Testing Random-
Number Generators
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Chi-square test

Kolmogorov-Smirnov Test
Serial-correlation Test

Two-level tests

K-dimensional uniformity or k-distributivity
Serial Test

Spectral Test
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Testing Random-Number Generators

Goal: To ensure that the random number generator produces a
random stream.
2 Plot histograms
Plot quantile-quantile plot
Use other tests
Passing atest is necessary but not sufficient
Pass # Good
Fall = Bad
2 New tests = Old generatorsfail the test
0O Tests can be adapted for other distributions
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Chi-Square Test

0 Most commonly used test

0 Can be used for any distribution

Q Prepare ahistogram of the observed data

a Compare observed frequencies with theoretical
kK = Number of cells

0, = Observed frequency for ith cell

e = Expected frequency

k
o (07; — €i)2
D=3
i=1

0 D=0 = Exact fit
a D has achi-sguare distribution with k-1 degrees of freedom.
= Compare D with x4, «.4; Pass with confidence o if D isless
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Example 27.1

2 1000 random numbers
withx,=1
3 X[Qo,g;g] = 14.68

0 Observed difference
=10.380

0 ObservedislLess
= Accept |ID U(O, 1)

Tp = (1252,_1 + 1) mod (2'%)

Cell Obsrvd Exptd %
1 100  100.0 0.000

2 96  100.0 0.160

3 98  100.0 0.040

4 8  100.0 2.250

5 105  100.0 0.250

6 93  100.0 0.490

7 97  100.0 0.090

8 125  100.0 6.250

9 107  100.0  0.490
10 94  100.0 0.360
Total 1000  1000.0 10.380
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Chi-Squarefor Other Distributions

a Errorsin cellswith asmall e affect the chi-square statistic
more

a Best when e'sare equal.
= Use an equi-probable histogram with variable cell sizes

2 Combine adjoining cells so that the new cell probabilities are
approximately equal.

0 The number of degrees of freedom should be reduced to k-r-1
(in place of k-1), wherer isthe number of parameters estimated
from the sample.

0 Designed for discrete distributions and for large sample sizes
only = Lower significance for finite sample sizes and
continuous distributions

2 If lessthan 5 observations, combine neighboring cells
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Kolmogor ov-Smirnov Test

0 Developed by A. N. Kolmogorov and N. V. Smirnov
QO Designed for continuous distributions

0 Difference between the observed CDF (cumulative distribution
function) F_(x) and the expected cdf F(x) should be small.

E{x}

A

Expocted
\f e
ul ™~ Observed
p - jx7 1) o ar)
—l
>
 HE )
-

27-7



a K" <Kjp.g4nand K <K, = Passat o level of significance.
a Don't use max/min of Fe(x;)-F(x:)
Q Use F(Xi1)-Fo(X) for K- max /
0 For U(0, 1): F(X)=x K™ =+n ] (——ww>
a F,(x)=)/n,
> ey X :
where X > X, Xy, ..., X 4 o \/ﬁmj@x (% - ]%1

Kolmogor ov-Smirnov Test

K* = maximum observed deviation below the expected cdf
K- = minimum observed deviation below the expected cdf

max

KT =+vn x (F,(2)— F.(2))

max

K™ = \/ﬁ X (Fe(x) _Fo(x))
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Example 27.2

30 Random numbers using a seed of x,=15:
Typ = 3T,—1 mod 31

QO The numbers are:
14, 11, 2, 6, 18, 23, 7, 21, 1, 3, 9, 27, 19, 26, 16, 17, 20,
29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15.
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Example 27.2 (Cont)

The normalized numbers obtained by dividing the sequence by 31
are:

0.45161, 0.35484, 0.06452, 0.19355, 0.58065, 0.7/4194,
0.22581, 0.67742, 0.03226, 0.0967/, 0.29032, 0.87097,
0.61290, 0.83871, 0.51613, 0.54839, 0.64516, 0.93548,
0.80645, 0.41935, 0.25806, 0.77419, 0.32258, 0.96774,

0.90323, 0.70968, 0.12903, 0.38710, 0.16129, 0.4838/.
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Example 27.2 (Cont)

Q Kiggn vaueforn=30anda=0.11s1.0424

J X 1 —T; Xj— u
- 1 0.03226 0.00108  0.03226
K- =i j (z;— 122 2 0.06452 0.00215  0.03118
/30 % 0.03026 3 0.09677 0.00323  0.03011
01767 4 0.12903 0.00430  0.02903
' 5 0.16129 0.00538  0.02796
INax
- 6 0.19355 0.00645  0.02688
—+ _ : J
Kt =vnj (- 7022581 0.00753  0.02581
= v/ 30 x 0.03026 8 0.25806 0.00860  0.02473
— 0.1767 _
20 0.93548 0.03118  0.00215
<
0 Observed<Table 30 0.96774 0.03226  0.00108
— Pass Max  0.03226 _ 0.03226
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Chi-squarevs. K-S Test

K-S test

Chi-Square Test

Small samples
Continuous distributions

Differences between observed and

expected cumulative probabilities
(CDFs)

Uses each observation in the
sample without any grouping
—makes a better use of the data
Cell size is not a problem

Exact

Large Sample
Discrete distributions

Differences between observed and
hypothesized probabilities (pdfs
or pmfs).

