VARIABILITY IN
OPERATING SYSTEMS

Brian Kocoloski
Assistant Professor in CSE Dept.

October 8, 2018

CLOUD COMPUTING

dWs$s

Google Cloud Platform

J\ Azure

Current estimate is that 94% of all computation
will be performed “in the cloud” by 2021

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html

CLOUD COMPUTING

—

Rent resources to
users

WHY IS CLOUD COMPUTING
ATTRACTIVE

* From the user’s perspective
* Don’t need to purchase own machines

* Don’t need to maintain infrastructure
* Power/cooling/maintenance
e Lower IT costs

* Dynamically scale resources based on need

* e¢.g., webserver with “bursty” traffic can dynamically scale up its
virtual server capacity

* From the cloud provider’s perspective

* Can consolidate multiple users on same underlying
infrastructure

* Resource sharing increases revenue

SUPERCOMPUTING

Aurora supercomputer expected 1in 2021

* First “exascale” machine in the United States
Likely more than 50K server nodes
Likely more than 1M cores

* (Capable of one billion billion floating point calculations per second

THE NEED FOR PREDICTABILITY

* Some applications struggle to make use of the vast
resources of clouds and supercomputing systems

* Latency sensitive cloud applications

* Paper from Google: Dean and Barroso. “The tail at scale”,
CACM 56(2), 2013

* Bulk synchronous applications
* Common with HPC, machine learning, graph analytics

* Real-time computing workloads

PROBLEMS IN THE CLOUD

The tail at Scale
[Dean and Barroso, CACM 56(2), 74-80, 2015]

/O
o

(0]

Each O incurs some latency with some probability

The total latency is a function of the slowest g

PROBLEMS IN THE CLOUD

* When user requests require many individual components, the
probability of an overall service slowdown increases

* Longest latency dictates overall service performance

1 === 1in100 === 1in1,000 === 1in 10,000
Assume 100 O needed to ZZ / ___—
handle a user request o7 [=
P(one server slow) = 1% s =2 fosa —
Q 05 l /
P(overall slowdown) g (] =
= 04
=1-(.997100) ~ 63% g .U i
63% of all services are slowed 8., [h
. o /
by the 1/100 outliers 01 7
0 | 1 [|

1 500 1,000 1,500 2,000
Numbers of Servers

SPATIAL VARIABILITY

Without variability, all threads make equal
progress 1n equal time

GLOBAL GLOBAL
SYNCHRONIZATION SYNCHRONIZATION
THREAD 7
THREAD J
THREAD K

time

9

SPATIAL VARIABILITY

With variability, some threads progress slower than others

Variability slows global synchronization
(extends runtime, wastes power, wastes energy)

GLOBAL GLOBAL
SYNCHRONIZATION SYNCHRONIZATION

THREAD I

i1 WAITING ...

THREAD J

THREAD K WAITING ...

time

10

PROBLEMS IN BSP APPLICATIONS

* Variability 1s a major challenge for tightly synchronized

applications
~ MPI C » Over 75% of
< [AMR Boxiib BigFFT | [FillBoundary|| MiniFE || MultiGrid execution time
E spent blocked on
g » global
= s synchronization
@
= » Up to 90% of cpu
-E dynamic power
§ 0 ‘TI | | | | | l_ll | | | ITI | | | | Consumptlon
3 St SN S St St Wasted

W N » » i

http://portal.nersc.gov/project/CAL/designforward.htm
11

http://portal.nersc.gov/project/CAL/designforward.htm

DEALING WITH VARIABILITY

Takeaways

* Outliers are important

e “lechniques that concentrate on these slow outliers can yield dramatic
reductions in overall service performance” (Dean and Barosso)

* Removing variability at small scale translates to significant gains
at large scale
* 5% improvement in small scale performance is significant

* Improving the worst case is more important than improving the
average €asce
* Metrics: at small scale, standard deviation is at least as important as mean

OVERVIEW OF MY RESEARCH

1. Hobbes: a new operating system designed to
enable predictable performance via performance
1solation

2. Analysis of low-level OS variability present in
software technologies used 1n the cloud

OVERVIEW OF MY RESEARCH

1. Hobbes: a new operating system designed to
enable predictable performance via performance
1solation

[LIGHTWEIGHT KERNELS

* Operating systems designed specifically for
supercomputers
* (Give application direct control of hardware
* Simplified algorithms for scheduling + memory mgmt
* Primary goal: consistent, predictable performance

* Long history of scalability on supercomputers

Sandia
w National
Laboratories

Kitten, Sandia’s most recent lightweight kernel

15

OS Comparison on IBM Blue Gene/P

——Linux CNK

80
70
60
50
40
30
20
10

Solving Phase (s)

128 256 512 1024 2048
Cores

Adaptive MultiGrid on IBM BG/P
Morari et. al, IPDPS 2012

16

OS Comparison on IBM Blue Gene/P

——Linux CNK

80

-
L 70
2 60
S 50
R~ 40
230
=20
S 10
@,
128 256 512 1024 2048
Cores

Adaptive MultiGrid on IBM BG/P
Morari et. al, IPDPS 2012

So lightweight kernels are used on all large
scale computers, right?

