Other Regression
M odels




Multiple Linear Regression: More than one predictor
variables

Categorical Predictors. Predictor variables are categories
such as CPU type, disk type, and so on.

Curvilinear Regression: Relationship is nonlinear

Transformations. Errors are not normally distributed or the
variance is not homogeneous

Outliers
Common mistakesin regression
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Multiple Linear Regression M odels
y=byg+bix1 +boxo+---+brxr +e

O Given asample of n observations with k predictors

{(xlh L21y -« oy Lkl y1)7 c ey (xlna Lony « ooy Tkn, yn)}
y1 = bp—bix11 —boxoy — - — brxp1 + €1

Yo = by —bixio —boxos — -+ — brpxpo + €o

Yn = —bo—b121 —box2y — -+ — bpTrn + €,

©2010 Raj Jain www.rajjain.con
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|n vector notation, we have:

a

ad or

Y1
Y2

Yn

Vector Notation
1 oz o k1 | | bo I
1 x19 x99 L2 bl
_|_
i 1 Lin L2n Lkn 1 L bk | i
y = Xb+ e

a All elementsin the first column of X are 1.
See Box 15.1 for regression formulas.
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Example 15.1

O Seven programs were monitored to observe their resource
demands. In particular, the number of disk I/O's, memory size
(in kBytes), and CPU time (in milliseconds) were observed.

CPU Time Disk I/O’s Memory Size

Yi L1; L2
2 14 70
5 16 75
7 27 144
9 42 190

10 39 210

13 50 239

20 83 400

©2010 Raj Jain www.rajjain.con
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Example 15.1 (Cont)

CPU time = by + b1 (number of disk 1/0’s) + bs(memory size)

Q2 Inthis case:

xI'x =

I
N Y Suy ST Gy Sy Wt

14
16
27
42
39
50
83

7

70

75
144
190
210
235
400

271

271 13,855

| 1324 67,188

1324 |
67,188

326, 686
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Example 15.1 (Cont)

0.6297  0.0223 —0.0071
c=XIx)"'=| 00223 00280 -0.0058
~0.0071 —0.0058  0.0012

66
X1y = | 3375
16, 388

Q Theregression parameters are:
b=(X1x)"'xly = (-0.1614,0.1182,0.0265) 1

O Theregression equation is.

CPU time = —0.1614 + 0.1182(number of disk 1/O’s) +
0.0265(memory size)

©2010 Raj Jain www.rajjain.con
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Example 15.1 (Cont)

CPU Time Disk I/O’s Memory Size Est. CPU time Error Error

Yi L1 L2 Ui €; 612

2 14 70 3.3490 -1.3490 1.8198

5 16 75 3.7180  1.2820 1.6436

7 27 144 6.8472  0.1528 0.0233

9 42 190 9.8400 -0.8400 0.7053

10 39 210 10.0151 -0.0151 0.0002

13 50 235 11.9783  1.0217 1.0439

20 83 400 20.2529 -0.2529 0.0639

) 66 271 1324 66.0000 -0.0003 5.3000

0 From thetable we see that SSE is:
SSE = Ye? = 5.3

15-8
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Example 15.1 (Cont)

a0 An alternate method to compute SSE isto use:
SSE = {yly —blxly}
0O For thisdata, SSY and SSO are:
SSY = Xy = 828

SS0 = ny* = 622.29
0 Therefore, SST and SSR are:
SST = SSY — SS0 = 828 — 622.29 = 205.71

SSR = SST — SSE = 205.71 — 5.3 = 200.41

©2010 Raj Jain www.rajjain.con
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Example 15.1 (Cont)

a The coefficient of determination R? is;

SSR 200.41

R?2 = =/ —
SST 205.71

= 0.97

Q Thus, the regression explains 97% of the variation of y.
a Coefficient of multiple correlation:

= v0.97 =0.99

0 Standard deviation of errorsis:

Se = SSE = /5.3/4=1.2

©2010 Raj Jain www.rajjain.con
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Example 15.1 (Cont)

0 Standard deviations of the regression parameters are:
Estimated std. dev. of bg = s.v/coo0 = 1.2v/0.6297 = 0.9131

Estimated std. dev. of by = s.v/c11 = 1.2v0.0280 = 0.1925

Estimated std. dev. of by = s.v/coo = 1.2v/0.0012 = 0.0404
a The 90% t-value at 4 degrees of freedom is 2.132.

