

Advice from Max Delbruck for talking to a diverse audience with unknown level of background knowledge:

"Assume your audience has zero knowledge but infinite intelligence."

Outline of the talk

1. Basic Molecular Biology

Proteins bind DNA to regulate gene expression Specificity of Transcription Factors (TFs)

- Models and methods of determination
- Relationship to epigenetics

Open Computational Problems

Prediction of Specificity from Protein Sequence

- Prior work
- New challenges and possible approaches

"Under conditions of low glucose, turn on the expression of the adjacent gene."

"Under conditions of low glucose, turn on the expression of the adjacent gene."

TAATGTGAGTTAGCTCACTCAT

"Under conditions of low glucose, turn on the expression of the adjacent gene."

TAATGTGAGTTAGCTCACTCAT cgcTGTGAccgtGgTCgCagtT

"Under conditions of low glucose, turn on the expression of the adjacent gene."

TAATGTGAGTTAGCTCACTCAT cgcTGTGAccgtGgTCgCagtT tttTtTGAtcgtttTCaCattT aaacgTGAtagccgTCaaacaa "Under conditions of low glucose, turn on the expression of the adjacent gene."

TAATGTGAGTTAGCTCACTCAT cgcTGTGAccgtGgTCgCagtT tttTtTGAtcgtttTCaCattT aaacgTGAtagccgTCaaacaa

After a few more examples, <u>nothing</u> was conserved! Concept of "consensus sequence" emerged: have a preferred sequence but allow mismatches. Still problematic, either low sensitivity or specificity. New model was needed!

			PW	MN	Mod	lel			
		Sco	ore =	43					
a	С	Т	A	Т	A	Α	Т	g	t
	A:	-8	10	-1	2	1	-8		
	C :	-10	-9	-3	-2	-1	-12		
	G:	-7	-9	-1	-1	-4	-9		
	T:	10	-6	9	0	-1	11		

A:	-8	10	-1	2	1	-8
C :	-10	-9	-3	-2	-1	-12
G:	-7	-9	-1	-1	-4	-9
T:	10	-6	9	0	-1	11

$Score(S_i|W) = W \cdot S_i$

PWM is a linear model:

- S_i encodes the sequence (which base occurs at each position)
- W weights those encoded features to provide the score
- Easy to add more features if they are necessary

A:	-8	10	-1	2	1	-8
C:	-10	-9	-3	-2	-1	-12
G:	-7	-9	-1	-1	-4	-9
T:	10	-6	9	0	-1	11

$$Score(S_i|W) = W \cdot S_i$$

PWM is a linear model:

- S_i encodes the sequence (which base occurs at each position)
- W weights those features to provide the score
- Easy to add more features if they are necessary

George Box: "All models are wrong. Some models are useful

- Various methods for determining parameters:
 - Discriminant learning
 - Probabilistic modeling (i.e. log-odds)
 - Basis of most motif discovery algorithms
 - Regression on quantitative data
 - <u>Binding energy models</u>