Groups observations into a small
number of cells

Cell sizes affect the conclusion
but no firm guidelines

Approximate
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Serial-Correlation Test

2 Nonzero covariance = Dependence. Theinverseisnot true
QR = Autocovariance atlagk Cov[X,, X il

=
_n—k Uit 2

a Forlargen, R is normaIIy distributed with a mean of zero and
a variance of 1/[144(n-K)]

a 100(1-0)% confidence interval for the autocovariance s

R F z1—ay2/(12vVn — k)

For k> 1 Check if CI includes zero

a For k=0, R,= variance of the sequence Expected to be 1/12
for 11D U(0,1)
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Example 27.3: Serial Correlation Test

T, = 7°xz,_1 mod (231 —1)

10,000 random numbers with x,=1:

Lag Autocovariance St. Dev.  90% Confidence Interval
k Ry, of R, Lower Limit Upper Limit
1 -0.000038 0.000833 -0.001409 0.001333
2 -0.001017 0.000833 -0.002388 0.000354
3 -0.000489 0.000833 -0.001860 0.000882
4 -0.000033 0.000834 -0.001404 0.001339
5 -0.000531 0.000834 -0.001902 0.000840
6 -0.001277 0.000834 -0.002648 0.000095
7 -0.000385 0.000834 -0.001757 0.000986
8 -0.000207 0.000834 -0.001579 0.001164
9 0.001031 0.000834 -0.000340 0.002403

10 -0.000224 0.000834 -0.001595 0.001148
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Example 27.3 (Cont)

000 -
002 —

0000 | 1

Autecovarlance
L
il

0.002 —

N T T T O
T s 456789

0 All confidence intet¥l s include zero = All covariances are
statistically insignificant at 90% confidence.
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Two-Level Tests

Q If the sample sizeistoo small, the test results may apply
locally, but not globally to the complete cycle.

0 Similarly, global test may not apply locally
0 Usetwo-level tests

= Use Chi-square test on n samples of size k each and then use
a Chi-sguare test on the set of n Chi-sguare statistics so
obtained
= Chi-sguare on Chi-sguare test.
a Similarly, K-Son K-S
0 Canalso usethisto find a nonrandom™ segment of an
otherwise random sequence.
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K-Distributivity

QO k-Dimensional Uniformity

Q Chi-sguare = uniformity in one dimension
= Given two real numbers a; and b, between O and 1 such that
b,>a
. . P(algun<bl):b1—a1 Vb1 > aq

a Thisisknown as 1-distributivity property of u,..
Q The 2-distributivity is ageneralization of this property intwo
dimensions:

P(a1 < Up_1 < by and as < u, < bg)

= (b1 — a1)(b2 — ag)

For al choices of a,, b, a,, b, In [0, 1], b,>a, and b,>a,
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kK-Distributivity (Cont)
QO k-distributed if:

Plar <up <bi,...,a0p <Upyrp—1 < bi)

(b1 —a1)-- - (bx — ax)
a For all choicesof a, b, in [0, 1], withb>a, 1=1, 2, ..., k

0 k-distributed sequence is aways (k-1)-distributed. The inverse
IS not true.

a Two tests:
1. Serial test
2. Spectral test

3. Visual test for 2-dimensions: Plot successive overlapping pairs
of numbers
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Example 27.4

0 Tausworthe sequence
generated by:

1+ x4+ 1

Q The sequenceisk-
distributed for k up to
[/I'], that is, k=1.

a Intwo dimensions:
Successive overlapping

paIrs Xy, Xqs1)

| .ixD —
L A,
0.7 = ' ‘ ‘
< T 2ad
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A »
0.25 —' ‘
A A
S
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Example 27.5

2 Consider the
polynomial

.’,6'15—|—£C4—|—1

0O Better 2-distributivity
than Example 27.4
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Serial Test
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cells of equal area

2 Intwo dimensions, divide the space between 0 and 1 into K2

0 Goal: To test for uniformity in two dimensions or higher.

27-21




Serial Test (Cont)

a Given {Xy, X,,..., X}, Use /2 non-overlapping pairs (X, X,), (Xs,
X,), ... and count the pointsin each of the K2 céells.

Expected= n/(2K?) pointsin each cell.

Use chi-sguare test to find the deviation of the actual counts
from the expected counts.

The degrees of freedom in this case are K2-1.
For k-dimensions: use k-tuples of non-overlapping values.
K-tuples must be non-overlapping.

Overlapping = number of pointsin the cells are not
Independent chi-square test cannot be used

In visual check one can use overlapping or non-overlapping.
In the spectral test overlapping tuples are used.

2 Given n numbers, there are n-1 overlapping pairs, n/2 non-
overlapping pairs.

U O

U 0O 0O O

U O
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Spectral Test

a Goal: To determine how densely the k-tuples { x;, X, ..., X} can
fill up the k-dimensional hyperspace.

