
System Software Support for
Parallel Programming 

I-Ting Angelina Lee

CSE 591, Fall 2018

What Is Parallel Programming?

§  Divide up your computation into  
multiple components that can be
worked on in parallel …

§  So that you can simultaneously use
multiple compute resources to  
solve the computational problem.

2

Different Types of  
Parallel Programming

3

Supercomputer: multiple computing nodes
connected with high-bandwidth network

Program it using MPI 
(Message Passing Interface)

Different Types of  
Parallel Programming

4

P

$

P

$

P

$

P

$

Memory

Within a single node:  
multiple cores with shared memory

Traditional paradigm:
persistent threads

Why Parallel Programming?

5

§  Performance!

Problem: Parallel
programming is hard

Challenges in Programming 
a Multicore Machine

6

Scheduling

Locality
Sychronization

What executes
when and  

on which core

How to coordinate
accesses to  

shared resources

How to effectively
use caches and

proximity of cores

Challenges in Programming 
a Multicore Machine

7

Scheduling

Locality
Sychronization

Traditional paradigm (pthreads) does not address these
challenges well.

My Research Goal

Make parallel programming on  
commodity multicore hardware  

accessible for everyone.

8

Challenges in Programming 
a Multicore Machine

9

Scheduling

Locality
Sychronization

Traditional paradigm (pthreads) does not address these
challenges well.

10

int fd_out = open_output_file();
bool done = false;
while(!done) {
 chunk_t *chunk = get_next_chunk();
 if(chunk == NULL) { done = true; }
 else {

 chunk->is_dup = deduplicate(chunk);

 if(!chunk->is_dup) compress(chunk);

 write_to_file(fd_out, chunk);
 }

}

Stage	0:	While		
there	is	more	data,	
read	the	next	chunk	
from	the	stream.	

Stage	1:	Check		
for	duplicates.	
Stage	2:	Compress		
first-seen	chunk.	
Stage	3:	Write	to	
output	file.	

Dedup	compresses	a	stream	of	data	by	compressing	unique	elements	
and	removing	duplicates.	

*Extrapolated	from	the	PARSEC	benchmark	[BKS08]	

Example Application: Dedup*

11

...	

...	

...	

...	

while(!done) {
 chunk_t *chunk = get_next_chunk();
 if(chunk == NULL) { done = true; }
 else {

 chunk->is_dup = deduplicate(chunk);

 if(!chunk->is_dup) compress(chunk);

 write_to_file(fd_out, chunk);
 }
}

Stage	0	

Stage	1	

Stage	2	

Stage	3	

Let’s	model	Dedup’s	
execuPon	as	a		
pipeline	dag.	
§  A	node	denotes	

the	execuPon	of	a	
stage	in	an	
iteraPon.	

§  Edges	denote	
dependencies	
between	nodes.	

Dedup	exhibits	
pipeline	parallelism.	

i0	 i1	 i2	 i3	 i4	 i5	

:	Cross	Edge	

Stage	0	

Stage	1	

Stage	2	

Stage	3	

IteraPons	

Pipeline Parallelism in Dedup

Parallelizing Dedup with Pthreads

12

1.  Assign	threads	to	
stages.	

2.  Threads	communicate		
via	concurrent	queues.	

...	

...	

...	

...	

Stage	0	

Stage	1	

Stage	2	

Stage	3	

i0	 i1	 i2	 i3	 i4	 i5	

while(!done) {
 chunk_t *chunk = get_next_chunk();
 if(chunk == NULL) { done = true; }
 else {

 chunk->is_dup = deduplicate(chunk);

 if(!chunk->is_dup) compress(chunk);

 write_to_file(fd_out, chunk);
 }
}

Stage	0	

Stage	1	

Stage	2	

Stage	3	

IteraPons	

(The	programmer	writes	
the	scheduling	code.)	

13

concurrent	
queue	

stage	 thread	

Get_Input	 Deduplicate	 Compress	

Write_Output	

1.  Assign	threads	to	
stages.	

2.  Threads	communicate		
via	concurrent	queues.	

3.  Execute.	

Parallelizing Dedup with Pthreads

Hashtable	

14

Get_Input	 Deduplicate	 Compress	

Write_Output	

To	load	balance	beZer	(scheduling),		
add	mulPple	threads	to	heavy	stages.	

