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INTRODUCTION

What is Computer Vision ?

Computational Systems to make sense
of the physical world by looking at

images and videos
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Recognize Objects
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Classify Scene
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Geometry / Layout
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Motion / Action
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|dentify Materials

Foliage

Ceramic
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Surface Properties
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Computer Vision

e Develop Algorithms that extract a description of the world from images

Computational Photography

e Think of modified cameras and acquisition setups that make this extraction easier
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Broad Overview of (many a) Vision Algorithm

4. Computational Photography: Modify the Image Formation

1. Understand the Image Formation Model: Scene to Image Model to make measurements more informative
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2. Invert the Model: Gives us Multiple Physically Feasible Solutions

p(S)

3. Learn What Natural Scenes Look Like: Use to
select likely scene among those that are feasible
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WHAT DOES VISION RESEARCH LOOK LIKE ?

As a Grad Student working on a problem, you will have to:

e Understand the physics, geometry, optics, etc. of the setup.

e Understand to what degree the image formation process is invertible, characterize the ambiguity.
e Figure out how to the statistics of natural images could resolve this ambiguity.

e Use this to choose a model / architecture.

e Figure out how to train / learn parameters of this model.

e Develop an algorithm to use this model for actual inference.

e Make sure this is efficient and practical.
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Photometric Stereo

Use the fact that intensity depends on relative angle between surface normal and light source.
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Photometric Stereo

Use the fact that intensity depends on relative angle between surface normal and light source.
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Photometric Stereo

Use the fact that intensity depends on relative angle between surface normal and light source.

A

Surface Orientation
n

0 / I =pcosh=p<n,t>

Lighting K”OYV"
Direction Lighting

One Observation: Three Unknowns

Albedo (Surface Color
IO ( ) Take multiple images with different lighting



CASE STUDY: SHAPE FROM CONTROLLED LIGHTING

Photometric Stereo




CASE STUDY: SHAPE FROM CONTROLLED LIGHTING

Photometric Stereo

Great, but requires you to take multiple images. What if the object is moving ?
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RGB Photometric Stereo

Take three shots in one: use an RGB Camera

But now we have extra unknowns for surface color

Solution 1: Measure albedo separately (assuming it's constant)

n Solution 2: Paint the object, so that albedo is known and constant

[R:pR< ﬁ7€R>

[ =p<n,t>
IB:’OB< ﬁ’€B>

,0 Albedo (Surface Color)



CASE STUDY: SHAPE FROM CONTROLLED LIGHTING

Single-image RGB Photometric Stereo With Spatially-varying Albedo

Ayan Chakrabarti
TTI-Chicago

Abstract

We present a single-shot system o recover surface ge-
ometry of objects with spatially-varying albedos, from im-
ages captured under a calibrated RGB photometric stereo
setup—with three light directions multiplexed across dif-
ferent color channels in the observed RGB image. Since
the problem is ill-posed point-wise, we assume that the
albedo map can be modeled as piece-wise constant with a
restricted number of distinct albedo values. We show that
under ideal conditions, the shape of a non-degenerate local
constant albedo surface patch can theoretically be recov-
ered exacily. Moreover, we present a practical and efficient
algorithm that uses this model to robustly recover shape
from real images. Our method first reasons about shape
locally in a dense set of patches in the observed image, pro-
ducing shape distributions for every patch. These local dis-
tributions are then combined to produce a single consistent
surface normal map. We demonstrate the efficacy of the ap-
proach through experiments on both synthetic renderings as
well as real captured images.

Kalyan Sunkavalli
Adobe Research

from a single image of an object with unknown spatially-
varying albedo under unknown natural lighting. Although
impressive given the inherent ambiguities in the SFS setup,
their recovered geomelries are typically coarse due to the
use of strong smoothness priors, and their inference algo-
rithm is computationally expensive. This is true even when
known lighting is provided as input to their algorithm, pri-
marily because it is designed to handle arbitrary and poten-
tially ambiguous natural illumination environments.

In this paper, we show that efficient and high-quality sur-
face recovery from a single image is possible, when using
a calibrated lighting environment that is specifically cho-
sen to be directly informative about shape. Specifically,
we use the RGB (or color) photometric stereo (RGB-PS)
setup [, |1, 4], where an object is illuminated by three
monochromatic directional light sources, such that each of
the red, green. and blue channels in the observed image is
"l from a different direction. For natural lighting, direc-
tional diversity in color has been shown to be informative
towards shape [10]. But the benefits of this lighting setup
for shape recovery can be better understood by interpreting
it as one that multiplexes the multiple images of classical
PS into the different color channels of a single image.