Stormo (2013) Quantitative Biology 1:115-130

Genes regulated by CRP in E. coli

CEICG
\TAATGTTTGTGCTGGTTTTTGTGGCATCGGGCGAGAATAGCGCGTGGTGTGAAAGACTGTTTTTTGATCGTTTTCACAAAAATGGAAGTCCACAGTCTTGACAG\
ECOARABOP
\GACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAG
ECOBGLR1
\acaaatcccaataacttaattattgggattgttatatata
ECOCRP
\CACAAAGCGAAAGCTATGCTAAAACAGTCAGGATGCTACAGTAATACATTGATGTACTGCATGTATGCAAAGGACGTCACATTACCGTGCAGTACAGTTGATAGC \
ECOCYA
\ACGGTGCTACACTTGTATGTAGCGCATCTTTCTTTACGGTCAATCAGCAAGGTGTTAAATTGATCACGTTTTAGACCATTTTTTCGTCGTGAAACTAAAAAAAA
ECODEOP2
\agtgaattatttgaaccagatcgcattacagtggatgcaaacttgtaagtagatttccttaattgtgatgtatcgaagtgtgttgcggagtagatgttagaata \
ECOGALE
\GCGCATAAAAAACGGCTAAATTCTTGTGTAAACGATTCCACTAATTTATTCCATGTCACACTTTTGGCATCTTTGGTATGGTATGGTTATTCATACCATAAGCC\
ECOILVBPR
\GCTCCGGCGGGGTTTTTTGTTATCTGCAATTCAGTACAAAACGTGATCAACCCCTCAATTTTCCCTTTGCTGAAAAATTTTCCATTGTCTCCCCTGTAAAGCTGT \
ECOLAC
\AACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCAC \
ECOMALBA
\ACATTACCGCCAATTCTGTAACAGAGATCACACAAAGCGACGGTGGGGCGTAGGGGCAAGGAGGATGGAAAGAGGTGCCGTATAAAGAAACTAGAGTCCGTTTA \
ECOMALBA
\GGAGGAGGCGGGAGGATGAGAACACGGCTTCTGTGAACTAAACCGAGGTCATGTAAGGAATTTCGTGATGTTGCTTGC
ECOMALT
\GATCAGCGTCGTTTTAGGTGAGTTGTTAATAAAGATTTGGAATTGTGACACAGTGCAAATTCAGACACATAAAAAAACGTCATCGCTTGCATTAGAAAGGTTTCT \
ECOOMPA
\GCTGACAAAAAAGATTAAACATACCTTATACAAGACTTTTTTTT
ECOTNAA
\TTTTTTAAACATTAAAATTCTTACGTAATTTATAATCTTTAAAAAAAA
ECOUXU1
\CCCATGAGAGTGAAATTGTTGTGATGTGGTTAACCCAATTAGAATTCGGGATTGACATGTCTTACCAAAAGGTAGAACTTATACGCCATCTCATCCGATGCAAGC \
PBR322
\CTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTC\
TRN9CAT
\CTGTGACGGAAGATCACTTCGCAGAATAAATAAATCCTGGTGTCCCTGTTGATACCGGGAAGCCCTGGGCCAACTTTTGGCGAAAATGAGACGTTGATCGGCACG\
TDC
\GATTTTTATACTTTAACTTGTTGATATTTAAAGGTATTTAATTGTAATAACGATACTCTGGAAAGTATTGAAAGTTAATTTGTGAGTGGTCGCACATATCCTGTT\
Stormo and Hartzell, 1989, PNAS

Inherent limitations of probabilistic models for protein-DNA binding specificity

Shuxiang Ruan, Gary D. Stormo*

Diversity and Complexity in DNA Recognition by Tran Factors	verse sets:		
Gwenael Badis <i>et al.</i> Science 324 , 1720 (2009)	>10	oo TFs	
Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities	~2	o TFs	
Arttu Jolma, ^{1,2} Teemu Kivioja, ^{1,3} Jarkko Toivonen, ³ Lu Cheng, ³ Gonghong Wei, ¹ Martin Enge, ² Mikko Taipale, ¹ Juan M. Vaquerizas, ⁴ Jian Yan, ¹ Mikko J. Sillanpää, ⁵ Martin Bonke, ¹ Kimmo Palin, ³ Shaheynoor Talukder, ⁶ Timothy R. Hughes, ⁶ Nicholas M. Luscombe. ⁴ Esko Ukkonen. ³ and Jussi Taipale ^{1,2,7} Genome Res. 2010 20: 861-873	-	0 110	
DNA-Binding Specificities			
of Human Transcription Factors		~240 TFs	
Artu Jolma, ^{1,2,8} Jian Yan, ^{1,8} Thomas Whitington, ¹ Jarkko Toivonen, ³ Kazuhiro R. Nitta, ¹ Pasi Rastas, ³ Ekaterina Morgunova, ¹ Martin Enge, ¹ Mikko Taipale, ² Gonghong Wei, ² Kimmo Palin, ² Juan M. Vaquerizas, ⁴ Renaud Vincentelli, ⁶ Nicholas M. Luscombe, ⁴ Timothy R. Hughes, ⁶ Patrick Lemaire, ⁷ Esko Ukkonen, ³ Teemu Kivioja, ^{1,2,3} and Jussi Taipale ^{1,2,2}		·	
Cell 152, 327–339, January 17, 2013			
Determination and Inference			
of Eukaryotic Transcription Fact	tor		
Sequence Specificity	>10	ooo TFs	
Cell 158, 1431–1443, September 11, 2014 Weirauch et al			

