
Int. J. High Performance Computing and Networking, Vol. 5, Nos. 1/2, 2007 3

Copyright © 2007 Inderscience Enterprises Ltd.

Adaptive multi-level explicit congestion notification

A. Durresi*
Department of Computer and Information Science,
Indiana University Purdue University Indianapolis,
Indianapolis, IN 46202, USA
E-mail: durresi@cs.iupui.edu
*Corresponding author

M. Sridharan
Department of Computer Science and Engineering,
The Ohio State University,
Columbus, OH 43021, USA
E-mail: sridhara@cse.ohio-state.edu

R. Jain
Department of Computer Science and Engineering,
Washington University in St. Louis,
St. Louis, MO 63130, USA
E-mail: jain@cse.wustl.edu

Abstract: We propose Adaptive Multi-level ECN (AMECN), a new TCP congestion scheme, as
an extension to Multi-level Explicit Congestion Notification (MECN). AMECN allows network
operators to achieve high throughput and low delays. However, AMECN performance depends
its parameter settings and the level of congestion, hence, no guarantees can be given about delay.
To achieve a predictable average delay with AMECN, constant tuning of the parameters to adjust
to current traffic conditions is needed. We show how to tune AMECN parameters. The analysis
of our simulations shows that Adaptive MECN performs better than Adaptive RED.

Keywords: adaptive congestion management; multilevel ECN; TCP congestion control; QoS.

Reference to this paper should be made as follows: Durresi, A., Sridharan, M. and
Jain, R. (2007) ‘Adaptive multi-level explicit congestion notification’, Int. J. High Performance
Computing and Networking, Vol. 5, Nos. 1/2, pp.3–11.

Biographical notes: Arjan Durresi is an Associate Professor of Computer Science at Indiana
University Purdue University Indianapolis. His current research interests include network
architectures, heterogeneous wireless networks, security, QoS routing protocols, traffic
management, optical and satellite networks, multimedia networking, performance testing and
bioinformatics. He has authored more than 100 papers in refereed journals and international
conference proceedings. He is on the editorial boards of Ad Hoc Networks Journal (Elsevier),
Journal of Ubiquitous Computing and Intelligence and Informatica – International Journal of
Computing and Informatics.

Mukundan Sridharan is currently a Research Assistant for the Dependable Distributed and
Networked Systems Lab and is pursuing his PhD Degree in The Ohio State University.
His research interest includes wireless and sensor networks, internet measurements, video
conferencing and congestion control.

Raj Jain is a Professor of Computer Science and Engineering at Washington University
in St. Louis. He is a fellow of IEEE, a fellow of ACM. He has 14 patents, more than 40 journal
and magazine papers, and more than 60 conference papers. His papers have been widely
referenced and he is known for his research on congestion control and avoidance, traffic
modelling, performance analysis and error analysis.

4 A. Durresi, M. Sridharan and R. Jain

1 Introduction

End-to-end congestion control schemes continue to
be one of the main pillars for internet robustness, as
shown by Floyd and Fall (1999). Nevertheless, congestion
remains the main obstacle to QoS on the internet. Although
a number of schemes have been proposed for network
congestion control, the search for new schemes continues
(Ramakrishnan and Floyd, 1999; Floyd and Jacobson, 1993;
Clark and Fang, 1993; Feng et al., 1999; Kalyanaraman
et al., 2000; Floyd and Fall, 1997, 1999; Mathis et al., 1996,
1997, 1997; Chiu and Jain, 1989; Floyd and Henderson,
1999; Ramakrishnan and Jain, 1990; Jain et al., 1994,
1994b; Athuraliya et al., 2001; Hollot et al., 2001;
Katabi et al., 2002; Wang et al., 2004; Wei et al., 2006;
King et al., 2005; Low et al., 2005; Wu and Rao, 2005).
A survey of various congestion control schemes proposed
for use in routers can be found in Low et al. (2002) and
Medina et al. (2005).

The research in this area has been going on for at least
two decades. There are two reasons for this. First, there are
requirements for congestion control schemes that make it
difficult to get a satisfactory solution. Second, there are
several network policies that affect the design of a
congestion scheme. Thus, a scheme developed for one
network, traffic pattern, or service requirements may not
work on another network, traffic pattern, or service
requirements.