1.  Assign	threads	to	
stages.	

2.  Threads	communicate		
via	concurrent	queues.	

3.  Execute.	

Parallelizing Dedup with Pthreads

Concurrent	
Hashtable	

Need	a	concurrent	hashtable		
(synchronizaPon).	

15

Get_Input	 Deduplicate	 Compress	

Chunks	are	processed	out	of	order.	

1.  Assign	threads	to	
stages.	

2.  Threads	communicate		
via	concurrent	queues.	

3.  Execute.	

Parallelizing Dedup with Pthreads

Concurrent	
Hashtable	

The	cross-edge	dependencies	are	violated	
(synchronizaPon).	

Write_Output	

16

Get_Input	 Deduplicate	 Compress	

Sort_and_Write_Output	

1.  Assign	threads	to	
stages.	

2.  Threads	communicate		
via	concurrent	queues.	

3.  Execute.	

Parallelizing Dedup with Pthreads

Concurrent	
Hashtable	

Sort	the	output	before	we	write	it	out.	

Chunks	are	processed	out	of	order.	
The	cross-edge	dependencies	are	violated	
(synchronizaPon).	

17

Get_Input	 Deduplicate	 Compress	

Sort_and_Write_Output	

Threads	contend	on	queues	
(synchronizaPon).	

1.  Assign	threads	to	
stages.	

2.  Threads	communicate		
via	concurrent	queues.	

3.  Execute.	

Parallelizing Dedup with Pthreads

Concurrent	
Hashtable	

Add	more	queues.	

18

Get_Input	 Deduplicate	 Compress	

Sort_and_Write_Output	
Threads	in	the	compress	stage	
are	not	ge]ng	enough	cycles	
(scheduling).	

Deadlock!	

1.  Assign	threads	to	
stages.	

2.  Threads	communicate		
via	concurrent	queues.	

3.  Execute.	

Parallelizing Dedup with Pthreads

Concurrent	
Hashtable	

Limit	queue	size.	

19

Get_Input	 Deduplicate	 Compress	

Sort_and_Write_Output	

1.  Assign	threads	to	
stages.	

2.  Threads	communicate		
via	concurrent	queues.	

3.  Execute.	

Parallelizing Dedup with Pthreads*

Concurrent	
Hashtable	

*	Based	on	the	parallel	implementaPon	in	PARSEC	[BKS08].	

Threads	in	the	compress	stage	
are	not	ge]ng	enough	cycles	
(scheduling).	

Deadlock!	
Limit	queue	size.	

20

config_t	*	conf;	
struct	hashtable	*cache;	
	
staPc	unsigned	int	hash_from_key_fn(void	*k)	{	
			return	((unsigned	int	*)k)[0];	
}	
staPc	int	keys_equal_fn	(void	*key1,	void	*key2)	{	
				return	(memcmp(key1,	key2,	SHA1_LEN)	==	0);	
}	
queue_t	*deduplicate_que,	*refine_que,	*reorder_que,		
																*compress_que;	
	
struct	thread_args	{	
		int	Pd;	
		int	nqueues;	
		int	fd_in;	
		int	fd_out;	
		struct	{	
						void	*buffer;	
						size_t	size;	
		}	input_file;	
};	
	