90% Conf. interval of by = —0.1614 F (2.132)(0.9131) = (—2.11, 1.79)

90% Conf. interval of b; = 0.1182 F (2.132)(0.1925) = (—0.29, 0.53)

90% Conf. interval of by = 0.0265 F (2.132)(0.0404) = (—0.06, 0.11)

None of the three parametersis significant at a 90% confidence
level.

©2010 Raj Jain www.rajjain.con
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Example 15.1 (Cont)

2 A single future observation for programs with 100 disk 1/O's
and a memory size of 550:
Yip = bo+b1x1 + bazo

= —0.1614 4 0.1182(100) + 0.0265(550) = 26.2375
0 Standard deviation of the predicted observation is:

Sy, = 36\/{1 +x 1T (XTX)-1x} = 1.2¢/1 + 7.4118 = 3.3435

2 90% confidence interval using thet value of 2.132 is:

26.2375 F (2.132)(3.3435) = (19.1096, 33.3363)

©2010 Raj Jain www.rajjain.con
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Example 15.1 (Cont)

0 Standard deviation for a mean of large number of observations
IS:

S5, = 3\/ {(xT'(XTX)-1x} = 1.2/7.4118 = 3.1385

0 90% confidenceinterval is:

26.2375 F (2.132)(3.1385) = (19.5467, 32.9292)

©2010 Raj Jain www.rajjain.con
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Analysis of Variance

Q Test the hypothesisthat SSR isless than or equal to SSE.
SST = SSY — SS0 = SSR. + SSE

0 Degrees of freedom = Number of independent values required
to compute

SST = SSY — SSO = SSR + SSE
n—-1 = n - 1 =k + (n—-k-1)
a Assuming

> Errorsarei.i.d. Normal = y's are also normally distributed,
» X's are nonstochastic = Can be measured without errors

a Various sums of squares have a chi-square distribution with
the degrees of freedom as given above.

©2010 Raj Jain www.rajjain.con
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F-Test

0 Given SSi and S§ with v; and v; degrees of freedom, the ratio
(SSi/v;)/(SS/v;) has an F distribution with v; numerator degrees
of freedom and v; denominator degrees of freedom.

0 Hypothesisthat the sum SS islessthan or equal to S is
rejected at o significance level, if theratio (SSi/v))/(SS/v;) Is
greater than the 1-o. quantile of the F-variate.

Q This procedure is also known as F-test.

2 The F-test can be used to check:
|s SSR is significantly higher than SSE?
— Use F-test = Compute (SSR/vg)/(SSE/v,) = MSR/IMSE

©2010 Raj Jain www.rajjain.con
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U O

F-Test (Cont)

SSR SSE

MSE = Variance of Error
MSR/MSE has F[k, n-k-1] distribution

F-test = Null hypothesis that y doesn't depend upon any X;:
against an alternate hypothesisthat y depends upon at Ieast one
X; and therefore, at least oneb, #0. by =by =--- =0, =0

| the computed ratio isless than the value read from the table, the

null hypothesis cannot be rejected at the stated significance level.

In simple regression models,

If the confidence interval of b, does not include zero
= Parameter is nonzero

= Regression explains a significant part of the response variatiot
= F-test is not required.

©2010 Raj Jain www.rajjain.con|
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ANOVA Tablefor Multiple Linear Regression

0 See Table 15.3 on page 252

Compo- Sum of % Variation DF  Mean F- F-
nent Squares Square Comp. Table
y SSY=X y~° n
g SS0= ny? 1
y-9 SST=SSY-SS0 100 n-1
Regression SSR = SST-SSE 100 gg—T k MSR = S%R IR/I/ISIE{ Fii_ak,n—k—1]
Errors SSE:yTy—bTXTy 100 gg—% n-k-1 MSE= n%%@ T
se=VMSE

©2010 Raj Jain www.rajjain.con
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Example 15.2

Q For the Disk-Memory-CPU data of Examplel5.1

0 Computed F ratio > F value from the table
= Regression does explain asignificant part of the variation

Compo- Sum of %Variation DF  Mean F- F-
nent Squares Square Comp. Table
y 828.