The proposed solutions expand over a wide spectrum of
improvements. At one end of this spectrum there are
simpler, more incremental and more easily employable
changes to the current TCP. Examples of such proposed
solutions are RED (Floyd and Jacobson, 1993) and Explicit
Congestion Notification (ECN) (Ramakrishnan and Floyd,
1999). At the other end of the spectrum, there are solutions
with more powerful changes that result in new transport
protocols with higher performance but with less chance to
be deployed in a large scale on the Internet at least in the
immediate future. An example of such solution is XCP
(Katabi et al., 2002). Other proposals, such as REM
(Athuraliya et al., 2001), Proportional Integral Controller
(Hollot et al., 2001), HighSpeed TCP (Floyd, 2003),
Quick Start TCP (Floyd et al., 2006) reside along the
simplicity-deployability spectrum. At the end the choice
among all these solutions depends on the tradeoff between
performance and practical use that will better fit the internet.
Because of the size and multidimensional complexity of the
internet, the robustness in heterogeneity is valued over
efficiency of performance, which leads to favour evolution
compared to revolution of changes. For this reason, in our
solution we propose minimal changes to ECN and try to
derive the maximum performance improvements out of
them.

Among the congestion control schemes, the ‘de facto’
standard and the most used are the RED/ECN class of
algorithms. In ECN, a bit in the IP header is set when the
routers are congested. It is shown in Ramakrishnan et al.
(2001) that ECN performs better than RED and it was made
standard by IETF in 2001. ECN is much more powerful

than the simple packet drop indication used by existing
routers and is more suitable for high distance-bandwidth
networks. Hence it becomes imperative that we explore the
possibilities of utilising the ECN framework to the fullest.
We proposed in Durresi et al. (2001) a new scheme called
the MECN, which works with the framework of ECN, but
uses the two bits allocated for ECN, in the IP to indicate
four different levels of congestion, to the source. But just
like RED (Floyd and Jacobson, 1993), MECN’s average
queue is also sensitive to parameter setting and the level of
congestion. The average queuing delay is a very important
parameter for QoS applications. Therefore, setting the
parameters of MECN is very critical in maintaining a
constant delay at the routers, which is a must to guarantee a
given QoS to the end users. In this paper we propose an
Adaptive version of MECN, which sets its parameters
automatically and adapts its maximum marking probability
to keep the average queuing delay constant. We compare the
performance of Adaptive MECN (AMECN), to that of
Adaptive Random Early Detection (ARED) and MECN and
show that the first outperforms the other two schemes.
In Section 2, we give a brief introduction to the MECN
protocol. In Section 3, we introduce the Adaptive Multilevel
ECN protocol and give some guidelines on setting the
parameters. We prove using simulations using the ns
Network Simulator (2007), that AMECN performs better
than MECN and Adaptive RED in Section 4. In Section 5,
we present the conclusions of our research.

2 Brief introduction to MECN

2.1 Marking bits at the router

The current proposal for ECN (Ramakrishnan et al., 2001)
uses two bits in the IP header (bits 6 and 7 in the TOS octet
in IPv4, or the Traffic class octet in IPv6) to indicate
congestion. The first bit is called ECT (ECN-Capable
Transport) bit. This bit is set to 1 in the packet by the traffic
source if the source and receiver are ECN capable.
The second bit is called the CE (congestion Experienced)
bit. If the ECT bit is set in a packet, the router can set the
CE bit in order to indicate congestion. The two bits
specified for the purpose of ECN can be used more
efficiently to indicate congestion, since using two bits we
can indicate four different levels. If non ECN-capable
packets are identified by the bit combination of ‘00’,
we have three other combinations to indicate three
levels of congestion. In our scheme the bit combination
‘01’ – indicates no congestion, ‘10’ – indicates incipient
congestion and ‘11’ – indicates moderate congestion. Packet
drop occurs only if there is severe congestion in the router
and when the buffer over flows. So with packet-drop we
have four different levels of congestion indication and
appropriate action could be taken by the source TCP
depending on the level of congestion. The four levels of
congestion are summarised in Table 1. The marking of CE,
ECT bits is done using a multilevel RED scheme. The RED
scheme has been modified to include another threshold

 Adaptive multi-level explicit congestion notification 5

called the midth, in addition to the minth and maxth.
If the size of the average queue is in between minth and
minth, there is incipient congestion and the CE, ECT bits are
marked as 10 with a maximum probability of P1max. If the
average queue is in between midth and maxth, there is
moderate congestion and the CE, ECT bits are marked as 11
with a maximum probability P2max. If the average queue
is above the maxth all packets are dropped. The packet
dropping policy of RED is shown in Figure 1. The modified
packet marking/dropping policy of MECN (Durresi et al.,
2001) is shown in Figure 2. We would like to stress that the
major advantage of MECN compared to other congestion
management schemes is that it conveys more accurate
feedback information about the network congestion status
than the current ECN. We have designed, as shown in
Section 2.3, a TCP source reaction that takes advantage of
the extra information provided about congestion. This is the
reason why MECN responds better to congestion by
allowing the system to reach faster the stability point, which
results in better network performance as shown in later in
our results in this paper.