Q Thek-tuplesfrom an LCG fall on afinite number of parallel
hyper-planes.
0 Successive pairs would lie on afinite number of lines

2 Inthree dimensions, successive triplets lie on afinite number
of planes.
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Example 27.6: Spectral Test

Typ = 3%,_1 mod 31

Plot of overlapping pairs

A2 . a All pointslie onthree
- . N . straight lines.
24— = o . LTn = BCEn_l
= [ . . : Ty = 3Tp_1— 31
£ . . N T, = 3Tp_1— 62
- &
sl ° . J a Or:
K . . Ty = 3T 1 — 31k k=0,1,2
% % - n &
X
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Example 27.6 (Cont)

a Inthree dimensions, the points (x,, X 1, X, ,) for the above
generator would lie on five planes given by:

Ty = 2Tpn_1+3Tp_o—31k k=0,1,...,4

Obtained by adding the following to eguation
LTn—1 — 3$n_2 — 31]61 kl — O, 1, 2

Note that k+k, will be an integer between 0 and 4.
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Spectral Test (More)

QO Marsaglia (1968): Successive k-tuples obtained from an LCG
fall on, at most, (k!m)Yk parallel hyper-planes, where misthe
modulus used in the LCG.

0 Example: m= 232, fewer than 2,953 hyper-planes will contain
all 3-tuples, fewer than 566 hyper-planeswill contain all 4-
tuples, and fewer than 41 hyper-planes will contain all 10-
tuples. Thus, thisis aweakness of LCGs.

a Spectral Test: Determine the max distance between adjacent
hyper-planes.

Q Larger distance = worse generator

O Insome cases, it can be done by complete enumeration
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Example 27.7

2 Compare the following two generators:

Ty, = 3T,—1 mod 31

T, = 13x,,_1 mod 31
a Using a seed of x,=15, first generator:
14, 11, 2, 6, 18, 23, 7, 21, 1, 3, 9, 27, 19,
26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28,
22, 4,12, 5, 15, 14.
2 Using the same seed in the second generator:
9, 24, 2, 26, 28, 23, 20, 12, 1, 13, 14, 27, 10, 6,

16, 22.7,29. 5.3 8 11, 19, 30, 18, 17, 4, 21, 25,
15, 9.
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Example 27.7 (Cont)

2 Every number between 1 and 30 occurs once and only
once

= Both sequences will pass the chi-sguare test for
uniformity
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Example 27.7 (Cont)

Q First Generator:
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Example 27.7 (Cont)

Q Three straight lines of positive slope or ten lines of negative
slope

a Since the distance between the lines of positive slope is more,
consider only the lines with positive slope.

Tp = 3Tp—1
Ty = OTp—1— ol
Ty = OTp_1 — 02

a Distance between two parallel lines y=ax+c, and y=ax+c, IS

given by ’CQ — Cl|/\/ 1+ a?
0 The distance between the above linesis 31 //100r 9.80.
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Example 27.7 (Cont)

a Second Generator:
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Example 27.7 (Cont)

2 All pointsfall on seven straight lines of positive slope or six

straight lines of negative slope.
2 Considering lines with negative slopes.
5 31

n — T <dn— k_ k:O,l,...,S
X 2:1: 1 + 5

a Thedistance between linesis: (31/2)/1/(1+ (5/2)2) or 5.76.

0 The second generator has a smaller maximum distance and,
hence, the second generator has a better 2-distributivity.

2 The set with alarger distance may not always be the set with
fewer lines.
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Example 27.7 (Cont)

0 Either overlapping or non-overlapping k-tuples can be used.

> With overlapping k-tuples, we have k times as many points,
which makes the graph visually more complete. The number
of hyper-planes and the distance between them are the same
with either choice.

0 With serial test, only non-overlapping k-tuples should be used.

a For generators with alarge mand for higher dimensions,
finding the maximum distance becomes quite complex.

See Knuth (1981)
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® O
Chi-sguare test is a one-dimensional test
Designed for discrete distributions and large sample sizes
K-Stest isdesigned for continuous variables
Serial correlation test for independence
Two level tests find local non-uniformity

k-dimensional uniformity = k-distributivity
tested by spectral test or serial test
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Homewor k

0 Submit detailed answer to Exercise 27.3. Print
10,000 number al so.
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Exercise 27.1

Generate 10,000 numbers using a seed of x,=1 in the
following generator:

Tp = 7°T,_1 mod (2°F — 1)

Classify the numbers into ten equal size cells and test for
uniformity using the chi-square test at 90% confidence.
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Exercise 27.2

Generate 15 numbers using a seed of X,=1 in the following
generator:

x, = (bxy,_1+ 1) mod 16

Perform a K-Stest and check whether the sequence passes the test
at a95% confidence level.
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Exercise 27.3

Generate 10,000 numbers using a seed of x,=1 in the following
LCG:

T, = 482712, _1 mod (2°! — 1)

Perform the serial correlation test of randomness at 90%
confidence and report the result.
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Exercise 27.4

Using the spectral test, compare the following two generators

Ty = (T,—1 mod 13

T, = 11lz,,_1 mod 13

Which generator has a better 2-distributivity?
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