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Queueing Models: What You will learn?

0 What are various types of queues.
What is meant by an M/M/m/B/K queue?

2 How to obtain response time, queue lengths, and server
utilizations?

0 How to represent a system using a network of several queues?
2 How to analyze simple queueing networks?

2 How to obtain bounds on the system performance using
gueueing models?

2 How to obtain variance and other statistics on system
performance?

2 How to subdivide alarge queueing network model and solve it?

(
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Basic Components of a Queue
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Kendall Notation A/'SYm/B/K/SD

2 A: Arrival process

a S Servicetimedistribution

2 m: Number of servers

2 B: Number of buffers (system capacity)
2 K: Population size, and

a SD: Servicediscipline
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Arrival Process

QO Arrival times. t1,ts,...,t;
Q Interarrival times. 7; =¢; —t;_,

A t; form asequence of Independent and Identically Distributed
(11D) random variables

2 Exponential + 11D = Poisson
2 Notation:
> M = Memoryless = Poisson
» E=FErlang
» H = Hyper-exponential
» G = General = Resultsvalid for all distributions
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Service Time Distribution

2 Time each student spends at the terminal.
a Servicetimesare | ID.

2 Distribution: M, E, H, or G

1 Device = Service center = Queue

Q Buffer = Waiting positions
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Service Disciplines

First-Come-First-Served (FCFS)

L ast-Come-First-Served (LCFS)

L ast-Come-First-Served with Preempt and Resume (LCFS-PR)
Round-Robin (RR) with afixed quantum.

Small Quantum = Processor Sharing (PS)

Infinite Server: (1S) = fixed delay

Shortest Processing Time first (SPT)

Shortest Remaining Processing Time first (SRPT)

Shortest Expected Processing Time first (SEPT)

Shortest Expected Remaining Processing Time first (SERPT).
Biggest-In-First-Served (BIFS)

L oudest-V oice-First-Served (LVFS)
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Common Distributions

2 M: Exponential

a E.: Erlang with parameter k

a H,: Hyper-exponential with parameter k
a D: Deterministic = constant

a2 G: Genegra = All

2 Memoryless:

> Expected time to the next arrival isaways 1/4
regardless of the time since the last arrival

> Remembering the past history does not help.
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Example M/M/3/20/1500/FCF S

Time between successive arrivals is exponentially distributed.
Service times are exponentially distributed.
Three servers
20 Buffers = 3 service + 17 waiting
After 20, all arriving jobs are lost
Total of 1500 jobs that can be serviced.
Service discipline isfirst-come-first-served.
Defaults:

> Infinite buffer capacity

> Infinite population size

> FCFS service discipline.

G/G/1 = G/G/1 ool 0ol FCFS
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Group Arrivals/Service

2 Bulk arrivals/service

0 MIXM: x represents the group size

0 GIX: abulk arrival or service process with general
Inter-group times.

1 Examples:

> MIX/M/1 : Single server queue with bulk Poisson
arrivals and exponential service times

> M/GIX/m: Poisson arrival process, bulk service
with general service time distribution, and m
servers.
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Key Variables
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Key Variables (cont)

T = Inter-arriva time = time between two successive arrivals.

A = Mean arrival rate = 1/E[ 7]
May be afunction of the state of the system,
e.d., humber of jobs already in the system.

s = Service time per job.
u = Mean service rate per server = 1/E[ 9]
Total service rate for m serversis mu

n = Number of jobs in the system.
Thisisaso called queue length.

Note: Queue length includes jobs currently receiving service
aswell asthose waiting in the queue.
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Key Variables (cont)

A n, = Number of jobs waiting
a n,= Number of jobs receiving service
a r = Response time or the time In the system
= time walting + time receiving service
2 w= Waiting time
= Time between arrival and beginning of service
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Rulesfor All Queues

Rules. The following apply to G/G/m queues

1. Stability Condition:
A<mu
Finite-population and the finite-buffer systems are always
stable.

2. Number in System versus Number in Queue:
n=ng+ ng
Notice that n, n,, and ng are random variables.
E[n]=E[n,]+E[ng]
If the service rate is independent of the number in the queue,
Cov(ng,ny) = 0

Var|n| = Var|n,| + Var|n,]

30-15




Rulesfor All Queues (cont)

3. Number versus Time;
If jobs are not |ost due to insufficient buffers,
Mean number of jobsin the system
= Arrival rate x Mean response time

4. Similarly,
Mean number of jobs in the queue
= Arrival rate x Mean waiting time

Thisisknown as Little's law.
5. Timein System versus Time in Queue
r=w+s
r, w, and s are random variables.
E[r] = E[w] + E[S]
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Rulesfor All Queues(cont)

6. If the service rate is independent of the number of jobsin the
queue,
Cov(w,5)=0

Var|r] = Var|w| + Var[s]

30-17




Little'sLaw

Mean number in the system
= Arrival rate x Mean response time

Thisrelationship appliesto all systems or parts of systemsin
which the number of jobs entering the system is equal to those
completing service.

