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Imaging technology is going through a
paradigm shift with computation at its core
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Today we will talk about

e Forward models in imaging

@ Notions of ill-posedness and regularization

e Optimization at large scales

e Plug-and-Play Priors (PnP) at large scales
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Forward model relates
the unknown object to the observed data

Forward problem: generate y from f

= . 2
maging operator

y = Hf + e

Inverse problem: recover f from y

Question: Which problem is harder to solve?
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Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Forward models can be represented as integrals

Unknown molecular/anatomical map: f(r), == (z,y,z,t) € R

Space of finite-energy functions: f € Ly(R%)

Imaging operator: | H: sy = (y1,...,ym) = H{f}

from continuum to finite

@Molecular Imaging
dimensional: H: Ly(R%) — R™

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Unknown molecular/anatomical map: f(r), == (z,y,z,t) € R
Space of finite-energy functions: f € Ly(R%)

Imaging operator: H:s—y=(yi,...,ymn) = H{f}

@ Molecular Imaging
Basic Pr and Applications

Linearity assumption: Vaj,ay € R, Vfy, fz € Lo(RY)

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Forward models can be represented as integrals

Unknown molecular/anatomical map: f(r), == (z,y,z,t) € R
Space of finite-energy functions: f € Ly(R%)

Imaging operator: H:s—y=(yi,...,ymn) = H{f}

@ Molecular Imaging
Basic Pr and Applications

Linearity assumption: Voj,as € R, Vfi, fo € Ly(RY)

H{ai fi + asfo} = cnH{f1} + aaH{ f2}

by the Riesz representation theorem

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Forward models can be represented as integrals

Unknown molecular/anatomical map: f(r), == (z,y,z,t) € R
Space of finite-energy functions: f € Ly(R%)

Imaging operator: H:s—y=(yi,...,ymn) = H{f}

@ Molecular Imaging
Basic P!\“lLH,’\'w:A;tE»iV]AJ .,‘3«[:![:\ ications

Linearity assumption: Voj,as € R, Vfi, fo € Ly(RY)

H{ai fi + aafo} = arH{f1} + coH{ f2}

/impulse response of mth detector

e [l = U = (o, f) — / fi () ()

Rd

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Example imaging operator:
Fourier transform is extensively used in MRI

“Images are obviously made of sine waves..."
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flw)=F{f} = o e ) dr

Inverse Fourier transform (reconstruction formula)




Example imaging operator:

Fourier transform is extensively used in MRI

Fourier transform: F : Ly(R%) — Ly(RY)

flw)=F{f} = o e ) dr

Inverse Fourier transform (reconstruction formula)

1

f('r) :f_l{f} — (27-‘-)d R :

As a measurement function: h (r) = e~iwm:m) i (complex sinusoid)

= (o) = [ () £
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Example imaging operator:
Fourier transform is extensively used in MRI

Linear forward model for MRI

(B) Uniformly (C) Incoherently (D) Variable density

under-sampled under-sampled incoherently

[Source]


https://philipsproductcontent.blob.core.windows.net/assets/20180109/619119731f2a42c4acd4a863008a46c7.pdf
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Example imaging operator:
Fourier transform is extensively used in MRI

Linear forward model for MRI

§(wm) p— /RS S(fr)e_j<wm7’f'> dr,a

Extended forward model with coil sensitivity

(B) Uniformly (C) Incoherently (D) Variable density
under-sampled under-sampled incoherently

[Source]


https://philipsproductcontent.blob.core.windows.net/assets/20180109/619119731f2a42c4acd4a863008a46c7.pdf
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Radon transform is extensively used in tomography
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Example imaging operator:
Radon transform is extensively used in tomography

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Example imaging operator:
Radon transform is extensively used in tomography

Projection geometry:

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014



&2 Washington

University in St.Louis

Example imaging operator:
Radon transform is extensively used in tomography

Projection geometry: r =10 +rf0-, 6 = (cosb,sinb)

Radon transform computes
I|ne integrals of the object:

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Example imaging operator:
Radon transform is extensively used in tomography

Projection geometry: r =10 +rf0-, 6 = (cosb,sinb)

Radon transform computes )
line integrals of the object: \ T N
Rg{f / f t0 + THJ') dr \\—f