BEESEM: estimation of binding energy models using HT-SELEX data

Shuxiang Ruan¹, S. Joshua Swamidass² and Gary D. Stormo^{1,*}

Bioinformatics, 33(15), 2017, 2288-2295

Uses Expectation Maximization (EM) to simultaneously infer the binding site on each sequence and the parameters of the model (PWM)

Out performs all other algorithms on *in vitro* data, Comparable on *in vivo* data (ChIP-seq)

Open Problem: Specificity Prediction

- <u>Goal:</u>
 - Predict specificity from protein sequence
 - Decipher "Recognition Code" for Protein-DNA

<u>Strategy:</u>

- Infer interacting positions from covariation
- Use machine learning methods (SVM,RF,KNN,NN,...) to develop predictive methods
- Evaluation:
 - <u>Cross-validation</u>

	<u> "САСҫҫҪ "са, ст, Са, ст, Са, ст, Са, с, Са, Са, Са, Са, Са, Са, Са, Са, Са, Са</u>	
	GCGARG GAARCG GACACG CEGE G CAGCCG GCGCACG CEGERG G GAARCCG GAACCC GAARAC G G CACCCG	
	GEGETG EGAGE GALACG G.C. G GEGETG GA GEG GEGEEG & GGAG GAGACG GAA EG GAGGAG	
	BATALG GATALG GATALG GARACG GARACG GARACG GARACG GATALG GALACG GALATG GALACG	
-		
Z		
F		
d	<u>"UTCACU "GAAGEG "GAGG" = CGAG "GAAG" =GAG "G_GACU "G_GCGG "GACG" GAA_CG</u>	
а	<u>"G., ACG "GTGACG "GACACG "GAC., G"GCG., TG"GAA., G"CGG., G"GAACCG "GAAACG "GCACCG"GACA.</u>	
t	GGGx_G G_TGTG GAAAccx GGAG GAAGxG GACAAG GACAG GAC .G GATAGG GATAGGA GAGAGAGGAGAGGGAGAGGGAGAGAGA	
a	G, G, G, G, G, AAGG, GGTG, G, GGGACG, G, G	
u	GCCG CCCCC GAG. GG CCTACG CCCACG CTCACC CCCCCG CT.ACG CTCCCC CCCCC CCCCCC CCCCCCCCCCCCCCCC	
	G-GTGG G-GGG-G GAC -G GAG -G G-GCG GAC G GCAA-G -GTACG G-GTGGG GAG GAA- G	
	CAUCTU CTAACU G. GUCU GAA AU GTCGSU GAAGSU UACALU GGG. CU UAAGTU UACAUU GGGCCU	
	Gelea Generation - Contraction	
	GAAACT GAAGTT GGCT-G GGTACG GATACG GATACG GACG GAAAAT GATTCG GAAAAT	
	CGAGEG GASTSG GAATAG SAC. TG GATACG GAE GAE GAACCG GACATG	

Open Problems and Opportunities

- Larger, more diverse datasets now exist
 - Current predictions are much poorer on more diverse proteins especially those with many ZFs of which only a subset may interact with DNA
 - Can we predict which fingers are used?
- We and others are collecting data about methylation sensitivity
 - No current models attempt to predict that
 - Are there "simple rules" for methylation sensitivity?
- Can Deep Learning on a more defined problem give both better predictions and mechanistic insights?

