
Service Chaining for NFV and Delivery of other
Applications in a Global Multi-Cloud Environment

Subharthi Paul, Raj Jain
Dept. of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130, USA
{pauls, jain}@cse.wustl.edu

 Mohammed Samaka, Aiman Erbad
Computer Science and Engineering Dept.

Qatar University
Doha, Qatar

{samaka.m, aerbad}@qu.edu.qa

Abstract— Network Function Virtualization (NFV) allows
Internet Service Providers (ISPs) to implement key function
modules, such as, BRAS (Broadband Remote Access Server),
IMS (Internet Multimedia System), etc. in virtual machines in a
cloud environment. One of the key problems in NFV
implementation is the placement of virtual machines (VMs) in
clouds managed by different cloud service providers each with its
own management interface. It would be helpful if the clients can
implement their policies in a multi-cloud environment using a
single interface. Our proposed solution is a modular multi-cloud
management system called OpenADN that provides a common
interface for resource allocation in a multi-cloud environment.
The solution is also applicable to non-ISP applications, such as,
banking, financial, and other sectors that need to use globally
distributed multi-cloud resources. This paper presents a brief
overview of the OpenADN architecture. The key feature of
OpenADN is that multiple tenants can share the resources and all
resource owners keep complete control over their resources. The
data plane module of OpenADN is called OpenADN (Open
Application Delivery Network). OpenADN has been implemented
and brief details of implementation are also presented in this
paper.1

Keywords—Cloud Computing; Multi-Cloud; Inter-Cloud;
Network Function Virtualization; NFV; Software Defined
Networking; SDN

I. INTRODUCTION
Four recent innovations that have significantly impacted

the field of computer networking are: Virtualization, Cloud
Computing, Smart Mobile Phones, and Software Defined
Networking (SDN). Network Function Virtualization (NFV),
which is a recent proposal from Internet Service Providers
(ISPs), is the next innovation that promises to revolutionize
the carrier networking.

SDN has been a topic of much interest and debate in the
industry recently and its definition has undergone a significant
change over the last two years.

1 This work has been supported under the grant ID NPRP 6 -
901 - 2 - 370 for the project entitled “Middleware Architecture
for Cloud Based Services Using Software Defined
Networking (SDN)", which is funded by the Qatar National
Research Fund (QNRF). The statements made herein are
solely the responsibility of the authors.

In this paper, we briefly present the current industry
activities in SDN and extend those concepts to solve one of
the generic problems of NFV, called service chaining. We
show that service chaining is a generic problem and solving it
will help enterprises in general since many of them use
multiple clouds.

The organization of the rest of the paper is as follows. In
Section II, we present current evolution of SDN to a multi-
protocol version. In Section III, we provide some background
on NFV, followed by a discussion on the service chaining
problem in Section IV. In Section V, we discuss how NFV can
be generalized to address enterprise application delivery
problems. In Section VI, we present our solution- the
OpenADN architecture, followed by a brief discussion on the
features of OpenADN in Section VII and some of the
application use-cases that may benefit from OpenADN in
Section VIII. Finally, we summarize in Section IX.

II. MULTI-PROTOCOL SDN
SDN has changed the cloud computing and data center

management landscape. The concept originated with
OpenFlow [1], which requires separating the control plane
from network elements and centralizing it in a controller. The
central controller allows programming the entire datacenter
network and implementing the organization’s policies
uniformly on a large number of network devices. This is a
very powerful and useful concept and so it immediately
caught the attention of the entire networking industry.

SDN was originally proposed with a single southbound
protocol (OpenFlow). The key debate about SDN in the
industry is that; if what we need is the uniform
implementation of policies then what is the easiest way to get
there? Every company has its own way to achieve this goal. In
particular, there is a debate about whether complete separation
of the control plane is necessary, possible, or desired.