Table 1 Router response to congestion: probabilistic marking
of CE and ECT bits and packet dropping

Congestion state CEbit ECTbit

No congestion 0 1
Incipient congestion 1 0
Moderate congestion 1 1
Severe congestion Packet Drop

Figure 1 Probabilities of marking packets in RED

Figure 2 Probabilities of marking packets for MECN

2.2 Feedback from receiver to sender

The receiver reflects the bit marking in the IP header, to the
TCP ACK. Since we have three levels of marking instead of
two-level marking in the traditional ECN, we make use of

three combination of the 2 bits 8, 9 (CWR, ECE) in the
reserved field of the TCP header, which are specified for
ECN. Right now the bit combination ‘00’ indicates no
congestion and ‘01’ indicates congestion. And in
piggybacked acknowledgements, ‘10’ and ‘11’ indicated
non-congestion and congestion, with the receiver source
indicating that the congestion window has been reduced.
In our scheme, if the source has to indicate that the
congestion window has been reduced then, the congestion
information has to wait for the next packet. In this case the
congestion information is ignored. But this will not cause
any major problems to the scheme because, if the
congestion is persistent then a lot of packets are going to get
marked and the received source will eventually get the
congestion information. So in the new scheme, ‘00’ will
indicate congestion window reduced, ‘01’ will indicate no
congestion, ‘10’ will indicate mild congestion and ‘11’ will
indicate heavy congestion. The packet drop is recognised
using traditional ways, by timeouts or duplicate ACKs.
The marking in the ACKs CWR, ECE bits is shown in
Table 2.

Table 2 End host reflecting congestion information: marking
of CWR and ECE bits

Congestion state CWRbit ECEbit

Congestion window reduced 0 0
No congestion 0 1
Incipient congestion 1 0
Moderate congestion 1 1

2.3 Response of TCP source

We believe that the marking of ECN should not be treated
as the same way as a packet drop, since ECN indicates just
the starting of congestion and not actual congestion and the
buffers still have space. And now with multiple levels of
congestion feedback, the TCP’s response needs to be
refined. We have implemented the following scheme: When
there is a packet-drop the cwnd is reduced by β3 = 50%.
This done for two reasons: First, a packet-drop means
severe congestion and buffer overflow and some severe
actions need to be taken. Second, to maintain backward
compatibility with routers which do not implement ECN.
For other levels of congestion, such a drastic step as
reducing the cwnd as half is not necessary and might make
the flow less vigorous. When there is no congestion, the
cwnd is allowed to grow additively as usual. When
the marking is ‘10’ (incipient congestion), cwnd is
decreased by β1%. When the marking is 11 (moderate
congestion) the cwnd is decreased multiplicatively not
by a factor of 50% (as for a packet drop), but by a factor
β2% less than 50% but more than β1%. In Table 3 are
shown the TCP source responses and the value of
βs we have implemented. Another method could be to
decrease additively the window, when the marking
is ‘10’ (incipient congestion), instead of maintaining the
window.

6 A. Durresi, M. Sridharan and R. Jain

Table 3 TCP source response

Congestion state CWND change

No congestion Increase ‘cwnd’ additively
Incipient congestion Decrease by β1 = 20%
Moderate congestion Decrease by β2 = 40%
Severe congestion Decrease by β3 = 50%

If the average queue length is less than midth, then the
modified-TCP congestion windows corresponding to the
marks ‘10’ keep increasing by 1 every round-trip time in
congestion avoidance mode, thus linearly increasing the
sending rates of these flows. Consequently, the average
queue length will keep increasing unless some marks ‘11’
are received by the sources, which correspond to operating
in the region where the average queue length is larger than
midth. We can thus conclude that the steady-state average
queue length is larger than midth.

