Traversal

42 9 0 4 7 2 6 1 5 8 3

x x x x

Performance?

• Each stage of BLAST costs more but processes
less input.

• 98% of threads idle for 110/111 ms
• 1.99% of threads idle for 100/111 ms
• SIMD EFFICIENCY: 1.1%

43

Substring

Matching

Gapped

Filter
Ungapped

Filter

1 ms 10 ms 100 ms

100% 2% 0.01%

Irregular Computations

• DNA alignment is an irregular computation:
different inputs (i.e. DB locations, reads)
require different amounts of work to process.

• Antithesis of, e.g., linear algebra calculations
that are easily vectorized

• Irregular computations are highly inefficient if
naively implemented on SIMD processors.

44

The Key Problem

• How can we efficiently map irregular
computations onto a SIMD architecture?

45

Talk Overview

• Problems: DNA alignment and read mapping

• Algorithmic approach – Why SIMD?

• MERCATOR overview and performance

• Research challenges

46

47

Pause for MERCATOR demo

MERCATOR Paradigm

• Application processes a long stream of inputs

• Application graph consists of nodes
(computations), edges (data transfer)

• Data flows through graph of computations

• Irregularity: paths differ per input, each input to
a node generates 0, 1, or multiple outputs

 48

Handling Irregularity

• Each edge between nodes has a queue

• MERCATOR queues inputs to a node until
there are enough to fill all its SIMD lanes

• Node is only fired when it has “full ensemble”
of inputs in all lanes.

49

Illustration of Queues

50

Illustration of Queues

51

x

x

Illustration of Queues

52

Illustration of Queues

53

Illustration of Queues

54

x

x
x

Illustration of Queues

55

Illustration of Queues

56

Illustration of Queues

57

x

x

Illustration of Queues

58

Illustration of Queues

59

A Few Complications

• Shared Code – two or more nodes may do same
thing (e.g. Viola-Jones)

• Overhead – queueing isn’t free

• Asynchrony – must use multiple processors, each
with multiple SIMD lanes

• Ordering – are inputs processed “in order”?

60

Exploiting Shared Code

• “Module type”  CUDA code

• Multiple nodes with same function have same
module type

• We execute all nodes of a given module type in
parallel!

• [Requires pulling data from each node’s queue
concurrently]

61

Minimizing Overhead

• Queue manipulation is itself parallelized

• Easy case: “read next k inputs from queue into
threads 1..k.”

• More fun: “read k total inputs from all queues
combined into threads 1..k, and remember
which queue each input came from.”

62

Sneaky Tricks

• Parallel scan

• Branch-free binary search

• Parallel output compaction

• [exploits, maintains input ordering]

 63

Results of Synthetic Trial

64

Dealing with Asynchrony

• Shared input / output buffers

• Output order with multiple processors?

• [Need stream-synchronized signaling]

• Associative (and commutative?) reductions

65

Applications with Cycles

• App graph can have back edges

• Issue: deadlock prevention

• [topology restrictions, queueing policy]

• Order preservation?

66

Optimization Opportunities

• Parameter tuning (queue sizes, scheduler, …)

• Latency-sensitive applications vs occupancy

• Fusing nodes to elide queueing (at what cost
to occupancy?)

67

Want to Play?

• https://github.com/jdbuhler/mercator

• MERCATOR will be a testing ground for SIMD-
aware irregular streaming computation

• Many interesting problems still to be solved!

•  thesis topics

68

https://github.com/jdbuhler/mercator