. f(r)o(t — (r,0))dr

:image and its sinogram

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014



&2 Washington

University in St.Louis

Example imaging operator:
Radon transform is extensively used in tomography

Projection geometry: r =10 +rf0-, 6 = (cosb,sinb)

Radon transform computes )
line integrals of the object: \ T N
Rg{f / f t0 + THJ') dr \\—f

1)t~ (r.0))dr

As a measurement function: Ehm(r) = 0(ty, — (7, 0,,)) :

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Central slice theorem relates projections to the
Fourier transform of the object

Radon transform: p¢(t) = Re{f}(t,0) %} g
1D and 20 Fourir relationships: Q

po(w) = Fin{ps Hw) E1D Fourier of data
f( )— 2D{f}( ) pol(w,e) §2D Fourier of image

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Central slice theorem relates projections to the
Fourier transform of the object

Radon transform: pa(t) = Re{f}(¢,0) T
1D and 2D Fourier relationships: y;\\

A
N Fourier ransform
Po(w) = Fuopo}(w) .
f(w) = Fol fHw) = fru(w,0)
‘\ :wz
Central-slice theorem relates

projections to Fourier sampling:

L A + Establishes Fourier relationshi
: w) = f(wcosB.wsinh) = w.0) P
! pe( ) f( ’ ) prI( ’ ) ' between data and image

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Central slice theorem relates projections to the
Fourier transform of the object

Radon transform: p¢(t) = Re{f}(t,0) L
1D and 2D Fourier relationships: V\\\

B

~ Fourier transform
po(w) = Fin{pe}(w) \\
f(w) = Fol fHw) = fru(w,0)
\ :wz
Central-slice theorem relates

projections to Fourier sampling:

po(w) = f(wcosB,wsind) = fr(w,0)

Proof for angle zero:

N +oo +oo . +0o0 +oo .
fo0= [ [ repetraay = [ ( / f(fc,y)dy)e_wdw=ﬁo($)

A\ 7
-~

po(z)
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Central slice theorem relates projections to the
Fourier transform of the object

Radon transform: p¢(t) = Re{f}(t,0) L
1D and 2D Fourier relationships: V\\\

B

~ Fourier transform
po(w) = Fin{pe}(w) \\
f(w) = Fol fHw) = fru(w,0)
\ :wz
Central-slice theorem relates

projections to Fourier sampling:

po(w) = f(wcosB,wsind) = fr(w,0)

Proof for angle zero: Question: How to generalize to other angles?

N +oo +oo . +0o0 +oo .
fo0= [ [ repetraay = [ ( / f(fc,y)dy)e_wdw=ﬁo($)

A\ 7
-~

po(z)
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Most imaging systems can be
characterized with a forward model

Modality Radiation Forward model Variations
2D or 3D
i - — Rop. parallel,
tomography coherent x-ray Yi 0 cone beam, spiral sampling
3D deconvolution —H brightfield, confocal,
. = nx
microscopy fluorescence Y light sheet
y; = HW;z

structured illumination
microscopy (SIM)

fluorescence

H: PSF of microscope
W, illumination pattern

full 3D reconstruction,
non-sinusoidal patterns

Positron Emission . —H list mode
amma rays = Hg,; X
Tomography (PET) g y Yi with time-of-flight
Magnetic resonance - — iform or non-uniform
= radio frequency y =Fx uni
imaging (MRI) sampling in k space
Cardiac MRI Yti — F:W;x gated or not,

(parallel, non-uniform)

radio frequency

W,;: coil sensitivity

retrospective registration

Optical diffraction
tomography

coherent light

yi = W;F;z

with holography
or grating interferometry
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Most imaging systems can be

characterized with a forward model

Modality Radiation Forward model Variations
2D or 3D
i - — Rop. parallel,
tomography coherent x-ray Yi 0 cone beam, spiral sampling
3D deconvolution —H brightfield, confocal,
. = N
microscopy fluorescence Y light sheet
v, = HW;x

structured illumination
microscopy (SIM)

fluorescence

H: PSF of microscope
W, illumination pattern

full 3D reconstruction,
non-sinusoidal patterns

Positron Emission . —H list mode
amma rays — g, T
Tomography (PET) g y Yi with time-of-flight
Magnetic resonance - — iform or non-uniform
= radio frequency y =Fx uni
imaging (MRI) sampling in k space

(parallel, non-uniform)

radio frequency

W,;: coil sensitivity

retrospective registration

Optical diffraction
tomography

coherent light

with holography
or grating interferometry

Currently active collaborations at CIG
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Discretization: Continuous domain formalism
easily reduces to a noisy linear system

" 1.
Representation with basis functlons . 08
TTTTTTTETTTEET s s s . 0.6
f(r) =) flk]Bk(r) o
ke VA\/ 5 \ﬁ/\\/f\
-------------------------------------- ~0.2

Question: What type of
representation is offered by sinc?