J 622.

- 206. 100.0% 6

Regression 200. 97.4% 2 100.20 7540 @ 4.32
Errors 5.32 2.6% 4 1.33

Se=VMSE= v/1.33=1.15

2 Note: Regression passed the F test = Hypothesis of all
parameters being zero cannot be accepted. However, none of
the regression parameters are significantly different from zero.
This contradiction = Problem of multicollinearity

©2010 Raj Jain www.rajjain.con
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(

Problem of M ulticollinear ity

“of

7

>

Two lines are said to be collinear if they have the same slope
and same intercept.

These two lines can be represented in just one dimension
Instead of the two dimensions required for lines which are not
collinear.

Two collinear lines are not independent.

When two predictor variables are linearly dependent, they are
called collinear.

Collinear predictors = Problem of multicollinearity
= Contradictory results from various significance tests.

High Correlation = Eliminate one variable and check if
significance improves

15-19
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Example 15.3

A For the data of Example 15.2, n=7, X x;=271, X X,,=1324,
> X4°=1385, X X,,°=326,686, X X,X,=67,188.

Correlation(z1, z2) = Ry, 4,

— leiaﬁm—%(z xl’b)(z ;p%)
S22 (D) ()] I 2 (0 wan) (S )]

67,188 — 1(271)(1324
— ’ 7 (271 ) —0.9947

1385 — 1(271)(271)]/* [326, 686 — 1(1324)(1324)] "/
| 7 77 7 ]

a Correlation is high
= Programs with large memory sizes have more 1/O's

a In Exampleld.1, CPU time on number of disk I/O'sregression
was found significant.

©2010 Raj Jain www.rajjain.con|
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Example 15.3 (Cont)

a Similarly, in Exercise 14.3, CPU time isregressed on the
memory size and the resulting regression parameters are
found to be significant.

Q Thus, either the number of I/O's or the memory size can be
used to estimate CPU time, but not both.

Q Lesson:
» Adding a predictor variable does not always improve a
regression.
> If thevariableis correlated to other predictors, it may
reduce the statistical accuracy of the regression.

0 Try al 2k possible subsets and choose the one that gives the
best results with small number of variables.

a Corrdation matrix for the subset chosen should be checked

©2010 Raj Jain www.rajjain.con|
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Regression with Categorical Predictors

2 Note: If all predictor variables are categorical, use one of the
experimental design and analysis techniques for statistically
more precise (less variant) results Use regression if most
predictors are quantitative and only a few predictors are
categorical.

0 Two Categories: | 0 = First value
71 1 = Second value

Q b difference in the effect of the two alternatives
b Insignificant = Two alternatives have similar performance

Q A|tel’ natively: | =1 = First value
i = +1 = Second value

b, = Ditference from the average response Difference of the
effects of the two levelsis 2b,

©2010 Raj Jain www.rajjain.con
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Categorical Predictors (Cont)

Three Categories. Incorrect:

/

1 = Type A
r1 =4 2 = TypeDB
3 = Type C

\

This coding implies an order = B is half way between A and
C. Thismay not be true.

Recommended: Use two predictor variables

_ 1, Iftype A
1= 0, Otherwise
1, Iftype B

0, Otherwise

©2010 Raj Jain www.rajjain.con
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Categorical Predictors (Cont)
Thus, (x1,z2)=(1,0) = Type A
(x1,22) = (0,1) = Type B

(z1,22) = (0,0) = Type C

Q This coding does not imply any ordering among the types.
Provides an easy way to interpret the regression parameters.

Yy =bg+bix1 + baxa +e€

©2010 Raj Jain www.rajjain.con
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Categorical Predictors (Cont)

0 The average responses for the three types are:

ya = bo + b1
yp = by + b
Yo = b

a Thus, b, represents the difference between type A and C.
b, represents the difference between type B and C.
b, represents type C.

©2010 Raj Jain www.rajjain.con
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Categorical Predictors (Cont)

Level = Number of values that a categorical variable can take

To represent a categorical variable with k levels,
define k-1 binary variables:

- | 1, If jth value
Y= 0, otherwise

kth (last) value is defined by x;= X,= --- = %= 0.
b, = Average response with the kth alternative.
b, = Difference between alternatives ] and k.