Strictly speaking, data plane consists of all bits sent by the
user. Control plane consists of all bits that are added by the
network to transport these user/data bits. In circuit switched
networks, separate (virtual) channels are used for the control
information. In packet switched networks, such a separation is
difficult because control bits are added to each user payload in
the form of headers and then additional control packets are
used to determine routing and enforcing other policies.

Complete separation of control plane will leave the
network vulnerable to total stoppage in case of controller

failures so a significant amount of work has been done using
distributed implementation of controllers that make it failsafe.
However, if the key objective is to enforce policies, then some
argue that the control plane can be left intact in the network
elements and the policies can be sent to them directly. This is
what OpFlex [2] is being designed to do. Also centralization
of all control plane functions requires micromanaging
millions/billions of flows from the controller which raises
scalability issues.

RESTful API OSGi Frameork

Network Service Functions Network Orchestration
Function

Management
FunctionSlicing

Manager
Topology
Manager

Host
Tracker

Service Abstraction Layer (SAL)

Southbound
Protocols

PCEP SMTP XMPP BGP OpFlex OpenFlow
V1.0

OpenFlow
V1.4

Network Element Network Element Network Element

Controller API (Java, REST)

Network
Elements

Overlay Tunnels (VxLAN, NVGRE, …)

…

Protocol
Plug-ins

Northbound
APIs

Controller 1 Controller 3Controller Controller 2 …

…

Fig. 1: Multi-protocol implementation of SDN in

OpenDaylight

OpenDaylight [3], which is currently the leading industry
effort on a software defined networking controller, uses a
modular approach to software defined networking. As shown
in Fig. 1, it allows many different southbound protocols
including, PCEP (Path Computation Element Protocol),
SMTP (Simple Mail Transfer Protocol), XMPP (eXetensible
Messaging and Presence Protocol), BGP (Border Gateway
Protocol), OpFlex [2], and OpenFlow V1.0 through OpenFlow
V1.4 [4]. The service abstraction layer (SAL) allows many
different control modules to talk to the underlying physical
hardware (network elements) using any of these protocols.

Later in this paper, we will extend this modular multi-
protocol design concept to apply to multi-cloud environment.

III. NETWORK FUNCTION VIRTUALIZATION
In October 2012, ETSI published the Network Function

Virtualization (NFV) whitepaper [5]. The key idea is that
similar to the economies other industries are achieving by
moving to cloud computing, Internet Service Providers (ISPs)
can also reduce capital expenditure (CapEx) and Operational
expenditure (OpEx) by virtualizing various ISP functions.
Examples of such functions are IMS (Internet Multimedia
System), EPC (Evolved Packet Core), BRAS (Broadband
Remote Access System), etc. As shown in Fig. 2, each of
these functions can be implemented as a virtual machine in
one or more clouds.

Cloud computing has proven to be a successful business
model for both the cloud service providers and for the cloud
service clients. The clients save by not having to worry about
large CapEx and OpEx to manage the physical infrastructure.
Sharing of infrastructure by many tenants results in the service
provider also making significant profits. So cloud computing
results in a win-win business relationship between the service
provider and the clients. NFV will bring similar savings to the
ISP businesses.

Multiple copies of virtual network function (VNF)
modules can be instantiated on demand as required. As traffic
increases in an area, more VNFs can be created to meet the
demand. When the traffic goes away, VNFs can be shut down
and the available capacity can be used for other tasks. This
also allows the possibility of the physical NFV infrastructure
(NFVI) to be owned by a separate entity and shared by
multiple client ISPs resulting in the same win-win
relationship between the ISPs and NFVI providers as between
the cloud service clients and the cloud service providers.

The key advantages of NFV are:

1. Programmability: The entire network can be
managed from the cloud management interface.

2. Multi-Tenancy: The datacenter network can be
partitioned into multiple virtual partitions with each
partition being managed by a different ISP. Each
tenant has different policies that are conveyed by the
tenant controller to the Cloud Service Provider’s
(CSP’s) management interface and implemented
from there.

3. Orchestration: Policies can be implemented on a
large number of network elements simultaneously
from the cloud management platforms.