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Discretization: Continuous domain formalism
easily reduces to a noisy linear system

1.

Representation with basis functions: 08|
0.6 |
04 ¢
~ Z f[k]ﬁk(r) 0.2 |
kEQ /\ | /\v,-\
------------------------------- . ~0.2 -~ _\/ 0 \ﬁ 4

Signal vector: f— {f|Ek]}eq € R”

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014



&5 Washington
University in St.Louis

Discretization: Continuous domain formalism
easily reduces to a noisy linear system

1.

Representation with basis functions: 0.8
0.6 ¢

f(r)="> fIKlBr(r) 00|
ke .

-0.2 1

Signal vector: = {f|k|}xcq € R"

Discretized measurement model:

Question: What are the sources of noise?

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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Discretization: Continuous domain formalism
easily reduces to a noisy linear system

1.

Representation with basis functions: 0.8
0.6 ¢

= > [IKIBk(r) 00|

ke .

-0.2 1

Signal vector: = {f|k|}xcq € R"

Discretized measurement model:

f( Yhi(r)dr 4+e; = (f,h;) +e;, (i=1,...,m)

= y =Hf+4e Hlix = (hi, Bk) = /Rd hop, (1) B (7) dr

linear system of equations

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014
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To conclude “forward models”

Man.y iImaging problgms_reduce to vy = Hf + e
solving large and noisy linear systems

Setting up the right forward model is a big step
towards being able to form high quality images

= . 24
ntegral operator
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@ Notions of ill-posedness and regularization
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Inteégral operator

Problem: recover f from noisy measurements y
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y = Hf + e

Integral operator

Problem: recover f from noisy measurements y

Question: Why can’t we simply compute the inverse f = H™'y?
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What makes imaging inverse problems difficult?

y = Hf + e

= . o
ntegral operator

Problem: recover f from noisy measurements y

Question: Why can’t we simply compute the inverse f = H™'y?

. 1) Difficult to invert the matrix as it is non-square or too large
. 2) Measurements do not uniquely describe the object
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What makes imaging inverse problems difficult?

y = Hf + e

= . 4
ntegral operator

Problem: recover f from noisy measurements y

Question: Why can’t we simply compute the inverse f = H™'y?

. 1) Difficult to invert the matrix as it is non-square or too large

2) Measurements do not uniquely describe the object
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What makes imaging inverse problems difficult?
y = Hf + e

= . 4
ntegral operator

Problem: recover f from noisy measurements y

Question: Why can’t we simply compute the inverse f = H™'y?

1) Difficult to invert the matrix as it is non-square or too large
. 2) Measurements do not uniquely describe the object
. 3) Noise amplification (related but not equal to 2)
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Regularization framework enables the selection of
the most suitable solution among alternatives

Consider a noisy linear system . - -
. . _
with noise of bounded norm E " A j -.|!|H i
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Regularization framework enables the selection of
the most suitable solution among alternatives

<
s
"

o

Consider a noisy linear system
with noise of bounded norm E

EE'.e-

H+i

y = Hf +e such that |y — Hin < o? -

We consider a constrained
optlmlzatlon problem

e The “regularizer’ picks the solution which we think is best
e Allows us to infuse prior knowledge into the problem
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Regularization framework enables the selection of
the most suitable solution among alternatives

Consider a noisy linear system . . -
with noise of bounded norm i - “.::E:l"ﬁ

y = Hf + e such that |y — HfH%2 < g*

We consider a constrained
optimization problem

minimize R(f) subject to || Hf — y||;, < o~

E Examples Elad, “Sparse and Redundant E
' : ;" ~ Representations,” 2010 »
: when no noise 6 '
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Question: How to regularize in imaging?

Classical approach: Tikhonov regularization

Andrey N. Tikhonov (1906-1993)

minimize R(f) subject to |Hf — y||;, < o”
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Question: How to regularize in imaging?