void	Encode(config_t	*	_conf)	{	
			struct	stat	filestat;	
			int32	fd_in,	fd_out;	
			conf	=	_conf;	
			cache	=	hashtable_create(65536,	hash_from_key_fn,										
																																																			keys_equal_fn,	FALSE);	
			if(cache	==	NULL)	{	
						prinh("ERROR:	Out	of	memory\n");	
						exit(1);	
			}	
			if(stat(conf->infile,	&filestat)	<	0)	
						EXIT_TRACE("stat()	%s	failed:	%s\n",	conf->infile,				
																													strerror(errno));	
			if(!S_ISREG(filestat.st_mode))	
						EXIT_TRACE("not	a	normal	file:	%s\n",	conf->infile);	
			struct	thread_args	data_process_args;	
			int	i;	
			const	int	nqueues	=		
								(conf->nthreads	/	MAX_THREADS_PER_QUEUE)	+	
								((conf->nthreads	%	MAX_THREADS_PER_QUEUE	!=		
											0)	?	1	:	0);	
			deduplicate_que	=	malloc(sizeof(queue_t)	*	nqueues);	
			refine_que	=	malloc(sizeof(queue_t)	*	nqueues);	
			reorder_que	=	malloc(sizeof(queue_t)	*	nqueues);	
			compress_que	=	malloc(sizeof(queue_t)	*	nqueues);	
	

if((deduplicate_que	==	NULL)	||		
					(refine_que	==	NULL)	||	
					(reorder_que	==	NULL)	||	(compress_que	==	NULL))	{						
			prinh("Out	of	memory\n");	
			exit(1);	
}	
int	threads_per_queue;	
int	throZle	=	QUEUE_SIZE;	
if(conf->throZle	!=	-1)	{	
			throZle	=	(int)(ceil(conf->throZle	/	nqueues));	
}	
	
conf->throZle	=	throZle;	
for(i=0;	i<nqueues;	i++)	{	
			if	(i	<	nqueues	-1	||		
								conf->nthreads	%MAX_THREADS_PER_QUEUE	==	0)	{	
						threads_per_queue	=	MAX_THREADS_PER_QUEUE;	
			}	else	{	
						threads_per_queue	=	conf->nthreads	

	 	 	%MAX_THREADS_PER_QUEUE;	
			}	
			queue_init(&deduplicate_que[i],	throZle,	threads_per_queue);	
			queue_init(&refine_que[i],	throZle,	1);	
			queue_init(&compress_que[i],	throZle,	threads_per_queue);	
			queue_init(&reorder_que[i],	QUEUE_SIZE,	threads_per_queue);	
}	
int	ret	=	mbuffer_system_init();	
assert(ret	==	0);	
	
pthread_t	threads_anchor[MAX_THREADS],	
																			threads_chunk[MAX_THREADS],	
																			threads_compress[MAX_THREADS],	
																			threads_send,	threads_process;	
data_process_args.Pd	=	0;	
data_process_args.nqueues	=	nqueues;	
data_process_args.fd_in	=	fd_in;	
	
pthread_create(&threads_process,	NULL,	Fragment,				
																													&data_process_args);	
struct	thread_args	anchor_thread_args[conf->nthreads];	
for	(i	=	0;	i	<	conf->nthreads;	i	++)	{	
			anchor_thread_args[i].Pd	=	i;	
			pthread_create(&threads_anchor[i],	NULL,							
																																FragmentRefine,	
																																&anchor_thread_args[i]);	
}	

			struct	thread_args	chunk_thread_args[conf->nthreads];	
			for	(i	=	0;	i	<	conf->nthreads;	i	++)	{	
						chunk_thread_args[i].Pd	=	i;	
						pthread_create(&threads_chunk[i],	NULL,	Deduplicate,	
																																			&chunk_thread_args[i]);	
			}	
			struct	thread_args	compress_thread_args[conf->nthreads];	
			for	(i	=	0;	i	<	conf->nthreads;	i	++)	{	
						compress_thread_args[i].Pd	=	i;	
						pthread_create(&threads_compress[i],	NULL,	Compress,	
																																			&compress_thread_args[i]);	
			}	
			struct	thread_args	send_block_args;	
			send_block_args.Pd	=	0;	
			send_block_args.nqueues	=	nqueues;	
			send_block_args.fd_out	=	fd_out;	
	
			pthread_create(&threads_send,	NULL,	Reorder,		
																																&send_block_args);	
			pthread_join(threads_process,	NULL);	
			for	(i	=	0;	i	<	conf->nthreads;	i	++)	
						pthread_join(threads_anchor[i],	NULL);	
			for	(i	=	0;	i	<	conf->nthreads;	i	++)	
						pthread_join(threads_chunk[i],	NULL);	
			for	(i	=	0;	i	<	conf->nthreads;	i	++)	
						pthread_join(threads_compress[i],	NULL);	
			pthread_join(threads_send,	NULL);	
	
