


DETECTION IN SECURITY

Detection is one of the fundamental problems in security

Defender: detecting malware, intrusions, spam, fake news

Attacker: detecting the type of host, exploitable vulnerabilities, honeypots
Fundamentally, detection is a game

One player tries to detect, the other to hide

The “hider” (attacker) still needs to accomplish its goals




PROBLEMS IN DETECTION

Madlicious diffusion through a network (malware, social spam, fake news)
Where should we place detectors on a network!?
How should we configure them?

System operation
Detecting attacks on sensors

Prioritizing alerts




PLACING DETECTORS

Haghtalab, Laszka, Procaccia, Vorobeychik, Koutsoukos. Monitoring stealthy
diffusion. ICDM 2015; KAIS 2017 (best papers of ICDM 2015).



MALWARE SPREAD
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MALWARE SPREAD

Untargeted (goal: Code Red
maximize spread) 2001
Targeted (goal: hit a Flame
specific target) 2012




TARGETED MALWARE SPREAD ON
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MALWARE DIFFUSION

Malware stochastically spreads from one node to another over edges

Independent cascade model: spread independent over each edge; only one
opportunity to spread




ATTACKER

Given a set S of possible “seed” nodes for the attack, choose a node s € S to start
diffusion

Has a target t € S of the attack (the node attacker wishes to reach)
Model | [random seed]

Choose initial seed s uniformly at random from $
Model 2 [maximin]

Choose initial seed s to maximize probability of successfully reaching target t
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DEFENDER

Chooses a subset /! of at most k nodes as

If an attack reaches any of these nodes before the target, the attack fails
Otherwise, the attack succeeds

Since diffusion is stochastic, this outcome is stochastic

s): probability infection is detected prior to reaching the target, given //| and starting
seed node s
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RESULTS: MODEL | [RANDOM SEED]

Goal: maximize (since s is random)
Theorem: is a non-decreasing submodular function

Corollary: a greedy algorithm (choose the best node as a detector one at a
time) returns a solution within 1-1/e of optimal.




RESULTS: MODEL 2 [STRATEGIC
ATTACKER]

Goal: maximize min, s

Theorem: the optimal solution is NP-hard to approximate to any factor, even
when detector budget is (up to) a factor of log(|S|) larger than k.

Theorem: if we allow budget to be |S|k log(1/g), we can compute a solution
within (1-¢) of optimal for budget k.

idea: choose the best k log(1/¢s) detectors for each potential seed s (best response to
each seed); use all of these detectors




CONFIGURING DETECTORS ON
NETWORKS

Yu, Vorobeychik, Alfeld. Adversarial classification on social networks. AAMAS 2018.



DIFFUSION OF MALICIOUS CONTENT
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THE DETECTION PROBLEM

Content has characteristics (features)

Not obvious whether something is malicious or benign even when it is observed
by a detector

Detector needs to decide (predict) as a function of features whether to stop
diffusion of particular content

:an identical detector configured to check malicious content
wherever it is detected

attacker chooses a starting point

Must balance blocking “bad” traffic with allowing “good” traffic,

redundancy in detection




ATTACKER MODEL

Attacker’s action:

For any original malicious instance x € D:

- Find a node s to start max ¢(i,8,2)
propagation. st |lz—x||,<e
1[6;(z) = 1] =0,Vj € V
. Transform x -> z(x) :

In order to avoid @ ¢: the attacker’s budget.
detection @ 0;(z) = 1: the manipulated message is detected at node j.



DEFENDER MODEL

Innovations:

Learn and deploy
heterogeneous detectors at
different nodes.

Explicitly considering both
propagation of messages
and adversarial
manipulation during
learning.

Us=a Y Y 0(i,0,z)—(1-a) Y o(s,0,2(z))

zeD— 1€V zeD+

e D—, D' are benign and malicious data, respectively.

© © = {61,02,---,0)y} being parameters of detectors at different
nodes.