Classical approach: Tikhonov regularization

R(f) = |Df|?, = ifn.=(D'D)'H [HD'D)'H'] y

unique closed-form solution

minimize R(f) subject to |Hf — y||;, < o”
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Question: How to regularize in imaging?

Classical approach: Tikhonov regularization

. : P — — —1
. R(f) = HDfHEQ L= = (DTD) 'H' [H(DTD) 1HT] y

Assumption:
Image is smooth

Question: Is image smoothness a reasonable assumption?

minimize R(f) subject to |Hf — y||;, < o”
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Question: How to regularize in imaging?

Classical approach: Tikhonov regularization

AN

_ _ —1
R(f) =|Df|;, = fun.=MD'D)'H HD'D)'H'| 'y

Modern approach: Transform-domain sparsity

Wavelet transform

Inverse wavelet transform

minimize R(f) subject to |Hf — y||;, < o”
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Classical approach: Tikhonov regularization

S . . —1
R(f) =|Df|;, = fun.=MD'D)'H HD'D)'H'| 'y

Modern approach: Transform-domain sparsity

image gradient

minimize R(f) subject to |Hf — y||;, < o”
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Question: How to regularize in imaging?

Classical approach: Tikhonov regularization

S . . —1
R(f) =|Df|;, = fun.=MD'D)'H HD'D)'H'| 'y

Modern approach: Transform-domain sparsity

R(f) — HDfoo — #{Z : [Df]z # O} E Intractable nonconvex

. optimiazation

image gradient
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Question: How to regularize in imaging?

Classical approach: Tikhonov regularization

S . . —1
R(f) =|Df|;, = fun.=MD'D)'H HD'D)'H'| 'y

Modern approach: Transform-domain sparsity

image gradient
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To conclude “regularization”

Many ima.gir_19_ problems are iI_I-posed: vy = Hf + e
there are infinitely many solutions

Regularization is a strategy to select the
solution that “makes sense”

minimize R(f) subject to |[Hf — y||;, < o~

Classical image regularizers are linear,
but increasingly they are nonlinear
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Today we will talk about

e Optimization at large scales
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Proximal operator corresponds to image denoising

A more convenient formulation

: L 1 :
‘min R(f) subject to |[Hf —y||7, <o’ & mf!n {5”37 — Hf||;, + )\R(f)}

constrained optimization unconstrained optimization
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A more convenient formulation
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Image denoising corresponds to
Identity measurement matrix
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Identity measurement matrix
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Proximal operator corresponds to image denoising

A more convenient formulation

1
min R(f) subject to |[Hf — y||;, <o° & mtin {QHY — Hf||;, + )\R(f)}

Image denoising corresponds to
Identity measurement matrix

1
min { 5y~ £13, + AR(0 |

We can thus define the prox operator that
solves the denoising problem
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Proximal operator corresponds to image denoising

Some examples of poitwise proximals

PVOXR(?J)

linear attenuation ¢5 minimization
W soft-threshold ¢1 minimization
B shrinkage function ~  {p relaxation for p — 0

Unser and Tafti, “An Introduction to Sparse Stochastic Processes,” 2014



2 Washington

S5
University in St.Louis

FISTA and ADMM are two popular algorithms
for large-scale and nonsmooth optimization



2 Washington

Umver51ty1n StLouis

FISTA and ADMM are two popular algorithms
for large-scale and nonsmooth optimization

Consider the objectlve function

data fit + regularlzer



FISTA and ADMM are two popular algorithms
for large-scale and nonsmooth optimization

Consider the objective function

C(f) = D(f) + R(F) where D(f) 2 _ [ Hf - y]?,

Fast iterative shrinkage/thresholding algorithm (FISTA) vs.
Alternating direction method of multlpllers (ADMM)

&2 Washington

University in St.Louis

z" — s"1 —A4VD(s" ) Lzt proxﬂ)(fk_1 — st h

f* prova(zk) f* prova(zk +sF 1

S e (e - /@) - FT) L SR e s

ISTA: g = 1 => O(1/t) ADMM fast practical convergence

FISTA: specific g« => O(1/t2?)
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FISTA and ADMM are two popular algorithms
for large-scale and nonsmooth optimization
Consider the objective function
C(f) = D(f) + R() where D(f) 2 %HHf— vl2.
Fast iterative shrinkage/thresholding algorithm (FISTA) vs.
Alternatlng direction method of multlpllers (ADMM)
B TP 2 proxp(® =5
f* prova(zk) f* prova(zk +sF71)
¥ 7 + (gr—1 — 1) /q)(f" — £ 1) s¥ "7 4 (2" — 1Y)