If one of the alternatives represents the status quo or a standard

against which other alternatives have to be measured,
aternative should be coded as the kth alternative.

that

©2010 Raj Jain www.rajjain.con
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Y = b() -+ blxl -+ bQLCQ

where, y isthe elapsed
time, X, Isthe data size

|

1 = UNIX
0 = ARGUS

2 RPC performance on Unix
and Argus

Case Study 15.1: RPC performance

UNIX ARGUS
Data | Time | Data | Time
Bytes Bytes
64 26.4 92 32.8
64 26.4 92 34.2
64 26.4 92 32.4
64 26.2 92 34.4
234 33.8 348 41.4
590 41.6 604 51.2
846 50.0 860 76.0
1060 48.4 1074 80.8
1082 49.0 1074 79.8
1088 42.0 1088 58.6
1088 41.8 1088 57.6
1088 41.8 1088 59.8
1088 42.0 1088 57.4

15-27
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Case Study 15.1 (Cont)

Para- Std. Confidence
meter Mean  Dev. Interval
bp 36.739 3.251 ( 31.1676, 42.3104)
by 0.025 0.004 (10.0192, 0.0313)
by -14.927 3.165 ( -20.3509, -9.5024)

a All three parameters are significant. The regression explains
76.5% of the variation.

0 Per byte processing cost (time) for both operating systemsis
0.025 millisecond.

QO Set up cost is36.73 milliseconds on ARGUS which is 14.927
milliseconds more than that with UNIX.
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Differing Conclusions

Case Study 14.1 concluded that there was no significant
difference in the set up costs. The per byte costs were different.

Case Study 15.1 concluded that per byte cost is same but the
set up costs are different.

Which conclusion is correct?

> Need system (domain) knowledge. Statistical techniques
applied without understanding the system can lead to a
misleading result.

Case Study 14.1 was based on the assumption that the
processing as well as set up in the two operating systems are
different = Four parameters

The data showed that the setup costs were numerically
indistinguishable.

©2010 Raj Jain www.rajjain.con
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Differing Conclusions (Cont)

0 The modd used in Case Study 15.1 is based on the assumption
that the operating systems have no effect on per byte
processing.

a Thiswill betrueif the processing isidentical on the two
systems and does not involve the operating systems.

2 Only set up requires operating system calls. If thisis, in fact,
true then the regression coefficients estimated in the joint
model of this case study 15.1 are more realistic estimates of the
real world.

2 On the other hand, if system programmers can show that the
processing follows a different code path in the two systems,
then the model of Case Study 14.1 would be more realistic.

©2010 Raj Jain www.rajjain.con|
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Curvilinear Regression

2 If the relationship between response and predictors is nonlinear
but it can be converted into alinear form
= curvilinear regression.

Example:

a

y = bx

Taking alogarithm of both sides we get:

Iny=Inb+alnx

Thus, Inxand Iny arelinearly related. The valuesof Inband a
can be found by alinear regression of Inyoninx.

©2010 Raj Jain www.rajjain.con
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Curvilinear Regression: Other Examples

Nonlinear Linear

y=a-+b/x y=a+b(l/x)
y=x/(atbx)  (1/y)=a+bx

y = x/(atbx)  (x/y) = a + bx

y = abx In(y) = In(a) + (In(b))x
y=a+bx, y=a-+b(z")

2 If apredictor variable appears in more than one transformed
predictor variables, the transformed variables are likely to be
correlated = multicollinearity.

Q Try various possible subsets of the predictor variablesto find a

subset that gives significant parameters and explains a high
percentage of the observed variation.
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0 Amdahl'slaw: |/O rate is proportional to the processor speed.
For each instruction executed there is one bit of 1/0 on the

average.