			for(i=0;	i<nqueues;	i++)	{	
						queue_destroy(&deduplicate_que[i]);	
						queue_destroy(&refine_que[i]);	
						queue_destroy(&reorder_que[i]);	
						queue_destroy(&compress_que[i]);	
			}	
			free(deduplicate_que);	
			free(refine_que);	
			free(reorder_que);	
			free(compress_que);	
	
			if(conf->infile	!=	NULL)		
						close(fd_in);	
			close(fd_out);	
			ret	=	mbuffer_system_destroy();	
			assert(ret	==	0);	
			hashtable_destroy(cache,	TRUE);	
}	

The	setup	code	for	parallel	execuPon	using	pthreads.	

The	programmer	must	manually	handle		
scheduling	and	synchronizaPon.		

21

The	programmer	must	manually		
manage	scheduling	and	synchronizaPon.	

§  Scheduling	logic	intermixed	with		
program	logic	⇒	spaghe]	code.	

§  Threads	interact	via	shared	memory		
⇒	no	well-defined	ordering	of	events.	

§  The	scheduling	logic	interacts	with	the	
need	for	synchronizaPon.	

Pme	

	
	

thread	1	

	
	

thread	2	

:	lock	/	unlock	to	access	shared	data	

Problems with Persistent Threads

Structured Parallel Programming

22

A	programming	model	that	allows	the	the	programmer	
to	express	the	logical	parallelism	of	the	computaPon	to	
using		control	constructs.	
	
§  separates	the	scheduling	logic	from	program	logic;	
	
§  automates	scheduling	and	synchronizaPon;	and	
	
§  provides	a	clean	mental	model	for	the	programmer	to	

reason	about	parallelism.	

Traditional Computing Stack

23

compiler

operating system

hardware

Provides the pthread
abstraction as
surrogates for cores

tools
user  

application

State of Art: Concurrency Platform

24

A	concurrency	plahorm		
should	provide:			

§  an	interface	for	specifying		
the	logical	parallelism		
of	the	computaPon;	

§  a	runPme	layer	to	
automate	scheduling		
and	synchronizaPon;	and	

§  guarantees	of	
performance	and	resource	
uPlizaPon	compePPve	
with	hand-tuned	code.		

linguistic interface

compiler

runtime

operating system

hardware

Concurrency	
Pla5orm	

tools
user  

application

My Research

25

§  Design	language	abstracPons	for		
structured	parallel	programming	

	
§  Develop	efficient	system	support	for	
these	language	abstracPons	

§  Design	tool	support	for	debugging	
and	performance	engineering	
programs	wriZen	in	theses	high-
level	language	abstracPons	

26

Cilk-P’s Linguistic Support  
for Pipeline Parallelism

An	instance	of	structured	parallel	programming	

Encode Parallelism of Dedup

27

...	

...	

...	

...	

Stage	0	

Stage	1	

Stage	2	

Stage	3	

while(!done) {
 chunk_t *chunk = get_next_chunk();
 if(chunk == NULL) { done = true; }
 else {

 chunk->is_dup = deduplicate(chunk);

 if(!chunk->is_dup) compress(chunk);

 write_to_file(fd_out, chunk);
 }
}

Stage	0	

Stage	1	

Stage	2	

Stage	3	

:	Cross	Edge	

1.	Pipeline	the	loop.	

IteraPons	

Encode Parallelism of Dedup

28

pipe_while(!done) {
 chunk_t *chunk = get_next_chunk();
 if(chunk == NULL) { done = true; }
 else {

 chunk->is_dup = deduplicate(chunk);

 if(!chunk->is_dup) compress(chunk);

 write_to_file(fd_out, chunk);
 }
}

Stage	0	

Stage	1	

Stage	2	

Stage	3	

...	

...	

...	

...	