Question: Which one is computationally more efficient?
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FISTA and ADMM are two popular algorithms
for large-scale and nonsmooth optimization
Consider the objective function
C(f) = D(f) + R() where D(f) 2 %HHf— vl2.
Fast iterative shrinkage/thresholding algorithm (FISTA) vs.
Alternating direction method of multipliers (ADMM)
z" — s"1 —A4VD(s" ) 7" proxﬂ)(fk—1 — s
f* prox,YR(zk) f* prova(zk + s
s £ + ((qe—1 — 1)/qr) (£ — £71) P« s (28 — )
Per-iteration complexity of ADMM is
generally higher
VD(f) =H'(Hf — y) prox.(f) = I+ yH H] ' (f+ 7yHy)

requires matrix inversion
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To conclude “optimization”

Many ima.gir_19_ problems are iI_I-posed: vy = Hf + e
there are infinitely many solutions

Regularization is a strategy to select the
solution that “makes sense”

minimize R(f) subject to |[Hf — y||;, < o~

Classical image regularizers are linear,
but increasingly they are nonlinear
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Today we will talk about

e Plug-and-Play Priors (PnP) at large scales



3 Washington

S5
University in St.Louis

Deep learning is currently getting the
best performance for image reconstruction



=5 Washington

S5
University in St.Louis

Deep learning is currently getting the
best performance for image reconstruction

FBP TV FBPConvNet
Ground truth SNR 24.06 SNR 29.64 SNR 35.38

] ] ] 1] ] U 0 0
A\ = 3 = 3 = ) =
\ ¢ \ [/ \ ' [
. . - ) .
LN . AN . - p AN P
= e o = , A - e = e o

X-Ray CT Jin et al., 2016
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Deep learning is currently getting the
best performance for image reconstruction
FBP TV FBPConvNet MRI Han et a/., 2017

Ground truth SNR 24.06 SNR 29.64 SNR 35.38

(a) Ground truth (b) X : Input (36)

1.3929e-2 1.2397e-2

X-Ray CT Jin et al., 2016



& Washington

niversity in St.Louis
Deep learning is currently getting the
best performance for image reconstruction
FBP TV FBPConvNet MRI Han et a/., 2017

Ground truth SNR 24.06 SNR 29.64 SNR 35.38

(a) Ground truth (b) X : Input (36) (c) Total variation

1.3929e-2 1.2397e-2

Jin et al., 2016

14.64 dB 14.64 dB 22.32 dB 22.32 dB 26.56 dB

-

-

26.15 dB

10.28 dB 22.47 dB

.

~—

Truth FB-NN LS-NN FB-TV LS-TV ScaDec

Diffraction Tomography Sun et al., 2018



2 Washington

S5
University in St.Louis

A well established deep learning pipeline:
first backproject then denoise with a ConvNet



&5 Washington
University in St.Louis

A well established deep learning pipeline:
first backproject then denoise with a ConvNet

Data processing pipeline

l_)' W ( ﬁ fff s - -u [ﬁ f' (‘ l_) ‘ /

data “backproject” noisy image denoising CNN
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A well established deep learning pipeline:
first backproject then denoise with a ConvNet

Data processing pipeline

l_)' W ( ﬁ fff s - -u [ﬁ f' (‘ l_) ‘ / i

data “backproject” noisy image denoising CNN

Question: What are some of the key limitations of this approach?
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A well established deep learning pipeline:
first backproject then denoise with a ConvNet

Data processing pipeline

l_)' W m fff s - -u [ﬁ f' r‘ l_) e{‘ E

data “backproject” noisy image denoising CNN

Hard to decouple the individual contributions of D and R
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A well established deep learning pipeline:
first backproject then denoise with a ConvNet

Data processing pipeline

data “backproject” noisy image denoising CNN

1) ImpI|C|t dependance of CNN on the forward model

No explicit measure of the deviation from the data
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A well established deep learning pipeline:
first backproject then denoise with a ConvNet