Example 15.4

System No. MIPS Used 1I/0 Rate
1 19.63 288.60
2 5.45 117.30
3 2.63 64.60
4 8.24 356.40
5 14.00 373.20
6 9.87 281.10
7 11.27 149.60
8 10.13 120.60
9 1.01 31.10

10 1.26 23.70
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Example 15.4 (Cont)

2 Let usfit the following curvilinear model to this data:

1/0 Rate = a(MIPS Rate)®

QO Taking alog of both sides we get:
log(I/O Rate) = log(a) + by log(MIPS Rate)

bo = log(c)

©2010 Raj Jain www.rajjain.con
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Example 15.4 (Cont)

Obs. No. X1 y Para- Std. Confidence
1 1.293 2.460 meter Mean  Dev. Interval
2 0.736 2.069 bp 1.423 0.119 (1.20, 1.64)
3 0.420 1.810 by 0.888 0.135 (0.64, 1.14)
4 0916 2.552
5 1.146 2.572 0O Both coefficients are significant at
6 0.994  2.449 90% confidence level.
g 1:882 ;ég? 0 Theregression explains 84% of the
9 0.004 1.493 variation.
10

0.100 1.375 g At this confidencelevel, we can

accept the hypothesis that the
relationship islinear since the
confidence interval for b, includes
1.
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Example 15.4 (Cont)

04—
| [ ]
e
0.2 A
2 ‘ i
E B 20
< s
= d
S 0.0+ /‘/
: s
e
é ///0
1
02— . ///
e
04 | | | | | |
-2 -1 0 1 2

Normal quantile

Errorsinlog I/0 rate do seem to be normally distributed.
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Transformations

QO Transformation: Some function of the measured response
variabley is used. For example,

VY =bo + b1y +boxa + -+ by + €

Transformation Is a subset of the curvilinear regression.
However, the ideas apply to non-regression model as well.

1. Physical considerations = Transformation
For example, if response = inter-arrival timesy and it is
known that the number of requests per unit time (1/y) has a
linear relationship to a predictor

2. |If therange of the data covers several orders of magnitude and
the sample sizeissmall. That is, if ¥max/Ymin islarge.

3. If the homogeneous variance (homoscedasticity) assumption
of the residualsis violated.
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Transfor mations (Cont)

0 scatter plot shows non-homogeneous spread = Residuals are
still functions of the predictors

a Plot the standard deviation of residuals at each value of ¢ as a
function of the meany; .

a If sand themean  :
s =g()

0 Then atransformation of the form:
w = h(y)

hy) = / Ly

9(y)
may help solve the problem

©2010 Raj Jain www.rajjain.con
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Useful Transfor mations

Q Log Transformation: Standard deviation sisalinear function
of themean (s=ay)

w=Ilny
_ (u) rmery ooz = ko)
ana, therefore: A Lox traemsformation
1
h(y) = | —dy =alny
ay
derinthon
Stamdard
&
T
Vicna -
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Useful Transfor mations (Cont)

0 Logarithmic transformation is useful only if the ratioymax/Ymin
Islarge.
For asmall range the log function is almost linear.

O Square Root Transformation: For a Poisson distributed

variable: o PIF=ar bew =T
s =/1 Snuare root transformalion

V ariance versus mean
will be astraight line

W=y helpsstabilize YOG
the variance.

‘ienn |

©2010 Raj Jain www.rajjain.con
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Useful Transfor mations (Cont)

O Arc Sine Transformation: If y is a proportion or percentage,
sin L Jy may be helpful.
0 Omega Transformation: This transformation is popularly used
when the responsey is a proportion.

— Y

» Thetransformed values w's are said to be in units of deci-
Bells. The term comes from signaling theory where the
ratio of output power to input power is measured in dBs.

» Omega transformation converts fractions between 0 and 1
to values between -oo to +oo.

» Thistransformation is particularly helpful if the fractions
are very small or very large.

> If the fractions are close to 0.5, atransformation may not be
required.
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Useful Transfor mations (Cont)

0 Power Transformation: y2 isregressed on the predictor
variables.

> Standard deviation of residuals s, is proportional to 1~
a=-1 and general a, respectively.

ic)s =m= baw=lF o M1y =ar B Fio
Imverse mansfermation |'ovwer transformamon
Yarlames
2
— » »
{Viemm " [ ¥ienn 13"

©2010 Raj Jain www.rajjain.con

15-42



Useful Transfor mations (Cont)

Q Shifting: y+c (with some suitable ¢) may be used in place of .

» Useful if there are negative or zero values and if the
transformation function is not defined for these values.