4. Dynamic Scaling: Each tenant’s network can be
scaled up and down as needed.

5. Automation: Manual configuration of each
individual device is avoided. Modules in the cloud
management software can compute various
configuration parameters automatically resulting in
significant OpEx savings.

6. Visibility: With network devices reporting to the
central cloud management software, it is easy to see
all the activities in the network and diagnose
problems quickly.

7. Performance: Visibility and programmability allow
the network performance to be optimized with the
changing traffic patterns.

8. Unified Management: Virtualization of computing
and storage already provides the above features for
computing and storage in clouds. NFV adds these
features to networks, thus, allowing a unified
management of computing, storage, and networking.

IV. SERVICE CHAINING
One key problem in the NFV implementation is that of

connecting various VNFs. This is called “Service
Chaining.” For VNFs located inside a single cloud, this
consists of programming the data center network so that
the traffic flows through the various VMs according to the
policies of the tenant. The network links in the data center
can be programmed accordingly. Similarly, for VNFs
located in different cloud data centers, the tenants would
like their traffic to be handled by their policies. However,
this requires elastic network links between the clouds that
can be instantiated on demand. Since the WAN link

capacities are extremely limited and expensive, the
available capacity often dictates the VNF placement to a
subset of available clouds.

MMERNC IMS

Hardware

Hardware

Set Top
BoxCGNAT

Residential
Gateway

Hardware

MMERNC IMS

Residential
Gateway CGNAT

Set Top
Box

MMERNC IMS

MMERNC IMS

Fig. 2: Service chaining in a multi-cloud multi-tenant

environment

The key challenges in service chaining are:

1. Dynamic: Forwarding changes with the state of servers
and links. If servers at a particular cloud become overloaded,
new or even existing flows must be forwarded to other clouds.
The same applies to links connecting clouds. Cloud operators
may want to move the VMs themselves for security,
reliability, performance, or in anticipation of load changes.

2. QoS vs. Cost: The latency is determined by link
utilization. Unlike intra-datacenter LAN links, the WAN links
are expensive and so these often have low bandwidth and high
utilization.

3. Content Sensitive: Forwarding of messages depends
upon the message content. For example, video, accounting,
and data messages for the same service may need to be sent to
servers located in different clouds. Read and write requests
may need to be sent to different servers. Much of this
information belongs to Layer 5-7 headers and may not be
available in Layer 2-4 headers.

4. Distributed Control: While, the application and the
application level information belong to the application service
providers (ASPs), the network belongs to Internet service
providers. ISPs may not have access to L5-7 header and ASPs
sharing a multi-tenant network may not be able to directly
control the forwarding behavior.

5. Massive Scale: The number flows in many of these
global applications can be huge, with each flow requiring a
different forwarding depending on the user context (e.g., Cell
phone users, lap top users, administrators, etc.)

6. Stateful Services: Some middle boxes, e.g., intrusion
detection, are packet level services and not all messages or
packets of a flow need to pass through them. Therefore, the
flows may be diverted around these boxes for better
efficiency. Other middle boxes, such as firewalls, are stateful
and need to see all the packets of the flow. These flows should
always be sent to the same VMs.

V. GENERALIZATION OF NFV CONCEPTS TO OTHER
ENTERPRISES

It should be pointed out that the NFV concept was
originated by the ISPs. However, the concept is general and
can be used by any other industry. For example, banking
industry could come up with a list of functions that are
commonly used by different banks and could develop a set of

virtual machine implementations of those functions. If ISPs
can solve the problem of service chaining for them, they can
provide it as a service to other industries and help them place
VMs among global clouds that have the required connectivity.

It has been estimated that most (74%) enterprises use more
than one cloud [6]. For the case, where two clouds belong to
the same cloud service provider, the link connecting the two
clouds may be a high-capacity link and a desired share of it
can be allocated to a tenant sharing the two clouds. However,
if the two clouds belong to different cloud service providers,
generally the link connecting the two clouds is limited to the
best effort Internet connection. If the ISPs can come up with
an elastic capacity link creation and allocation methods for
service chaining, these can be used by other enterprises also.