Named after Little (1961)
Based on a black-box view of the system:

Arrivals Black Departures
>l >
Box

In systems in which some jobs are lost due to finite buffers, the
law can be applied to the part of the system consisting of the
waiting and serving positions
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Proof of Little'sLaw

A A
4 : 4
Job 4 Arrival Number 5|
number | | In a
2 2
I\
IS
12345678 12345678
Time Time
A
a If Tislarge, arrivals = departures= N 4
0 Arriva rate = Total arrivals/Total time= N'T  Time 3
0 Hatched areas = total time spent inside the N
system by al jobs = J System 2
0 Mean timein the system= J/N 1

Mean Number in the system
=JT= 4 x %
= Arrival ratex Mean time in the system

(H
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Application of Little'sLaw

Arrivals — > ““ —> S —» —> Departures

QO Applying to just the waiting facility of a service center

a Mean number in the queue = Arrival rate x Mean waiting time
2 Similarly, for those currently receiving the service, we have:

2 Mean number in service = Arrival rate x Mean service time
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Example 30.3

2 A monitor on adisk server showed that the average time to
satisfy an 1/0 request was 100 milliseconds. The I/O rate was

about 100 requests per second. What was the mean number of
reguests at the disk server?

Q Using Little's law:
Mean number in the disk server
= Arrival rate x Response time

= 100 (requests/second) x(0.1 seconds)
= 10 requests
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Stochastic Processes

QO Process: Function of time
QO Stochastic Process: Random variables, which are functions of

time
0 Example 1.
> N(t) = number of jobs at the CPU of a computer system
» Take several identical systems and observe n(t)
» The number n(t) isarandom variable.
» Can find the probability distribution functions for n(t) at
each possible value of t.

0 Example 2:
» W(t) = walting time in a queue
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Types of Stochastic Processes

0 Discrete or Continuous State Processes
0 Markov Processes

0 Birth-death Processes

0 Poisson Processes
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Discrete/Continuous State Processes

0 Discrete = Finite or Countable

a Number of jobsinasystemn(t) =0, 1, 2, ....

0 n(t) isadiscrete state process

0 Thewaiting time w(t) is a continuous state process.
Q Stochastic Chain: discrete state stochastic process
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M ar kov Processes

1 Future states are independent of the past and depend only on
the present.

0 Named after A. A. Markov who defined and analyzed them in
1907.

0 Markov Chain: discrete state Markov process

2 Markov = It is not necessary to know how long the process
has been in the current state = State time has a memoryless
(exponential) distribution

2 M/M/m queues can be modeled using Markov processes.

2 Thetime spent by ajob in such aqueue isaMarkov process
and the number of jobs in the queue isaMarkov chain.
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Birth-Death Processes

@@@ @@GT

“‘]+1 M j+2

Q The discrete space Markov processes in which the transitions
are restricted to neighboring states

0 Processin state n can change only to state n+1 or n-1.

0 Example: the number of jobs in a queue with asingle server
and individual arrivals (not bulk arrivals)
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Poisson Processes

QO Interarrival time s = 11D and exponential
= number of arrivals n over agiven interval (t, t+x) hasa
Poisson distribution
= arrival = Poisson process or Poisson stream

QO Properties: Al

k b
> LMerging: A=)\ h> > )=
1=1 ;

Ak

» 2.5plitting: If the probability of ajob going to ith
substream is p,, each substream is also Poisson with a

mean rate of p; A y 1
y r . pit k=l
pk i
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> 3.If the arrivals to a single server with exponential
service time are Poisson with mean rate A, the

departures are a so Poisson with the same rate A
provided A < .

:'l. } ‘ @ h :ill
Ao L
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Poisson Process(cont)

> 4. If the arrivals to a service facility with m service centers
are Poisson with amean rate A, the departures also
constitute a Poisson stream with the same rate A, provided
A< i . Here, the servers are assumed to have
exponentially distributed service times.

O,

— =0

=G
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Relationship Among Stochastic Processes
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T
Kendall Notation: A/SYm/B/k/SD, M/M/1
Number in system, queue, waiting, service
Service rate, arrival rate, response time, waiting time, service
time
Little’s Law: Mean number in system = Arrival rate X Mean
time spent in the system

Processes. Markov = Memoryless,
Birth-death = Adjacent states
Poisson = |I1D and exponential inter-arrival
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Homewor k

0 Submit answer to Exercise 30.4

30.4 During a one-hour observation interval, the name server of a
distributed system received 10,800 reguests. The mean
response time of these requests was observed to be one-third of
asecond. What isthe mean number of queriesin the server?
What assumptions have you made about the system? Would the
mean number of queries be different if the service time was not
exponentially distributed?
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