Relationship between Transformation

s and ¥y

S X Y w = In(y) or w=In(y + ¢)
s o /2 w= y1/2

s x y* w= y17% or w=(y +c¢)}™¢
S X 3]2 W= i

s o< 1-g2 w=In i—g

s x y(1 —9) w=In ( 1%

s o (14+9)/y w=sin"" /Yy

©2010 Raj Jain www.rajjain.con
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Box-Cox Transformations

Q If the value of the exponent ain a power transformation is not
known, Box-Cox family of transformations can be used:

o Lex, a#0
(Iny)g, a=0

Where g is the geometric mean of the responses:
g=(y1y2yn)""

2 The Box-Cox transformation has the property that w has the
same units asthe response y for all values of the exponent a.

Q All real values of a, positive or negative can be tried.
The transformation 1S continuous even at zero, since;

oyt =1
ig% aga_l T (lny)g

©2010 Raj Jain www.rajjain.con
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Box-Cox Transformations (Cont)

0 Useathat givesthe smallest SSE.

0 Usesimplevaluesfor a. If if a=0.52 isfound to give the
minimum SSE and the SSE at a=0.5 is not significantly higher,
the latter value may be preferable.

a 100(1-o) confidence interval for a

t? ,
SSE, i1 (1 + = 2’”)

vV

Where, SSE, i, isthe minimum SSE, and v is the number of
degrees of freedom for the errors.

a If the confidence interval for aincludesa= 1, then the
hypothesis that the relationship is linear cannot be regjected
—> No need for the transformation.
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Case Study 15.2: Garbage collection

0 The garbage collection time for various values of heap sizes.

Garbage

Heap Collection
Size Time
500 594.34
600 247.42
800 114.24
1000 85.64
1200 49.60
1400 50.30

Garbage

Heap Collection
Size Time
1600 63.64
1800 1.00
2000 1.00
2200 1.00
2400 1.00
2600 1.00
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Case Study 15.2: Garbage collection

A2
24 - L
".I'
£ [ ~
S _/’:
e | e
| |
B -:’I..-’/’
- ’Ji'
| hee 1 | 1 -
%.n 0.3 1.0 1.3 2.0
1000/ heap sixe)

QO The points do not appear to be close to the straight line.
0 The anayst hypothesizes

b
(Time)'/2 = by + .

Heap Size
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Case Study 15.2 (Cont)

Q Isexponent on timeisdifferent than a half?
= Use Box-Cox transformations with “a” ranging from -0.4 to

0.8

%3

O The minimum SSE of 2049 occurs at a= 0.45.
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Case Study 15.2 (Cont)

a Since 0.95-quantile of at variate with 10 degrees of freedom is

1.812
1.812)2
SSE = 2049<1+( io) >

= 2721.8

QO The SSE = 2271 line intersects the curve at a= 0.2465 and
a=0.5726.

0 90% confidence interval for ais (0.2465, 0.5726). Sincethe
Interval includes 0.5, we cannot reject the hypothesis that the
exponent is 0.5.
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Qutliers

Any observation that is atypical of the remaining observations
may be considered an outlier.

Including the outlier in the analysis may change the
conclusions significantly.

Excluding the outlier from the analysis may lead to a
misleading conclusion, if the outlier in fact represents a correct
observation of the system behavior.

A number of statistical tests have been proposed to test if a
particular value is an outlier. Most of these tests assume a
certain distribution for the observations. If the observations do
not satisfy the assumed distribution, the results of the statistical
test would be misleading.

Easiest way to identify outliersisto look at the scatter plot of
the data.
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Qutliers (Cont)

2 Any value significantly away from the remaining observations
should be investigated for possible experimental errors.

a Other experiments in the neighborhood of the outlying
observation may be conducted to verify that the responseis
typical of the system behavior in that operating region.

a Oncethe possibility of errorsin the experiment has been
eliminated, the analyst may decide to include or exclude the
suspected outlier based on the intuition.