CASE STUDY: SHAPE FROM CONTROLLED LIGHTING

Proposition 1. Given noiseless observed intensities v(p) at

a set of locations p € ) on a diffuse surface patch known Analyze ambiguities, and show that for "most" local regions,
to have constant albedo, i.e., k(p) = kq,Vp € Q, the true if the albedo is constant inside the region, we can recover its
surface normals {n(p) : p € Q} and common albedo kg shape and albedo uniquely.

are uniquely determined, if:
1. All intensities v(p) are strictly positive.
2. The true surface is non-degenerate in the sense that
the set {n(p)n(p)T : p € Q}, of outer-products of the
true normal vectors, span the space Syms of all 3 x 3
symmetric matrices.
Proof: Given k¢ and n(p) as the true patch albedo and nor-
mals, let k¢, 7/(p) be a second solution pair that also ex-
plains the observed intensities v(p) in the patch €2. Since
the observed intensities are strictly positive, this implies
that the albedos kg, ky, are strictly positive as well, and
further that no point is in shadow under any of the lights,
ie. LTa(p),LT7'(p) > 0, Vp € Q. Then, since LT is
invertible, we can write

diag[ro] LT 7(p) = diag[ﬁiz]LTﬂ’(P)
= 7/ (p) = An(p), Vp e Q, (2)

where we define the matrix A = L TRLT, with R =
diag|ky,| ~1diag[rq] being a diagonal matrix whose entries
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if the albedo is constant inside the region, we can recover its
shape and albedo uniquely.

But we don't know which patches are constant albedo, and
which have boundaries in them.
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Proposition 1. Given noiseless observed intensities v(p) at
a set of locations p € S on a diffuse surface patch known
to have constant albedo, i.e., k(p) = kq,Vp € €O, the true
surface normals {n(p) : p € Q} and common albedo kq
are uniquely determined, if:

1. All intensities v(p) are strictly positive.

2. The true surface is non-degenerate in the sense that
the set {n(p)n(p)T : p € Q}, of outer-products of the
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Analyze ambiguities, and show that for "most" local regions,
if the albedo is constant inside the region, we can recover its
shape and albedo uniquely.

But we don't know which patches are constant albedo, and
which have boundaries in them.

Also, uniqueness holds in idealized conditions. In reality,
we'll have noise, 'non diffuse’ reflection, ....



CASE STUDY: SHAPE FROM CONTROLLED LIGHTING

Build Albedo Histogram of scores Global Albedo Set

from all patches & find peaks > . ':] - . e

I / Surface
Normal

Surface Albedo / lex

== D
[RRa kg, -'{B] VB = KB an

T I Globalization 4
—_— vg = kg lgh e —— ;

Ur = KRR Igiﬁl

\\ Score
ke -
\ A \ T
i . Local Distributions for Each Patch - . .
———— set of candidate shapes and scores, Final Estimate of
pping one for each albedo in global set. Object Shape

Patches over Observed Image

RGB Photometric Stereo Setup Inference Algorithm



CASE STUDY: SHAPE FROM CONTROLLED LIGHTING

Normal Estimates

Normal Estimates

Normal Estimates
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CASE STUDY: MONOCULAR DEPTH ESTIMATION

Depth from a Single Image

- No explicit geometric / optical cues.
- Must learn to map familiar patterns to depth.

Shading.

Contours & Boundaries.
Foreshortening of regular patterns.
Scale of familiar objects.
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Lots of numbers
(200k for a 500x400 image)
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Estimate each Z(n) independently and locally.



MONOCULAR DEPTH ESTIMATION

CASE STUDY
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Problem: Local information may be

Z(n) ambiguous.

Estimate each Z(n) independently and locally.
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Scene Maps have Structure
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CASE STUDY: MONOCULAR DEPTH ESTIMATION

Build an algorithm that effectively
extracts and exploits this structure

Scene Maps have Structure
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Local Estimation: Mid-level Representation

Output Map

Z(n)
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Local Estimation: Mid-level Representation

Output Map

-
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{w;(n) = (k; * Z)(n)}Vi,n

Derivative Filters
- Different Scales
- Different Orders
- Different Orientations

{ki}
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CASE STUDY: MONOCULAR DEPTH ESTIMATION

Local Estimation: Mid-level Representation

Perspective Camera
d(z,y) = (dz,dy, d)
World 3D Co-ordinates

Plane Equation

1

Zeroth Derivative = Absolute depth

First Derivative = Surface orientation

Second Derivative = 0: Planar
Curvature, contours.
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Local Estimation: Mid-level Representation

N1

T

{wi(n) = (ki x Z)(n)}Vi
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Local Estimation: Mid-level Representation

Depth Map

A1

n)} Derivatives of Depth

Input Image
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Local Estimation: Mid-level Representation

Depth Map

A1

Z(n)=1/d(n)

{wi(n)} Derivatives of Depth

]

Convolutional Neural Network

Input Image
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Local Estimation: Mid-level Representation

CNN > {W;}

Derivatives
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Local Estimation: Mid-level Representation

—
)

3

~

Q
CNN > \J\

Wy

Distribution over Each Derivative



CASE STUDY: MONOCULAR DEPTH ESTIMATION

Local Estimation: Mid-level Representation
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Local Estimation: Mid-level Representation