Stage	0	

Stage	1	

Stage	2	

Stage	3	 :	Cross	Edge	

1.	Pipeline	the	loop.	

2.	Denote	stages.		

IteraPons	

Encode Parallelism of Dedup

29

pipe_while(!done) {
 chunk_t *chunk = get_next_chunk();
 if(chunk == NULL) { done = true; }
 else {
 pipe_stage;
 chunk->is_dup = deduplicate(chunk);
 pipe_stage;
 if(!chunk->is_dup) compress(chunk);
 pipe_stage;
 write_to_file(fd_out, chunk);
 }
}

Stage	0	

Stage	1	

Stage	2	

Stage	3	

1.	Pipeline	the	loop.	

2.	Denote	stages.		

3.	Enforce	cross-edge		
dependencies	

...	

...	

...	

...	

Stage	0	

Stage	1	

Stage	2	

Stage	3	 :	Cross	Edge	

IteraPons	

Encode Parallelism of Dedup

30

pipe_while(!done) {
 chunk_t *chunk = get_next_chunk();
 if(chunk == NULL) { done = true; }
 else {
 pipe_stage_wait();
 chunk->is_dup = deduplicate(chunk);
 pipe_stage();
 if(!chunk->is_dup) compress(chunk);
 pipe_stage_wait();
 write_to_file(fd_out, chunk);
 }
}

Stage	0	

Stage	1	

Stage	2	

Stage	3	

1.	Pipeline	the	loop.	

2.	Denote	stages.		

3.	Enforce	cross-edge		
dependencies	

...	

...	

...	

...	

Stage	0	

Stage	1	

Stage	2	

Stage	3	 :	Cross	Edge	

IteraPons	

The Pipeline Linguistics in Cilk-P

int fd_out = open_output_file();
bool done = false;
pipe_while(!done) {
 chunk_t *chunk = get_next_chunk();
 if(chunk == NULL) { done = true; }
 else {
 pipe_stage_wait(1);

 chunk->is_dup = deduplicate(chunk);
 pipe_stage(2);
 if(!chunk->is_dup) compress(chunk);
 pipe_stage_wait(3);
 write_to_file(fd_out, chunk);
 }

}

Loop	iteraPons	may	execute	in	
parallel	in	a	pipelined	fashion,	
where	stage	0	executes	serially.	

End	the	current	stage,	advance	to	
stage	1,	and	wait	for	the	previous	
iteraPon	to	finish	stage	1.	

31

End	the	current	stage	
and	advance	to	stage	2.		

The Pipeline Linguistics in Cilk-P

32

These	keywords	have	serial	seman6cs	[FLR98].	

int fd_out = open_output_file();
bool done = false;
pipe_while(!done) {
 chunk_t *chunk = get_next_chunk();
 if(chunk == NULL) { done = true; }
 else {
 pipe_stage_wait(1);

 chunk->is_dup = deduplicate(chunk);
 pipe_stage(2);
 if(!chunk->is_dup) compress(chunk);
 pipe_stage_wait(3);
 write_to_file(fd_out, chunk);
 }

}

The Pipeline Linguistics in Cilk-P

pipe_while(!done) {
 chunk_t *chunk = get_next_chunk();
 if(chunk == NULL) { done = true; }
 else {
 pipe_stage_wait(1);
 chunk->is_dup = deduplicate(chunk);
 pipe_stage(2);
 if(!chunk->is_dup) compress(chunk);
 pipe_stage_wait(3);
 write_to_file(fd_out, chunk);
 }
}

33

...	

...	

...	

...	

Stage	0	

Stage	1	

Stage	2	

Stage	3	
:	cross	edge	

Enforced	by	
pipe_while	

Enforced	by		
pipe_stage_wait(1)	

Enforced	by	
pipe_stage_wait(3)	

IteraPons	

These	keywords	allow		
the	user	to	express	the	
logical	parallelism.	

On-the-Fly Pipelining of X264

34

Cilk-P	supports	on-the-fly	pipeline	parallelism,	where	the	
pipeline	is	constructed	dynamically	as	the	program	executes.		

§  skip	stages;	
§  make	cross	edges	data	
dependent;	and	

§  vary	the	number	of	
stages	across	iteraPons.	