Data processing pipeline

jo ] I > e >
rh : : 5 M0 - 44 et e sl mm
R el T

1) Implicit dependance of CNN on the forward model

2) Consistency with the measured data is unclear

Example: We absolutely need the image
gradient to be smaller than epsilon
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A well established deep learning pipeline:
first backproject then denoise with a ConvNet

Data processing pipeline

1B - SR |
: —~ . E H . ] l"“ : E, A :i\ \-. E
- —> H —> W M- [iimn.a-ﬁri-lff(-m —> i e )
: 0 . . E 128x128x64  G4x64x256 Rx32x512  16x16x512  BxBx1026  16x16x512  $2.32x512  64x64x256 128128 x 64 :

data “backproject” noisy image denoising CNN

1) Implicit dependance of CNN on the forward model
2) Consistency with the measured data is unclear

3) Difficult to impose nontrivial hard constraints on the image

Variations in the problem are not explicitly linked to model parameters




3 Washington

S5
University in St.Louis

A well established deep learning pipeline:
first backproject then denoise with a ConvNet

Data processing pipeline

Fremmmm e LR

' 1 ! 1 1

. 1 1 1 1 1 1

; D T
1 1

' — ! o n

—>  H" gl F Py T g

' ' ' . (00 - 6o - e - -0 - ' :

1 0 : ' B 2012x64  64x68x25 92xRx512  Tox16x512  8x8x1026  16x10x512  32x02x512  G4x0ex256  128x128%64 : '

1 1 : '

data “backproject” noisy image denoising CNN

1) Implicit dependance of CNN on the forward model
2) Consistency with the measured data is unclear
3) Difficult to impose nontrivial hard constraints on the image

4) Not principled: how to select the right architecture?

What happens if there is no backprojection?
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A well established deep learning pipeline:
first backproject then denoise with a ConvNet

Data processing pipeline

P Femmmmmmm---
: ! : 1 1 1
1 1 1 ' 1 1
; Sy qiy
1 1
1 — 1 1 nr\‘ L\n 1
¥ —> H" gl J P 1| hang
' ' ' " (00 - (45 - vw'e- sswn-100 - ' :
1 0 : ' B 2012x64  64x68x25 92xRx512  Tox16x512  8x8x1026  16x10x512  32x02x512  G4x0ex256  128x128%64 : '
1 1 : '

data “backproject” noisy image denoising CNN

1) Implicit dependance of CNN on the forward model

2) Consistency with the measured data is unclear

3) Difficult to impose nontrivial hard constraints on the image
4) Not principled: how to select the right architecture?

5) Difficult to generalize to nonlinear forward models
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Treating the denoising CNN as a proximal operator
allows to separate the prior from the forward model

Venkatakrishnan et al., “Plug-and-Play Priors for Model Based Reconstruction,” 2013.
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Treating the denoising CNN as a proximal operator
allows to separate the prior from the forward model

Train a CNN to denoise for various noise levels

' ~ prOX’yR (Y)

Venkatakrishnan et al., “Plug-and-Play Priors for Model Based Reconstruction,” 2013.
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Treating the denoising CNN as a proximal operator
allows to separate the prior from the forward model

Train a CNN to denoise for various noise levels

Y denoise, (+)

Use the trained CNN as a Plug-and- Play Prior (PnP)

;z gk —VVD(S ) ozl — prova(f”“_1 —sk_l)

f* < denoise, (z") f* < denoise, (z" 4+ s" 1)

: Sk s fk ((Qk—l . 1)/qk)(fk . fk—l) Sk . Sk—l + (Zk o fk)

PnP-FISTA PnP ADMM

Venkatakrishnan et al., “Plug-and-Play Priors for Model Based Reconstruction,” 2013.
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Plug-and-Play Priors (PnP) approach has been
shown to yield state-of-the-art results

Average PSNR (dB)

el over 10 images
TV 29.22

- oosMad L ;e |

----- asDsRe | mom ]

ek e

e 33

Romano et al., “The Little Engine That Could: Regularization by Denoising,” 2017
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Plug-and-Play Priors (PnP) approach has been
shown to yield state-of-the-art results

Average PSNR (dB)

 Method | mages
TV E 29.22

- poem | me |

''''' asoskes | smom |

ek e '

e 33

(d) NCSR 28.39dB (e) P3-TNRD 28.43dB

Romano et al., “The Little Engine That Could: Regularization by Denoising,” 2017
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Plug-and-Play Priors (PnP) approach has been
shown to yield state-of-the-art results

Average PSNR (dB)

el over 10 images
TV 29.22
IDD-BM3D 30.92 ) Ground Truth b) Input 21.40dB
ASDS-Reg 30.11
ek ae
e 33

) NCSR 30.03dB ) P3-TNRD 30.36dB

Romano et al., “The Little Engine That Could: Regularization by Denoising,” 2017



3 Washington

S5
University in St.Louis

Can we say anything about convergence?