 Stormo Lab Dana Fields Takis Benos JJ Liu Ryan Christensen Yue Zhao Shuxiang Ruan Zheng Zuo David Granas Collaborators Alan Lapedes, Los Alamos Labs Scott Wolfe, Univ of Mass Med School And several people from his lab Petko Petkov Jackson Lab		Acknowledgements
 Dana Fields Takis Benos JJ Liu Ryan Christensen Yue Zhao Shuxiang Ruan Zheng Zuo David Granas Collaborators Alan Lapedes, Los Alamos Labs Scott Wolfe, Univ of Mass Med School And several people from his lab Petko Petkov Lackson Lab 		Stormo Lab
 Takis Benos JJ Liu Ryan Christensen Yue Zhao Shuxiang Ruan Zheng Zuo David Granas Collaborators Alan Lapedes, Los Alamos Labs Scott Wolfe, Univ of Mass Med School And several people from his lab Petho Pethov Lackson Labs		Dana Fields
 JJ Liu Ryan Christensen Yue Zhao Shuxiang Ruan Zheng Zuo David Granas Collaborators Alan Lapedes, Los Alamos Labs Scott Wolfe, Univ of Mass Med School And several people from his lab Petho Pethov Lackson Labs		Takis Benos
 Ryan Christensen Yue Zhao Shuxiang Ruan Zheng Zuo David Granas Collaborators Alan Lapedes, Los Alamos Labs Scott Wolfe, Univ of Mass Med School And several people from his lab Petho Pethov Lackson Lab		JJ Liu
 Yue Zhao Shuxiang Ruan Zheng Zuo David Granas Collaborators Alan Lapedes, Los Alamos Labs Scott Wolfe, Univ of Mass Med School And several people from his lab Petko Petkov Lackson Lab		• Ryan Christensen
 Shuxiang Ruan Zheng Zuo David Granas Collaborators Alan Lapedes, Los Alamos Labs Scott Wolfe, Univ of Mass Med School And several people from his lab Petko Petkov, Jackson, Lab		• Yue Zhao
 Zheng Zuo David Granas Collaborators Alan Lapedes, Los Alamos Labs Scott Wolfe, Univ of Mass Med School And several people from his lab Petko Petkov, Jackson, Lab		Shuxiang Ruan
 David Granas <u>Collaborators</u> <u>Alan Lapedes, Los Alamos Labs</u> <u>Scott Wolfe, Univ of Mass Med School</u> <u>And several people from his lab</u> Petko Petkov, Jackson Lab 		Zheng Zuo
<u>Collaborators</u> <u>Alan Lapedes, Los Alamos Labs</u> <u>Scott Wolfe, Univ of Mass Med School</u> • <u>And several people from his lab</u> Petko Petkov, Jackson Lab		David Granas
Collaborators Alan Lapedes, Los Alamos Labs Scott Wolfe, Univ of Mass Med School And several people from his lab Petko Petkov, Lackson, Lab		
Alan Lapedes, Los Alamos Labs Scott Wolfe, Univ of Mass Med School • And several people from his lab Petko Petkov, Jackson Lab	•	<u>Collaborators</u>
 <u>Scott Wolfe, Univ of Mass Med School</u> <u>And several people from his lab</u> Petko Petkov Jackson Lab 	•	<u>Alan Lapedes, Los Alamos Labs</u>
And several people from his lab Petko Petkov Lackson Lab	•	Scott Wolfe, Univ of Mass Med School
Petko Petkov Jackson Lab		<u>And several people from his lab</u>
<u>retroi etrov, jackson Lab</u>	•	Petko Petkov, Jackson Lab
Funding: NIH	•	Funding: NIH