By	enclosing	pipe_stage	
and	pipe_stage_wait	
statements	within	other	
control	constructs,	one	can:		

I P P P I P P I P P P

stage	0	
stage	1	
stage	2	
stage	3	
stage	4	
stage	5	
.
.
.

35

Piper: Cilk-P’s  
Provably-Efficient Scheduler

Elegant	linguisBc	interface	is	only	half	the	baCle.	

36

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	 P	
A	worker	(surrogate	for	a	processor)	
by	default	follows	the	serial	execuBon	order.	

Each	iteraPon		
is	a	"task."	

IteraPons	

PIPER: A Work-Stealing Scheduler

37

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	 P	
A	worker	(surrogate	for	a	processor)		
by	default	follows	the	serial	execuBon	order.	

Each	iteraPon		
is	a	"task."	

IteraPons	

PIPER: A Work-Stealing Scheduler

38

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	 P	
A	worker	(surrogate	for	a	processor)		
by	default	follows	the	serial	execuBon	order.	

Each	iteraPon		
is	a	"task."	

§  Serial	semanPcs;	and	
§  Don't	need	queues	to	

pass	elements	
between	stages;	

§  PotenPally	beZer	
locality.	

IteraPons	

PIPER: A Work-Stealing Scheduler

IteraPon	is	enabled	
by	the	blue	worker.	

39

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

A	worker	steals	
work	from	a	
randomly	selected		
vicPm	when	it	runs	
out	of	work	to	do.	

Steal!	

P	 P	

IteraPons	

PIPER: A Work-Stealing Scheduler

40

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	P	

A	worker	steals	
work	from	a	
randomly	selected		
vicPm	when	it	runs	
out	of	work	to	do.	

IteraPons	

PIPER: A Work-Stealing Scheduler

Performance Measures [CLRS09]

41

Work	T1	:		The	sum	of	the	weights	of	the	nodes	in	the	dag.	

1
100	

T1		=	733	

T∞	=	112	Span	T∞	:		The	length	of	a	longest	path	in	the	dag.	

Weight:	

Let	TP		be	the	Pme	it	takes	to	execute	this	dag	on	P	processors.	

T1	/	T∞	=	6.54	Parallelism	T1	/	T∞	:		The	maximum	possible	speedup.	

Work	Law	:		TP	≥	T1	/	P		 Span	Law	:		TP	≥	T∞	

PIPER's Guarantees

42

§  Time bound:  
TP ≤ T1 / P + O(T∞ + lg P) expected time

DefiniBon.			TP	—	execuPon	Pme	on	P	processors	
T1	—	work							T∞	—	span							T1	/	T∞		—	parallelism	

SP	—	stack	space	on	P	processors	
S1	—	stack	space	of	a	serial	execuPon					

K	—	throZling	limit								f	—	maximum	frame	size	
D	—	depth	of	nested	pipelines	

	⇒	linear	speedup	when	P	≪	T1	/	T∞	and	T∞	>	lg	P	

§  Space	bound:			
SP	≤	P(S1	+	fDK)	

Scheduling	overhead	

43

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	P	

IteraPons	

The Check-Next Overhead

44

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	P	

IteraPons	

The Check-Next Overhead

P	

45

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	

IteraPon	i2		
gets	suspended.				

IteraPons	

The Check-Next Overhead

P	

46

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	

The	blue	worker		
re-enables	iteraPon	i2	.	

IteraPons	

The Check-Next Overhead

P	

47

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	 P	

The	purple	worker	
steals	iteraPon	i2	.	

IteraPons	

The Check-Next Overhead

P	

48

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	

IteraPon	i2		
gets	suspended	
again.				

IteraPons	

The Check-Next Overhead

P	

49

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	
IteraPon	i2	can	get	suspended	and			
re-enabled	repeatedly.	
⇒ The	blue	worker	must	check	next		

to	re-enable	i2	a�er	every	stage!	

The	blue	worker		
re-enables	iteraPon	i2		
again.	

IteraPons	

The Check-Next Overhead

P	

50

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	 P	
Steal!	check	i2?	

