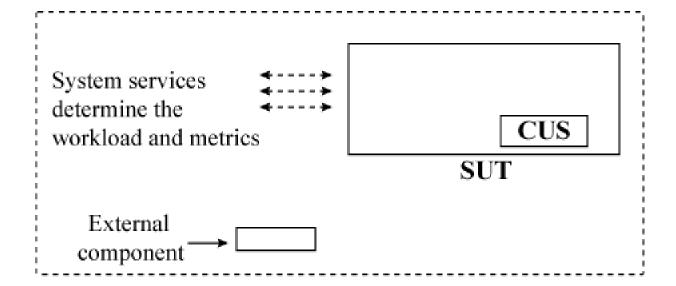
The Art of Workload Selection

- Services Exercised
 - > Example: Timesharing Systems
 - > Example: Networks
 - > Example: Magnetic Tape Backup System
- Level of Detail
- Representativeness
- Timeliness
- Other Considerations in Workload Selection

©2010 Raj Jain www.rajjain.com

The Art of Workload Selection

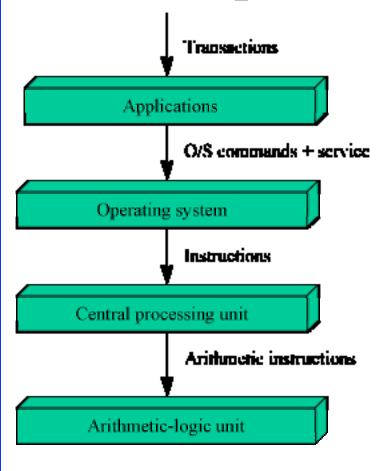

Considerations:

- Services exercised
- □ Level of detail
- □ Loading level
- □ Impact of other components
- □ Timeliness

©2010 Raj Jain www.rajjain.com

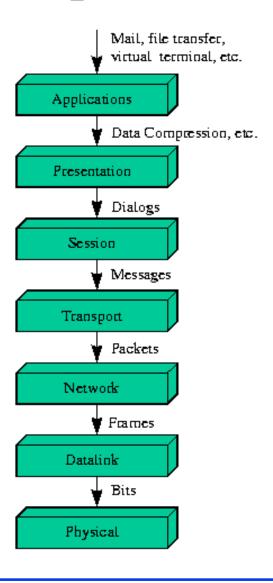
Services Exercised

- □ SUT = System Under Test
- □ CUS = Component Under Study



©2010 Rai Jain www.raijain.com

Services Exercised (Cont)


- Do not confuse SUT w CUS
- Metrics depend upon SUT: MIPS is ok for two CPUs but not for two timesharing systems.
- Workload: depends upon the system.
- Examples:
 - > CPU: instructions
 - > System: Transactions
 - > Transactions not good for CPU and vice versa
 - > Two systems identical except for CPU
 - Comparing Systems: Use transactions
 - □ Comparing CPUs: Use instructions
 - > Multiple services: Exercise as complete a set of services as possible.

Example: Timesharing Systems

- Applications
 - ⇒ Application benchmark
- Operating System
 - ⇒ Synthetic Program
- Central Processing Unit
 - ⇒ Instruction Mixes
- □ Arithmetic Logical Unit
 - ⇒ Addition instruction

Example: Networks

Example: Magnetic Tape Backup System

- Backup System:
 - > Services: Backup files, backup changed files, restore files, list backed-up files.
 - > Factors: File-system size, batch or background process, incremental or full backups.
 - > Metrics: Backup time, restore time.
 - > Workload: A computer system with files to be backed up. Vary frequency of backups.
- □ Tape Data System:
 - > Services: Read/write to the tape, read tape label, auto load tapes.
 - > Factors: Type of tape drive.
 - > Metrics: Speed, reliability, time between failures.
 - > Workload: A synthetic program generating representative tape I/O requests.