[INUX IS NECESSARY

Operating System Share

* Performance is not the only ~ ©f TopS00 (Nov. 2016)

consideration O.A‘L%

* Technical reasons

* Huge suite of device drivers,
network stacks, file systems,
etc.

 Non-technical reasons

* Familiar development
environment

* Ease of programmability
* Lots of system calls m Linux = Other

https://www.top500.org/

18

https://www.top500.org/

THE HOBBES EXASCALE OS/R

e Started as Department of Energy exascale OS and
runtime project
e http://xstack.sandia.gov/hobbes/

* Vision: we need to support application composition
(e.g., simulation + analysis + visualization)

* My work: dynamic runtime reconfiguration of the
operating system

http://xstack.sandia.gov/hobbes/

PERFORMANCE ISOLATION

Handling complex workload mixes across

different users 1s necessary in clouds and
HPC systems

Common 1n cloud systems (multi-
tenancy)

Becoming more common 1n
supercomputers as well

KERNEL INTERFERENCE (LINUX)

6}

Single Application
20 —
15} :
N Each point represents
s the latency of an OS
4 st - .+] interruption

Time (seconds)

21

KERNEL INTERFERENCE (LINUX)

A

2o Single Application With Competition

15 |- .

10 -

Latency (us)

Time (seconds) Time (seconds)

22

WHY DOES THIS HAPPEN?

* Linux 1s a commodity OS that generally does not care about
extreme scale features

 Cares about running anywhere and everywhere
* No understanding of how this impacts massive scale applications

* Our novel 1nsight: OS resources generate variability

* B. Kocoloski, J. Ouyang, and J. Lange, “A Case for Dual Stack Virtualization:
Consolidating HPC and Commodity Applications in the Cloud,” SOCC /2

* B. Kocoloski and J. Lange, “HPMMAP: Lightweight Memory Management for
Commodity Operating Systems,” /PDPS '14

* B. Kocoloski and J. Lange, “Lightweight Memory Management for High
Performance Applications in Consolidated Environments,” 7PDS ‘16

* Page table locks, page caches, scheduling queues all
examples of contended OS resources

larget

Performance isolation
between applications at the

OS level

F————\

|
|
|
I 7
(@y)
HER 2
| ¥ | |
. |
| Tlghﬂ?’ | I | Workloads that |
| synchronized 1| need Linux
_applications [\ T T]
.‘..............‘I(\
- ISOLATED :j| LINUX
: KERNEL =j| KERNEL
‘..............'I\ —)

HARDWARE

KITTEN LIGHTWEIGHT KERNEL

* Lightweight kernel (LWK) from Sandia National
Laboratories designed to execute massively parallel HPC
applications

* Major design goal: provide more repeatable performance
than general purpose OS (like Linux) for tightly
synchronized workloads

* Simplified, lightweight resource management

P

https://software.sandia.gov/trac/kitten

https://software.sandia.gov/trac/kitten

PISCES CO-KERNELS 22,

We designed a co-kernel framework to boot multiple

lightweight operating systems “next to Linux”

* J. Ouyang, B. Kocoloski, J. Lange, K. Pedretti “Achieving Performance Isolation
with Lightweight Co-Kernels,” 7/PDC 15

* B. Kocoloski et al., “System-Level Support for Composition of Applications,”
ROSS ‘15

e Complete isolation between separate OS kernels

Each OS runs its own scheduler, memory manager, network
stacks, device drivers, etc.

Hardware partitioned at runtime using Linux resource
offlining utilities

APPROACH: PARTITION + ISOLATE

A

Linux

Co-Kernel w

-

Memory
Region A

2

28

KERNEL INTERFERENCE
(PISCES + KITTEN)

Latency (us)

20

15

10

BLA
Single Application With Competition
| | | | | | | 1
A L . s L . S, S i |
0 1 2 3 4 5 0 1 2 3 4 5

Time (seconds)

Time (seconds)

29

ELIMINATION OF OUTLIERS
(HPCCG)

CDF (%)

100
80 |
60 1
40 |
20

0

» A few percentage
points on average 1s
nice ...

» But removal of
outliers is critical to
achieve scalability

Pisces —— Native KVM
Linux
’,-"“'
44 45 46 47 48 49 50

Runtime (seconds)

51

OVERVIEW OF MY RESEARCH

2. Analysis of low-level OS variability present in
software technologies used 1n the cloud

WHAT IS GOING ON IN THE
KERNEL?