VI. OUR PROPOSED SOLUTION: OPENADN
To solve the problem of service chaining in a multi-cloud

environment, we have developed a platform that we call
“OpenADN.” As shown in Fig. 3, on the north side, it offers
three interfaces – for application developers, application
architects, and application deployment administrators,
respectively. On the south side it has many modules, one for
each of the cloud/network management systems. In the figure,
we have shown OpenStack, EC2, and OpenDaylight as
examples of cloud/network management systems.

Northbound Interface

Cloud
Datacenter

OpenStack EC2OpenDaylight

Enterprise
Datacenter

ISP Network

Virtual
Hosts

Virtual
Network

Virtual WAN
Services

Virtual
Storage

Southbound Interface

Resource Provide

Application
Service Providers

OpenADN Service Conduit
(ASC) abstraction

OpenADN Service Workflow
(ASW) abstraction

OpenADN Application
Cloud (AAC) abstraction

OpenADN Platform

OpenADN Resource
Driver

(OpenStack)

OpenADN Resource
Driver

(OpenDaylight)

OpenADN Resource
Driver
(EC2)

Virtual
Hosts

Virtual
Storage

Virtual
Network

Network POP Micro-
Datacenters

Application Deployment
Administrators

Application
Architects

Application
Service Developers

Fig. 3: OpenADN Platform for Services in a Cloud of Clouds

Notice that the OpenADN architecture has a modular
structure similar to the OpenDaylight SDN controller. The
northbound interface of OpenDaylight becomes one of the
southbound interfaces of OpenADN. While OpenDaylight
allows implementing client policies in one cloud, OpenADN
allows implementing client polices uniformly among all the
clouds.

OpenADN by itself does not meddle with the resources
inside the clouds; it simply requests the respective cloud
manager to create those resources. The polices of when and
where to create the resources are specified by the Application
Deployment Manager.

VII. FEATURES OF OPENADN
OpenADN allows automatic creation and deletion of

application workflows as the load or traffic locality changes.

The inputs to OpenADN are 3 policy modules (currently
specified using XML to be replaced later by web interfaces)
which indicate the resources required by the application (from
Application developers), final configuration including all
middle boxes (from Application Architects), and Workflow
instantiation guidelines (from Application Deployment
Managers). The OpenADN Platform computes the required
virtual resources and creates instructions that are passed on to
the various cloud management systems.

The OpenADN Service Workflow (ASW) abstraction
allows the application architects to specify how the traffic
flows over the application delivery network. The architect can
specify the service chain - chain of the application modules
(servers and middle boxes) that the application traffic will
follow. They can also specify the application level policy
routing (APR) giving rules for classifying packets or messages
and routing them through various modules.

The OpenADN Application Cloud (AAC) abstraction
allows the deployment administrators to specify policies for
creating/using/destroying resources over various clouds. The
rules could be based on usage patterns and current load
distribution of users. The rules also include those for handling
failures and planned maintenance.

Note that the application developers, the architects, and the
deployment managers have a different view of the workflows.
For example while developing a simple web server
application, the developer’s view consists of a client and
server module communicating through a socket interface. The
developers have no idea of the middle boxes that may be
inserted later by the application architects. Similarly, the
architects do not know about the cloud systems on which these
applications will be instantiated. That is the responsibility of
the deployment manager, who balances the required
performance and the associated costs with various cloud
services.

OpenADN supports massively distributed application
deployments using a combination of distributed data plane and
a centralized control plane. The designs of these two planes
are described in the next two sections. The application is
managed from a central global manager shown on the top.