CNN

Wy

Distribution over Each Derivative

plwim) = G ——— ex <_lwi<n>cz2)

, : 202
N N

Fixed prior to network training,

Convnet learns to predict using k-means on GT depth maps.

mixing probabilities
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CNN

{p(wi(n))}




MONOCULAR DEPTH ESTIMATION

CASE STUDY
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CNN

> ]
{p(wi(n))}

Local window
around n
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CNN

Scene Features
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Training

Ground Truth Depth Input Image
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Training

{p(wi(n))} <— CNN

Ground Truth Depth Input Image
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Training
, = _AJ|2
q] (n) o exp <— |wl(712>02 4l )
L=-)" Zq (10gp — log dﬁ(n))
. g=1
KL-Divergence

Ground Truth Depth Input Image
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Training

A Ground Truth

i —— Yy .

Ground Truth Depth Input Image



CASE STUDY: MONOCULAR DEPTH ESTIMATION

Training

1

i —— Yy .

Ground Truth Depth Input Image
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Training

/A‘>
/4 N,
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Ground Truth Depth Input Image
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Training

—

Ground Truth Depth Input Image
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Training

Ground Truth Depth Input Image
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Globalization
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Globalization
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Globalization

CNN | ———— {p(wi(n)}
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Globalization

CNN | ———— {p(wi(n)}
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Globalization

7 = arg mzaxz loggﬁ (Z % k;)(n))
’ From
CNN
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Globalization

7 = argmax Y logpin (2% k) (n)

,Mm

Z {wi(n)}

/Z = argmin min — |:Z log pi n (’wl(n))]

,Mm

Auxiliary Vars
for Derivatives
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Globalization

7 = argmax Y logpin (7% k:)(n)

,Mm

Z A{wi(n)}

Z = argmin min — {Z log p; n (wz(n))] +§ {Z lw;(n) — (Z x kz)(n)|2

Auxiliary Vars
for Derivatives
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Globalization

7 = argmax Y logpin (7% k:)(n)

.M

Z A{wi(n)}

Z = argmin min -— |:Z log pin (wz(n))] + g {Z lw;(n) — (Z = kz)(n)|2

Auxiliary Vars
for Derivatives Equivalentas p — e
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Globalization

: : B 2
Z =argmin min — {Z log pi,n (wi(n))] +5 {Z (wi(n) = (Z * ki) (n)]
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Globalization

B =
] - {wi(n)}
1
,l l' “ 1, \ ‘\
,l ! A ‘\ Y
— E— 7 (n)

Z Awi(n)} ,Mm 7,Mn

Z = argmin min — {Z log pi n (wz(n))] + g {Z lw;(n) — (Z x kz)(n)|2

Alternatingly minimize Z and {w;(n)}, keeping the other constant.
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Globalization

Fix w, minimize wrt Z

HEE -
L |
p
g
3
—

Efficient least-squares in
the Fourier-domain. SN ,

Z {wi(n)}

T,M

Z = argmin min — |:Z log pi n (wz(n))] + B {Z lw;(n) — (Z x kz)(n)2]
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Globalization

Fix Z, minimize wrt w

Independent for each w;(n)

Z {wi(n)}

T,M

Z = argmin min — |:Z log pi n (wz(n))] + g {Z lw;(n) — (Z x kz)(n)2]



CASE STUDY: MONOCULAR DEPTH ESTIMATION

Experimental Results
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Experimental Results

NYUv2 Depth Benchmark
- Ground truth data from Kinect.
- 56,000 training pairs, 100 validation.
- 654 Test scenes.
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Experimental Results
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Experimental Results
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Experimental Results
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° Pair-wise MRFs
— 26,909/
Lower Better Higher Better
Method RMSE (lin.) | RMSE(log) | AbsRel. | SqrRel. || <125 | <125 | 6< 125°
Proposed 0.620 0.205 0.149 0.118 80.6% 95.8% 98.7%
Eigen 2015 0.641 0.214 0.158 0.121 76.9% 95.0% 98.8%
Wang 2015 0.745 0.262 0.220 0.210 60.5% 89.0% 97.0%
Baig 2016 0.802 - 0.241 - 61.0% - -
Eigen 2014 0.877 0.283 0.214 0.204 61.4% 88.8% 97.2%
Liu 2015 0.824 - 0.230 - 61.4% 88.3% 97.1%
Zoran 2015 1.22 0.43 0.41 0.57 - - -
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Other cues. | |
User input.

Noisy / sparse depth
measurements.

Common substrate for local estimates from different cues.
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Beyond the Benchmark

Z = arg mZaxZ log pin ((Z % k;)(n))

,Mn

P(Z(n) < 6)



DISCUSSION

e Flavor of what a research project looks like.
e Look at group website for papers describing some of our other recent work.

Questions ?