* Motivation: let’s try to understand more specifically
what 1s going on in the kernel that generates
variability

* This 1s a problem outside of just BSP

* Hard real-time applications (e.g., control system in
nuclear power plant)

* Cyber-physical systems, esp. with real-time components
(e.g., real-time vision processing for autonomous
Vehlcles)

* Latency-sensitive cloud applications (tail at scale)

HIGH LEVEL PROBLEM:
WORST CASE != AVERAGE CASE

* Dependence on worst-case performance 1s what
unifies these workloads

* Problem: almost all computational platforms rely on
the Linux kernel, which 1s (generally) not designed
with worst-case performance characteristics in mind

* Competition: workloads compete for each other for
resources; the focus here 1s on understanding how a
shared OS kernel could be subject to competition

METHODOLOGY

Each thread does nothing but
issue system calls to the kernel [SyStem call corpus }
* Higher levels of parallelism

stress the ability of the kernel

to 1solate workloads from
each other

Workload 1s not hardware

intensive — it relies almost
exclusively on software L.inux kernel

efficiency
* Locks on data structures
* Software caches (e.g.
page cache, SLAB allocator)

34

DEPLOYING SOFTWARE IN THE
CLOUD

* Beyond understanding kernel variability, we can extend this
framework to study variability that arises from concurrent
contention to any shared software layer

API

%%%%%%%%

Shared software layer

CONTAINERS AND VMS

~KVM &

Containers vs. VMs docker

Containers are isolated,
but share OS and, where
appropriate, bins/libraries

" 36

EXPERIMENTAL SETUP

* 64-core machine

* Each core executes a set of 3,000 + system calls
concurrently with every other core

* Three configurations:
* 64 native Linux processes
e 64 1-core virtual machines
e 64 1-core containers

SETUP
S 3 5 3

Configuration 1

Linux only
Linux kernel

Physical Cores

38

SETUP

S 3 3 3

kernel kernel kernel kernel

Configuration 2 KVM hypervisor]
KVM .
virtualization -
[Linux kernel]
Physical Cores

SETUP

to t t) te3
Docker Docker Docker Docker
container container container container

Configuration 3
Docker
containerization [

Linux kernel]

Physical Cores

40

SYSTEM CALL PERFORMANCE

% of system calls with median below
1us 10pus 100pus 1ms 10ms >10ms
Linux 11.12 73.76 96.67 98.81 99.14 0.86
KVM 834 5723 9311 9943 9984 0.16
Docker 7.35 65.87 97.04 9845 99.67 0.33

Table 1. Breakdown of median system call performance in
Linux, KVM, and Docker

% of system calls with 99th percentile below
lpys 10ps 100ps 1Ims 10ms >10ms
Linux 0.01 31.71 93.28 97.78 99.89 0.11

KVM 0.02 2837 75.22 99.81 0.19
Docker 0 19.43 9363 978 99.1 0.9

Table 2. Breakdown of 99th percentile system call perfor-
mance in Linux, KVM, and Docker

41

LLACK OF VM BOUNDARY CAUSES UP
TO 100X WORSE 99TH %ILE
PERFORMANCE

1 004 L~ -q: oo e 100% ,_.-?f,f"“"i_(
7 ¥ W
oo S
A 1 . K L & .- *1
- \,<-" (i ~ - d i
j._,p_." =)+ Linux /i--,-:, .- Linux
e ~+/= Docker /= Docker
0% | : 1 0%l :
| 10 100 1000 10) 100 1 000
Time (ms) Time (ms)

(a) 99th percentile runtimes (b) Worst-case (max) runtimes

Figure 2. System call outlier distribution in Linux and
Docker. All system calls either have 99th percentiles in KVM
less than 1ms (a), or worst-case runtimes in KVM less than
10 ms (b)

42

VMS MUCH MORE EFFECTIVE AT
[IMITING WORST-CASE BEHAVIOR

100% 100%
5 50% 5 50%
- O
KVM KVM
0% 0%
3 g 20 40
Time (ms) Time (ms)

(a) 99th percentile runtimes (b) Worst-case (max) runtimes

Figure 3. System call outlier distribution in KVM. All system
calls either have 99th percentiles in Linux less than 1ms (a),
or worst-case runtimes in Linux less than 10ms (b)

43

SUMMARY

* Worst-case performance 1s important for many
applications

* Linux 1s not built to provide good worst-case
performance, particularly due to contention that spills
across workloads

* Techniques such as virtualization help, but other
approaches may be better

WORKING IN MY LAB

* Things you will need (in order from most to least
important)
1. Ability to articulate interest in an area that [have some
expertise

- e.g., cloud, supercomputing, real-time, reliability, support for
machine learning applications

2. Firm %riderstanding of low level programming languages
e.g.,
3. Solid background in statistics

* Skills you will develop

* Understanding of low-level hardware/software performance
* Systems building and evaluation

* Ability to design and carry out experimental research