@ The expected influence is now a function of the parameters of
detectors (©), as well as manipulated messages (z(x)).
@ x — z(x): adversarial manipulation.



STACKELBERG GAME

The interaction between the defender and the attacker is modeled as a
Stackelberg game. which proceeds as follow:

@ The defender first learns © (the parameters of detectors at different

nodes).
@ The attacker observes © and construct its optimal attack against the
defender.
max Z Z (1-a) Z o(s,©,z(x))
xeD— i xeD*
s.t.: Vxe DT : (s,z(x)) € argmaxo(},0,2)
1:Z
Vxe DT : ||z(x) =X, =

Vx € Dt : 1[0k(x)=1]=0,Yk € V
The equilibrium of this game: (©,s(©), z(x; ©)).




SOLUTION APPROACH

Step |:assume that the defender knows the source node s

Compute optimal parameters of all detectors given s (the attacker may still
change malicious content to evade detection)

We can collapse the bi-level optimization problem into a single-level problem;
solve using projected gradient descent (using implicit function theorem)

Gives us the optimal solution " (s)
Step 2: now allow the attacker to also optimally choose s

Heuristic: use parameters 0" (s) that yield the highest defender utility over all
S




EXPERIMENTS

@ In our experiments, we consider a specific detection model: logistic
regression (LR)
@ © ={01,02,---,0)y|}: thresholds of detectors

@ We compare our defense strategy against three others:

e Baseline: simply learn a LR on training data and deploy it at all nodes

o Re-training: iteratively augment the original training data with
attacked instances, re-training the LR each time, until convergence

e Personalized-single-threshold: this strategy is only allowed to tune a
single node’s threshold.
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DETECTING SENSOR ATTACKS

Ghafouri, Vorobeychik, Koutsoukos. Adversarial regression for detecting
attacks in CPS. 1JCAIl 2018.



SENSOR ATTACKS

Sensors may be under attack by adversaries that exploit zero-day

vulnerabilities and/or physical access

Attackers can falsify sensor data (i.e., integrity attack)

Undetected attacks on critical sensors may cause significant damage,

such as reactor explosion

Why!
Controllers often attempt to maintain
physical system state in a “safe” range
If an observed sensor value (pressure) is

too low, controller will increase pressure

Cyber-attack on German steel plant

(2014)






REGRESSION-BASED ANOMALY
DETECTION

Predictor

Predicts sensor measurements as a function of measurements of other sensors

Learn y; = f;(y_s), predicted measurement of each sensor s as a function of measured
values of other sensors

Anomaly Test

Given residuals (i.e., difference between observed and predicted), determine whether
to raise an alarm

lys — V5| < T4 where 74 is a predefined threshold to trigger an anomaly alarm




ATTACKING THE ANOMALY DETECTOR

But, anomaly detectors can be fooled themselves!!
We show:
How!

What can be done to protect against them!?




. ATTACK




ATTACKER’S PROBLEM

Given:
a collection of regression-based anomaly detectors {|y; — 75| < 74 }
a critical sensor s_,and

a budget constraint B (the number of sensors that can be attacked)

Compute the optimal stealthy (undetected) attack (which sensors to compromise,
and what their observed measurements should be) to maximize (minimize)
measured value of the critical sensor

For example, minimizing observed sensor value of temperature can lead an actuator to
increase actual temperature

I'll use minimization as an example




ATTACKER’S PROBLEM

min ys_
s.t: lys —f(y_s)| <15 Stealth
”y o ytrue”O <B BUdget




ATTACKER’S PROBLEM

Proposition: Attacker’s Problem is NP-Hard even when linear regression is used for
anomaly detection.