VIII. DESIGN OF THE OPENADN DATA PLANE
The data plane consists of various virtual machines,

storage units, and the network between them. The resources
may belong to several different service providers. The data
plane of OpenADN is called OpenADN. Although the data
plane is fully distributed, OpenADN presents the abstraction
of a single OpenADN Distributed Virtual Switch (ADVS) to
ASPs as shown in Fig. 4. The switch has a varying number of
ports to which various services, middle boxes, and network
components can be connected. Any two modules that need to
communicate are connected by the switch. The connection can
be at the application message level or at the IP packet level.
The switch is fully programmable and the connections are

continuously programmed by the control plane to meet the
requirements of the current context.

Message-level
Middlebox

Service

Application
Server

Packet-level
Middlebox

Service

Web
Server

Storage
Server

Storage
Server

OpenADN Distributed Virtual Switch
(ADVS)

P
ortsP

or
ts

Message/ Packet switching

ADVS Controller

Switch Programming Interface

Fig. 4: OpenADN ADVS Abstraction

OpenADN introduces two shim layers: L3.5 between IP
and transport layer, and L4.5 between transport and
session/application layer. Packet level middle boxes and
services are connected via L3.5 tunnels. Message level
middle boxes and services are connected via L4.5 Tunnels.
The tunnels are nested such that a L4.5 tunnel may have many
intermediate L3.5 tunnel end points.

Fig. 5 shows an example of L3.5 and L4.5 Tunnels. In the
figure, IDS is a packet-level middle box, while the transcoder
is a message level middle box. The connection (tunnel)
between the VM#1 and the transcoder is a L4.5 tunnel. Nested
in this tunnel are two L3.5 tunnels: Tunnel 3a between VM#1
and IDS and Tunnel 3b between IDS and the transcoder.
These tunnels may be implemented over VxLAN tunnels [7]
commonly used in data centers. The VxLAN tunnels
themselves may be over an MPLS transport profile (TP) in the
case of inter-cloud wide-area networks.

Enterprise Data Center

Cloud
Data Center

ISP Network

Layer 2.5
MPLS TP

VxLAN

Layer 3.5
Tunnel 3a

Layer 4.5 Tunnel 4a Layer 4.5
Tunnel 4b

Meta Tag 3

Layer 3.5
Tunnel 3b

TranscoderIDS
ASP

VxLAN

Meta Tag 4

VM #1 VM #2

VxLAN

Proxy Service Web Service

Fig. 5: Layer 3.5 and 4.5 Tunnels

Note that L3.5 and L4.5 meta tags (headers) can be
interpreted only by OpenADN aware services and modules.
Legacy OpenADN-unaware services are supported by
providing “proxy” service modules that add/remove these
shim headers before passing the packets to the legacy services.

IX. DESIGN OF THE OPENADN CONTROL AND MANAGEMENT
PLANE

The control plane is hierarchical with at least two levels of
hierarchy consisting of the global controller and a number of
local controllers. There is a local controller for each cloud and
the network connecting them. The global controller
determines the desired resources and passes the information to
the local controllers that negotiate the resource creation and
deployment with the respective cloud or network service
provider. Each of these local controllers can have another
level of controllers to manage a group of VMs, storage, or
network resources.

Enterprise
Datacenter ISP Network

OpenADN datacenter
controller

OpenADN Global
Controller

OpenADN Global

Manager

OpenADN
inter-datacenter virtual

WAN controller

ISP virtual WAN
network

OpenStack

Virtual
Network

VM
#1 …

OpenADN virtual
compute/storage

controller

VM
#N

OpenADN
virtual network

controller

Cloud
Datacenter

OpenADN datacenter
controller

OpenStack

Virtual
Network

VM
#1 …

VM
#N

OpenADN
virtual networ

controller

OpenADN virtual
compute/storage

controller

OpenADN Data Plane
Lighthouse Control and Management Plane

Fig. 6: Data, Control, and Management Planes of

OpenADN

OpenADN allows multiple tenants to share the service
chaining facilities offered by a service provider. Each tenant
can convey its policies to its global controller which in turn
can communicate with service provider
controllers/management systems via local controllers. Note
that the service provider in this case could be an ISP or a
cloud service provider that provides a multi-cloud application
delivery service.