&2 Washington
niversity inSt.Louis

Can we say anything about convergence?

Sreehari et al., “Plug-and-Play Priors for Bright Field Electron Chan et al., “Plug-and-Play ADMM for Image Restoration:
Tomography and Sparse Interpolation,” 2016 Fixed-Point Convergence and Applications,” 2016
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Can we say anything about convergence?

Result #1: When D(-) is convex and Vdenoise,(:) is a symmetric matrix with
eigenvalues in [0, 1], then denoise, (-) is a proximal operator.

Result #2: When both VD(-) and denoise, (-) are bounded operators, PnP-ADMM
with damping converges to a fixed point.

Sreehari et al., “Plug-and-Play Priors for Bright Field Electron Chan et al., “Plug-and-Play ADMM for Image Restoration:
Tomography and Sparse Interpolation,” 2016 Fixed-Point Convergence and Applications,” 2016
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Can we say anything about convergence?

Result #1: When D(-) is convex and Vdenoise,(:) is a symmetric matrix with
eigenvalues in [0, 1], then denoise, (-) is a proximal operator.

' . : ° N | w! DSGNLM l
g % | g -
8 2 '
— o Y |
£ - e
E 8 = |
a 10 T ol ]
o ®
2 g
] 3 !
® 5 g !
: S . .
S 2 s
Z 0 . ol .
0 10 20 30 40 50 60 0 50 100 150
P&P iteration number P&P iteration number

Result #2: When both VD(-) and denoise, (-) are bounded operators, PnP-ADMM
with damping converges to a fixed point.

' DCNN [9] 20.72  21.30 18.91 21.68 16.10 2339 2233 2299 2246  20.23 21.01
'SR [12] 20.67  21.30 1886  21.51 16.37  23.15 2219 2285 2226  20.33 20.95
1 SPSR [10] 20.85 21.58 19.18  21.85 16.59 2352 2242 2305 2253 20.50 21.21
: TSE [52] 2059  21.24 18.80  21.49 16.40  23.14 2221 22778 2221 20.30 20.92
» GPR [11] 21.55 22.68 1990  22.77 17.70  24.57  23.51 2437  23.63 21.35 22.20

Sreehari et al., “Plug-and-Play Priors for Bright Field Electron Chan et al., “Plug-and-Play ADMM for Image Restoration:
Tomography and Sparse Interpolation,” 2016 Fixed-Point Convergence and Applications,” 2016
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Can we say anything about convergence?

Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for
Regularized Image Reconstruction,” 2018
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Can we say anything about convergence?

Useful definitions

gradient-denoiser operator its of fixed points

Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for
Regularized Image Reconstruction,” 2018
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Can we say anything about convergence?

Useful definitions

P(f) £ denoise, (f —yVD(f))  fix(P) = {f cR": f = P(f)}
#1: Let denoise, () = prox,z(-). Then, f* € fix(P) iff it minimizes C =D + R

#2: Run PnP-ISTA with a nonexpansive denoiser for ¢ > 1 iterations. Then

min {I£5=1 = P(E*)IE, } = 0(1/1)

Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for
Regularized Image Reconstruction,” 2018
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PnP-SGD is an online extension useful when
dealing with a large number of measurements

Consider the following data-fidelity term

cost of computing the gradient is
liner in the number of measurements

Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for
Regularized Image Reconstruction,” 2018
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PnP-SGD is an online extension useful when
dealing with a large number of measurements

Consider the following data-fidelity term

I
1 T
D(f) = 212\\3’@ Hf|;, = VD(f)Isz@(Hif—Y)

1=1 1=1

PnP-SGD can accelerate imaging by
parallelizing the processing of each data item

2 i use only B measurements

VD(s*71) « minibatchGradient(s*~1,B) '~ o
5 : per iteration instead of /
zF « gF~ —nyD(s B )

f* < denoise, (z")