We devise:
Exact solution for linear regression models (integer linear program)

Iterative algorithm for the general case (heuristic)



SPECIAL CASE: LINEAR REGRESSION

lys — f(y_5)| < 15 :can be represented using linear constraints (since f()
is linear)

lY — Viruello < B :can be represented using linear constraints if we add
binary variables indicating which sensors are attacked

Thus, the full problem can be captured using a Mixed-Integer Linear
Program (MILP)




GENERALIZING

lvs — f(y_s)| < 75 :cannot be represented using linear
constraints for arbitrary non-linear f{)




ALGORITHM FOR ATTACKING GENERAL
NON-LINEAR MODELS

Obtain a linearized model by a first-order Taylor expansion around
the solution estimate

Transform the problem to a MILP

Constrain solutions to be close to previous iterate (trust region)
If the solution of MILP is infeasible w.r.t. stealth contraint,
reduce trust region

Repeat.




EXPERIMENTS: ATTACKS




CASE STUDY: TENNESSEE-EASTMAN
PROCESS CONTROL SYSTEM (TE-PCS)

Involving two simultaneous gas-liquid exothermic reactions for producing two liquid
products

A(g) + C(g) + D(g) — G(liq), Product 1,
A(g) + C(g) + E(g) — H(liq), Product 2.

Five major units: reactor, condenser, vapor-liquid separator, recycle compressor,
and product stripper.

Monitoring and control using 41 measurement outputs and |12 control inputs.
Use a simulink model

Consider linear regression and neural network regression for anomaly
detection



ATTACKING PRESSURE OF REACTOR
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ATTACKING PRESSURE OF REACTOR

Maximum and mean of the solution of adversarial regression:
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Il. DEFENSE




DEFENDING AGAINST ATTACKS

In the anomaly detection system described, the defender can leverage the
stealth constraint of the attacker’s problem by appropriately choosing the
detector thresholds

Trade off:

Impact of attack: maximum distortion of critical sensor values induced by the
attacker

False alarm rate: have a target false alarm rate

Problem:

Minimize impact of attack (optimal solution to attacker’s problem)

Subject to: false alarm rate is at most z




HEURISTIC ALGORITHM FOR
OPTIMIZING THRESHOLDS

Start with a baseline detector with false alarm rate z

Iteratively:
Find optimal attack
A :sensors with largest attack impact
B : sensors with smallest impact
Reduce threshold on sensors in A
Increase threshold on sensors in B to keep false alarm rate at z

Stop when no longer reducing overall attack impact




EXPERIMENTS: RESILIENT DETECTOR

Same setting as before

Maintain the same # of false alarms as for an initial non-resilient
detector

150

+ DBaseline-LR
o Resilient Detector-LR + O
Baseline-NN
o o Resilient Detector-NN
2 100 - o
£ o
-
o *
S
k3] o
8,
= 50
—f
o
+ Q
o
0 + .0 8 Q

Pressure (R) Level (R) Temperature (R) Level (P)  Level (S)
Sensor




PRIORITIZING ALERTS

Yan, Li, Laszka, Vorobeychik, Fabbri, Malin. A game theoretic approach for alert
prioritization. AICS 2017;|1CDE 2018.



INTRUSION DETECTION

Detectors generate alerts

Typically, people would subsequently investigate alerts to find

=

malicious activity

alert im&ation
> >> budget B

alerts (available manpower,

)

false alerts

Problem:
Which alerts to investigate?



ALERT TYPES

Alert types T

Alerts Attacks

attack a,

probability R_ ,




ALERT PRIORITIZATION PROBLEM

Alert types T

Naive prioritization




ALERT PRIORITIZATION PROBLEM

Alert types T

Alerts
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GAME-THEORETIC MODEL

Players

O
O

1. Defender: selects an alert prioritization strategy p, which
is a probability distribution over possible orderings of T

2. Adversary:
selects an attack a from the set of possible attacks A

Goal: minimize probability of successful (undetected) attack

Solution approach: linear programming + column generation



CONCLUSION

Detection is fundamentally a game

This game must capture a number of features
Indirect as well as direct consequences of decisions
Adversarial actions to avoid being detected
Detectors are imperfect, and there are only so many alerts we can inspect

Need to account for intelligent attacks even as we select which alerts to
investigate