©2010 Rai Jain www.raiiain.com

Magnetic Tape System (Cont)

- □ Tape Drives:
 - > Services: Read record, write record, rewind, find record, move to end of tape, move to beginning of tape.
 - > Factors: Cartridge or reel tapes, drive size.
 - > Metrics: Time for each type of service, for example, time to read record and to write record, speed (requests/time), noise, power dissipation.
 - > Workload: A synthetic program exerciser generating various types of requests in a representative manner.
- Read/Write Subsystem:
 - > Services: Read data, write data (as digital signals).
 - > Factors: Data-encoding technique, implementation technology (CMOS, TTL, and so forth).
 - > Metrics: Coding density, I/O bandwidth (bits per second).

Magnetic Tape System (Cont)

> Workload: Read/write data streams with varying patterns of bits.

- > Read/Write Heads:
 - □ Services: Read signal, write signal (electrical signals).
 - □ Factors: Composition, inter-head spacing, gap sizing, number of heads in parallel.
 - □ Metrics: Magnetic field strength, hysteresis.
 - □ Workload: Read/write currents of various amplitudes, tapes moving at various speeds.

Level of Detail

- Most frequent request:
 - > Examples: Addition Instruction, Debit-Credit, Kernels
 - > Valid if one service is much more frequent than others
- □ Frequency of request types
 - > Examples: Instruction mixes
 - \gt Context sensitivity \Rightarrow Use set of services
 - ➤ History-sensitive mechanisms (caching) ⇒ Context sensitivity
- □ Time-stamped sequence of requests
 - > May be too detailed
 - > Not convenient for analytical modeling
 - > May require exact reproduction of component behavior

Level of Detail (Cont)

- Average resource demand
 - > Used for analytical modeling
 - > Grouped similar services in classes
- Distribution of resource demands
 - > Used if variance is large
 - > Used if the distribution impacts the performance
- Workload used in simulation and analytical modeling:
 - > Non executable: Used in analytical/simulation modeling
 - > Executable workload: can be executed directly on a system

Representativeness

The test workload and real workload should have the same:


- □ Elapsed Time
- Resource Demands
- Resource Usage Profile: Sequence and the amounts in which different resources are used.

Timeliness

- □ Users are a moving target.
- \square New systems \Rightarrow new workloads
- □ Users tend to optimize the demand.
- □ Fast multiplication ⇒ Higher frequency of multiplication instructions.
- ☐ Important to monitor user behavior on an ongoing basis.

Other Considerations in Workload Selection

- Loading Level: A workload may exercise a system to its:
 - > Full capacity (best case)
 - > Beyond its capacity (worst case)
 - > At the load level observed in real workload (typical case).
 - > For procurement purposes \Rightarrow Typical
 - \triangleright For design \Rightarrow best to worst, all cases
- Impact of External Components:
 - ➤ Do not use a workload that makes external component a bottleneck ⇒ All alternatives in the system give equally good performance.
- Repeatability

- □ Services exercised determine the workload
- Level of detail of the workload should match that of the model being used
- Workload should be representative of the real systems usage in recent past
- Loading level, impact of external components, and repeatability or other criteria in workload selection

©2010 Raj Jain www.rajjain.com

Exercise 5.1

- What metric and workload would you choose to compare:
 - a. Two systems with similar functionality: IBM PC versus MAC
 - b. Two systems for very different applications: PC versus Workstations
 - c. Two systems with identical functionality: IBM PC versus Dell PC
 - d. Two versions of the same operating systems: Windows 98 vs Windows XP
 - e. Two hardware components: Two floppy drives
 - f. Two languages: C vs. Pascal

One metric and one workload is sufficient

Exercise 5.2

□ Select an area of computer systems, for example, databases, networks, processors, and so on. Prepare a table identifying increasing levels of services, components, factors, and workloads.

Homework

- □ Read chapters 4 and 5
- □ Submit answer to Exercise 5.1