8" B (g1 — 1) /qu) (£ — £F71)

Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for
Regularized Image Reconstruction,” 2018
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PnP-SGD is an online extension useful when
dealing with a large number of measurements

Consider the following data-fidelity term

1 I
1 1
D(f) = i Z ly: - Hif||7, = VD(f) = 7 Z H (H;f —y)

1=1 1=1

PnP-SGD can accelerate imaging by
parallelizing the processing of each data item

VD(s*~1) < minibatchGradient(s* !, B)
7" gh Tl — W@D(sk_l)

f* < denoise, (z")

sP % + ((qr—1 — 1) /qu) (£F — £F71)

Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for
Regularized Image Reconstruction,” 2018
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points as batch PnP algorithms

Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for
Regularized Image Reconstruction,” 2018
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PnP-SGD converges to the same set of fixed
points as batch PnP algorithms

#4: Run PnP-SGD for t > 1 iterations under some mild assumptions. Then

2,2

| _ _ 2yv |£0 —£5)2
E fk 1 P fk 1\ (12 < C vV fO . f>|< 2
ke?ll,l.r.].,t} {H ( )HEQ} — B + \/EH ”52 - /

Convergence in expectation. C is a constant. Note the case when B =t

Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for
Regularized Image Reconstruction,” 2018
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PnP-SGD converges to the same set of fixed
points as batch PnP algorithms

#4: Run PnP-SGD for t > 1 iterations under some mild assumptions. Then

A AL [£°— £,
E| min {|fF!—PE1)2Y ] <c |2 £ f£* =
ccmin Al ey <C 5+ Al ez + ——

lz* — P(2")II3

10

0 1000 2000 0 1000 1000 2000
k k

Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for
Regularized Image Reconstruction,” 2018



& Washington
University in St.Louis

For many measurements PnP-SGD converges
faster than batch algorithms

PnP-SGD: 0.00 dB PnP-FISTA: 0.00 dB PnP-ADMM: 0.00 dB

35 : 1 :
5 sec
25 - -
=
wok ——PnP-SGD (B=10) ||
PnP-FISTA (B=60)
PnP-ADMM (B=60)
0& 1 I I
0 100 200 300 400

iteration

Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for
Regularized Image Reconstruction,” 2018
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For the same measurement budget,
PnP-SGD gets much higher quality results

19.66 dB 20.69 dB 23.51 dB 23.65 dB

|l PnP-ADMM ( PnP-FISTA (

T

original PnP-ADMM (30) PnP-FISTA (30) PnP-SGD (10) PnP-SGD (30)

Sun, Wohlberg, Kamilov, “An Online Plug-and-Play Algorithm for
Regularized Image Reconstruction,” 2018
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Conclusion

Image reconstruction is a fascinating research area that brings together
physics, signal processing, nonlinear optimization, and machine learning

We are increasingly reliant on implicit regularization using nonlinear
operators, such as deep neural networks or nonlinear filters

Plug-In SGD is a theoretically sound algorithm that can regularize at
large-scales using nonlinear operators

—
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. Prof. Ulugbek Kamilov :

Computational Imaging Group (CIG)
Washington University in St. Louis

. Email: kamilovewustl.edu

Web: http://cigroup.wustl.edu
Twitter: Owustlcig
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Judea Pearl won the Turing Award in 2011 for
fundamental contributions to artificial intelligence

JUDEA PEARL

WINNER OF THE TURING AWARD

AND DANA MACKENZIE

THE
BOOK OF

THE NEW SCIENCE
OF CAUSE AND EFFECT

Judea Pearl
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Judea Pearl won the Turing Award in 2011 for
fundamental contributions to artificial intelligence

We live in an era that presumes Big Data to be the

JUDEA PEARL solution to all our problems (...) But | hope with
WINNER OF THE TURING AWARD ] ]

AND DANA MACKENZIE this book to convince you that data are profoundly

dumb. Data can tell you that the people who took a

THE medicine recovered faster than those who did not

take it, but they can't tell you why.

BOOK OF

e

THE NEW SCIENCE
OF CAUSE AND EFFECT

Judea Pearl
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Judea Pearl won the Turing Award in 2011 for
fundamental contributions to artificial intelligence

The belief that data can tell the full story is a
misconception. To produce truly useful insights,
data must be combined with models that infuse
what we know about the problem.