Idea:		
Be	really	really	lazy	
about	the	check-next	
operaPon.	

IteraPons	

Optimization: Lazy Enabling

P	

51

2	 6	 10	 22	

...	

...	

14	

3	 7	 11	 19	 23	15	

1	 5	 9	 17	13	

...	

...	4	 8	 12	 20	 24	16	

i0	 i1	 i2	 i3	 i4	 i5	

18	

21	

:	done	 :	not	done	

P	

Idea:		
Be	really	really	lazy	
about	the	check-next	
operaPon.	

P	

Punt	the	responsibility		
of	checking	next	onto		
a	thief	stealing	or	unPl		
the	worker	reaches		
the	end	of	its	iteraPon.	

With	ample	parallelism,	this	cost	
does	not	effect	the	performance!	

IteraPons	

Optimization: Lazy Enabling

52

Implementation and Evaluation

Goal:	Be	compeBBve	with	highly-tuned	code	

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	 2	 4	 6	 8	 10	 12	 14	 16	

Pthreads	(Best)	

TBB	

Cilk-P	

Pthreads	(IntuiPve)	

Dedup Performance Comparison

53

Number	of	processors	(P)	

Sp
ee
du

p	
ov
er
	se

ria
l	e
xe
cu
Po

n	

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	 2	 4	 6	 8	 10	 12	 14	 16	

Pthreads	(Best)	

TBB	

Cilk-P	

Pthreads	(IntuiPve)	

Dedup Performance Comparison

54

Number	of	processors	(P)	

Sp
ee
du

p	
ov
er
	se

ria
l	e
xe
cu
Po

n	

Measured	parallelism	for	Cilk-P	(and	TBB)’s	pipeline	is	merely	7.4.	

The	pthreaded	implementaPon	has	more	parallelism	due	to	unordered	stages.	

55

Number	of	processors	(P)	

Sp
ee
du

p	
ov
er
	se

ria
l	e
xe
cu
Po

n	

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	 2	 4	 6	 8	 10	 12	 14	 16	

ConfiguraPon	1	

ConfiguraPon	2	

ConfiguraPon	3	

ConfiguraPon	4	

ConfiguraPon	5	

ConfiguraPon	6	

Different	configuraPon	(threads	per	stage)	leads	to	different	results.	

You	don't	need	to	do	any	of	this	with	Cilk-P!	

Dedup Performance Using Pthreads

Ferret Performance Comparison

56

Number	of	processors	(P)	

Sp
ee
du

p	
ov
er
	se

ria
l	e
xe
cu
Po

n	

Cilk-P	matches	the	best	hand-tuned	pthreaded	code,	and	
incurs	no	performance	penalty	for	using	the	more	general		
on-the-fly	pipeline	instead	of	a	construct-and-run	pipeline.		

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	 2	 4	 6	 8	 10	 12	 14	 16	

Pthreads	(Best)	

TBB	

Cilk-P	

Nondeterminis6c	
Output	

Determinis6c	
Output	

X264 Performance Comparison

57

Number	of	processors	(P)	

Sp
ee
du

p	
ov
er
	se

ria
l	e
xe
cu
Po

n	

Cilk-P	matches	the	performance	of	hand-tuned	pthreaded	code,	
and	the	applicaPon	programmer	does	not	need	to	use	any	locks	
and	condiPonal	variables.	

0	

2	

4	

6	

8	

10	

12	

14	

16	

0	 2	 4	 6	 8	 10	 12	 14	 16	

Pthreads	(Best)	

Cilk-P	

Can’t	express	x264	
using	TBB.	

Pipeline Parallelism in Cilk-P

58

Cilk-P	features:	

§  expressive	linguisPcs	for	pipeline	parallelism	that	
separates	the	scheduling	logic	from	program	logic;	

§  effecPvely	automates	scheduling	and	synchronizaPon;	
and	

§  provides	a	clean	mental	model	for	the	programmer	to	
reason	about	parallelism.	