0 One alternative isto repeat the analysis with and without the
outlier and state the results separately.

a Another alternative is to divide the operating region into two
(or more) sub-regions and obtain a separate model for each
sub-region.
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Common Mistakesin Regression

1. Not verifying that the relationship islinear.

2. Relying on automated re@eults1l 1}{vithout visual verification

F 3 F
%, R « In all these cases,
o” a :' I « * - 2 R2 — ngh
* High R? is hecessary
. (e) . (d but not sufficient for a
" good model.
¥ . ¥ . 3

. ? g » 'x N
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Common Mistakesin Regression (Cont)

3. Attaching importance to numerical values of regression
parameters.

CPU time in seconds = 0.01 (Number of disk I/O's) + 0.001
(Memory sizein kilobytes)

0.001 istoo small #> memory size can be ignored

CPU time in milliseconds = 10 (Number of disk I/O's) + 1
(Memory size in kilobytes)

CPU time in seconds = 0.01 (Number of disk |/QO's) +

1 (Memory sizein Mbytes)

4. Not specifying confidence intervals for the regression

parameters.

5. Not specifying the coefficient of determination.
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Common Mistakesin Regression (Cont)

6. Confusing the coefficient of determination and the coefficient
of correlation
R=Coefficient of correlation, R?>= Coefficient of determination
R=0.8, R*=0.64
= Regression explains only 64% of variation and not 80%.

7. Using highly correlated variables as predictor variables.
Analysts often start a multi-linear regression with as many
predictor variables as possible

= severe multicollinearity problems.

8. Using regression to predict far beyond the measured range.
Predictions should be specified along with their confidence
Intervals

9. Using too many predictor variables.
k predictors = 2%-1 subsets
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Common Mistakesin Regression (Cont)

d  Subset giving the minimum R? is the best. But, other subsets
that are close may be used instead for practical or engineering
reasons. For example, if the second best has only one variable
compared to five in the best, the second best may the
preferred model.

10. Measuring only a small subset of the complete range of
operation, e.g., 10 or 20 users on a 100 user system.

I {rp-eraTIDI'l |

1 Memred
. System
} -i."""f i |+ range _:,:'
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Common Mistakesin Regression (Cont)

11. Assuming that a good predictor variable is also a good
control variable.

» Correlation = Can predict with a high precision
#> Can control response with predictor

» For example, the disk 1/0 versus CPU time regression
model can be used to predict the number of disk I/O'sfor a
program given its CPU time.

» However, reducing the CPU time by installing a faster CPU
will not reduce the number of disk 1/O's.

» W and y both controlled by x

= w andy highly correlated and would be good predictors
for each other.
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Common Mistakesin Regression (Cont)

> The prediction works both ways.
w can be used to predict y and vice versa.

> The control often works only one way:
X controlsy but y may not control X.
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ii
Too many predictors may make the model weak.

Categorical predictors are modeled using binary predictors

Curvilinear regression can be used if atransformation gives
linear relationship.

1
Transformation: s=g(y) = w = h(y) = / @dy

Outliers. Use your system knowledge. Check measurements.
Common mistakes:No visual verification, control vs correlation
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Exercise 15.1

2 The results of amultiple regression based on 9

observations are

shown in the following table.

b Sbj

_ 0 DN e

J
1.3 3.6
2.7 1.8
0.0 0.6
5.0 8.3

Intercept = 75.3
Coeflicient of multiple correlation = 0.95
Standard deviation of errors = 12.0

F-value = 14.1
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Exercise 15.1 (Cont)

0 Based on these results answer the following questions:

What percent of variance is explained by the regression?
|s the regression significant at 90% confidence level ?
Which variable has the highest coefficient?

Which variable is most significant?

Which parameters are not significant at 90%"?

What is the problem with this regression?

What would you try next?

N o ok owbdPE
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Exercise 15.2

a Timeto encrypt or decrypt ak-bit record was measured on a
uniprocessor as well as on a multi-processor. Thetimesin
milliseconds are shown below. Using alog transformation and
the method for categorical predictorsfit a regression model and

Interpret the results.

k Uniprocessor | Multiprocessor
128 93 67
256 478 355
512 3408 2351
1024 25,410 17,022
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0 (Updated Exercise 15.2) Time to encrypt or decrypt a k-bit
record was measured on a uniprocessor as well as on a multi-
processor. The times in milliseconds are shown below. Using a
log transformation and the method for categorical predictors fit

Homewor k

aregression model and interpret the results.

k Uniprocessor | Multiprocessor
128 93 67
256 478 355
512 3408 2351
1024 25,410 19,022
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