One of the key features of OpenADN is that the cloud and
Internet service providers keep complete control of their
resources and the tenants have the flexibility to implement
their policies on their virtual resources. The tenants have the
flexibility to locate their middle boxes and VMs anywhere on
the global internet where appropriate computing, storage, and
networking resources are available.

X. OPENADN PROTOTYPE AND VALIDATION
OpenADN prototype has been implemented in C and

Python and currently has over 10,000 lines of code. We have
validated most of the features claimed above using an
emulated Mininet [8] environment. While this environment is
suitable for functional validation, it is not appropriate for
performance measurement since the emulation overhead is
difficult to isolate. So we are transferring the implementation
to non-emulated physical environment suitable for conducting
the performance benchmarking, finding bottlenecks, and

optimizing most used parts of the code. A detailed design of
the system and its benchmarking results are presented in [9].

XI. OPENADN USE CASES
The applications of this technology are numerous. This

solution provides a new business opportunity for ISPs who
can use the technology to provide smart elastic WAN services
to their global clients. By providing WAN links that provide
the capacity and QoS as needed and/or forwarding the flows
as instructed by the ASP, ISPs can provide network services
similar to the compute/storage services provided by the cloud
service providers (CSPs) inside the cloud.

XII. SUMMARY
The key messages of this paper are as follows:

1. The industry is moving towards a modular approach to
SDN with multiple southbound protocols that allow a
uniform implementation of policies on a variety of legacy
and new network devices.

2. Network Function Virtualization (NFV) allows Internet
Service Providers to use standard virtual machine
implementations of various ISP functions, thus allowing
them to get full advantage of cloud computing.

3. Service chaining of VMs distributed in multiple clouds
has several challenges and significantly affects
performance.

4. NFV concept can be extended to other non-ISP
enterprises most of which use multiple clouds from
multiple service providers.

5. The OpenADN platform allows an ISP or a non-ISP
enterprise to use multiple clouds with different cloud
management interfaces and automatically create/delete
workflows as needed.

A brief overview of the OpenADN architecture was
presented in this paper. OpenADN provides uniform and
automated policy implementation over multiple clouds just as
SDN provides policy implementation inside a cloud/data
center. OpenADN interfaces with both cloud management
systems and network SDN controllers (e.g., OpenDaylight).

XIII. REFERENCES
[1] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,

Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69-74, 2008.

[2] M. Smith, M. Dvorkin, Y. Laribi, V. Pandey, P. Garg, N. Weidenbacher,
“OpFlex Control Protocol,” IETF draft-smith-opflex-00, April 2, 2014.

[3] Linux Foundation,”Opendaylight,” http://www.opendaylight.org/
[Online; accessed July 20, 2014]

[4] Open Networking Foundation, "OpenFlow switch specication version
1.4.0, https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
[online; accessed July 20, 2014]

[5] ETSI, “NFV – Update White Paper,” Oct 2013,
http://www.tid.es/es/Documents/NFV_White_PaperV2.pdf [Online
accessed July 20, 2014]

[6] Right Scale, “Cloudcomputing trends: 2014 State of the Cloud Survey,”
April 2, 2014, http://www.rightscale.com/blog/cloud-industry-
insights/cloud-computing-trends-2014-state-cloud-survey [Online
accessed July 20, 2014].

[7] M. Mahalingam, D. Dutt, K. Duda, et al., "Virtual eXtensible Local
Area Network (VXLAN): A Framework for Overlaying Virtualized
Layer 2 Networks over Layer 3 Networks," IETF RFC 7348, August
2014, 22 pp.

[8] Bob Lantz, Brandon Heller, and Nick McKeown, “A network in a
laptop: rapid prototyping for software-defined networks,” In

Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks (Hotnets IX), 2010, Article #19.

[9] S. Paul, G. Vaszkun, R. Jain, et al., “OpenADN: A Platform for Next
Generation Application Delivery over Multi-Cloud Environments,”
Submitted to IEEE Transactions on Cloud Computing, October 2014, 30
pp.