An	instance	of	structured	parallel	programming	

59

int cilk fib(int n) {
 if(n < 2) { return n; }
 int x = spawn fib(n-1);
 int y = spawn fib(n-2);
 sync;
 return (x + y);

}

Cilk's	fork-join	parallelism	[FLR98]:	

Cilk-P Inherited  
Fork-Join Parallelism from Cilk

60

Cilk-P: A Unified Model

My Research

61

§  Design	language	abstracPons	for		
structured	parallel	programming	

	
§  Develop	efficient	system	support	for	
these	language	abstracPons	

§  Design	tool	support	for	debugging	
and	performance	engineering	
programs	wriZen	in	theses	high-
level	language	abstracPons	

Determinacy Race

A determinacy race occurs when two logically parallel
instructions access the same memory location and at least
one of the instructions performs a write.

62

int	x	=	0;	
parallel_for(int	i=0,	i<2,	++i)	{	
				x++;	
}	
assert(x	==	2);	

A

B C

D

x++;	

int	x	=	0;	

assert(x	==	2);	

x++;	

A

B C

D

Example

dependency graph

Determinacy Race

A determinacy race occurs when two logically parallel
instructions access the same memory location and at least
one of the instructions performs a write.

63

int	x	=	0;	
parallel_for(int	i=0,	i<2,	++i)	{	
				x++;	
}	
assert(x	==	2);	

Example

dependency graph

r1	=	x;	

r1++;	

x	=	r1;	

r2	=	x;	

r2++;	

x	=	r2;	

x	=	0;	

assert(x	==	2);	

1

2

3

4

6

5 7

8x can be either 1 or 2.

Why Determinacy Race?

In the absence of a determinacy race, a program executes in
a deterministic fashion.

64

Nondeterminism makes
reasoning about parallel
programs challenging!1

Parallel programming
must be deterministic  

by default!2

Deterministic parallel
algorithms can be fast!3

Edward Lee

Julian Shun

Robert L.
Bocchino Jr.

Vikram S. 
Adve

Sarita V. Adve Marc Snir

1. The problem with threads. Computer 39 (5), pg 33-42, 2006.
2. Parallel programming must be deterministic by default! HotPar, 2009.

3. Shared-memory parallelism can be simple, fast, and scalable, CMU 2015 (winner of the ACM Doctoral Dissertation Award).

Determinacy Race

65

•  Two logically parallel strands
access the same memory location,
with at least one being a write.

•  In the absence of a determinacy
race, a dynamic multithreaded
computation behaves
deterministically.

read x

write x

read x

On-the-fly  
Determinacy Race Detection

66

The tool detects races  
as the program executes.

Goals:

•  Allow the program to  

execute in parallel

•  Detect races efficiently

(asymptotically optimal)

•  Provide strong correctness  

guarantees: report a race if and only
if a race exists for the given input

read x

write x

Components of On-the-fly  
Determinacy Race Detection

67

read x

write x

•  Design	data	structures	

to	maintain	series	
parallel	rela6onships	
that	tell	us	if	two	nodes	
are	logically	in	parallel.	

•  Maintain	access	
histories	that	tell	us	
which	nodes	accessed	
the	memory	locaPon	
previously.	

•  Challenge:	Have	low	
overheads	and	should	
scale.	

P-Racer

§  Provably efficient and correct parallel on-

the-fly race detector for both fork-join and
pipeline parallelism

§  Open problem:

•  Reduce overheads of access history and

instrumentation.

•  Generalize to programs with more complex

structural properties.

•  Generalize to programs with locks.

68

Issues with Locks

69

lock l;

lock l;

read x;

write x;

•  Lock	operaPons	
generate	complex	
dependences,	making	
it	difficult	to	track	SP-
relaPonships	
efficiently.	

•  Races	or	not	
depending	on	the	
schedule	of	lock	
acquire	/	release.	

PORRidge

§  Provably efficient and scalable deterministic

record and replayer for fork-join parallel
programs that employ locks

•  encapsulate all nondeterminism in the runtime

system!

•  Can record and replay on different number of

threads

§  Open problem:

•  Currently the tool only captures nondeterminism

due to lock operations

•  Reduce overhead for logging (both space and

time)

70

Questions?

71

Ask me

anything!