3 Adaptive MECN

3.1 Motivation

In Adaptive MECN, the objective is to maintian the queue
near the targetqueue. If the average queue does not vary and
remains constant at targetqueue, then the probability of
packet drop/mark will remain fixed. Let this probability be
Ptarget. We set the targetqueue to be in between minth and
midth. Hence only the first probability curve will be active,
in this region. Hence the probability Ptarget, is given by
equation (1):

max
target (Averagequeue min).

max min th
th th

P
P = ¥ -

-
 (1)

Since in the above equation, Ptarget, minth, maxth are all
constant, we can say that,

max

1 .Averagequeue
P

a (2)

In any network, we do not have the control over the traffic
and the average queue increases or decreases with the load
(as shown in Section 4.2). But the aim is to have the
Averagequeue, always equal to the targetqueue. Hence if
the Avgqueue, is greater than targetqueue, at any instant, we
need to increase Pmax which would decrease the Avgqueue
so that it becomes equal to targetqueue and if the Avgqueue,
is less than targetqueue, at any instant, we need to decrease
Pmax, to allow the queue, to grow, which would give a better
throughput. Thus to keep a constant queue we need to adapt
the Pmax.

Also we need to set the other parameters like wq, maxth,
midth and minth automatically.

The above discussion, leads us to the conclusion on the
requirement of AMECN algorithm; Adapt Pmax in response
to measured queue lengths and set wq, maxth, midth and minth
automatically, based on the link speed and target queue.

3.2 Algorithm

The overall Adaptive MECN, which was implemented has
the following features:

• Pmax is adapted to keep the average queue size with a
target range half way between minth and maxth.

• Pmax is adapted slowly, over time scales greater than a
typical round-trip time and in small steps. The time
scale is generally 5–10 times the typical round- trip
time of the network.

• Pmax is constrained to remain with the range of
[0.01, 0.5].

• Instead of multiplicately increasing and decreasing
Pmax, we use Additive-Increase Multiplicative-Decrease
(AIMD) policy.

The algorithm for Adaptive MECN is given in Figure 3.

Figure 3 The Adaptive MECN algorithm

The guideline of adapting Pmax slowly and infrequently
allows the dynamics of MECN – of adapting the
packet-dropping probability in response to changes in the
average queue size – to dominate on smaller time scales.
The ad-pation of Pmax is invoked only as needed over
longer time scales. This time period is set as 0.5 seconds,
which in comparable to RTT (around five times the RTT,
since average RTT of terrestrial networks is approximately
100 ms).

The robustness of Adaptive MECN comes from its slow
and infrequent adjustment of Pmax. The price of this slow
modification is that after a sharp change in the level of
congestion, it could take sometime, before Pmax adapts to its
value. But also adapting α and β makes this process
faster and decreases the response time of the system.

 Adaptive multi-level explicit congestion notification 7

Hence AMECN has better sensitivity than its RED
counterpart ‘Adaptive RED’.

3.3 Setting the parameters

3.3.1 The range for Pmax

The upper bound of 0.5 on Pmax can be justified because,
when operating under the gentle mode, this would mean that
the packet drop rate varies from 0 to Pmax, when average
queue varies from minth to maxth (or midth to) and varies
from Pmax to 1.0, if queue changes from to 2 × maxth.

For scenarios with very small drop rates, MECN will
perform fairly robustly with Pmax set to the lower bound
0.01, and no one is likely to object to an average queue size
less than the target range.

3.3.2 Parameters α and β

It takes 0.49/α intervals for Pmax to increas form 0.01 to 0.5;
this is 24.5 seconds, if α is set as 0.01 (as recommended in
Floyd et al. (2001)). Similarly, it takes at least log 0.02/β
intervals for Pmax to decrease form 0.5 to 0.01; with the
default values, which is 20.1 seconds. Therefore if there is a
sharp change in the router load, then it may take as long as
24.5 seconds for the average queue to reach the target range.
This time is really a long time in network. Hence we believe
that α and β should also be adapted, according to the
position of the average queue, with respect to the target
queue. So the value of α and β are also recalculated every
0.5 seconds when the Pmax calculation is done. Taking the
recommendation form (Floyd et al., 2001), that (3 > 0.83,
we scale the value of β from 0.83–1.0 when average queue,
varies from 0 to target queue Thus use the formula given
below to adapt β.

1 (0.17 (target avg) /(target min)).b = - ¥ - - (3)

Setting α again the recommendation form Floyd et al.
(2001) are incorporated which says α < 0.25 × Pmax. So we
scale α such that it varies from 0 to 0.25 × Pmax, when
average queue varies form target to 0.

Thus formula we use to adapt α is

max0.25 (0.17 (avg target) / target) .Pa = ¥ ¥ - ¥ (4)

3.3.3 Setting midth, maxth

To reduce the need for other parameter-tuning, we also
give some guidelines for setting the midth, maxth and wq.
The maxth is set to three times the minth as recommended in
Floyd (1997). In this case the target average queue size is
centred around 2 × minth. We believe that, the target queue
should be kept in the low congestion region (i.e., between
minth and midth), to maximise the throughput, but at the
same time the midth should not be too far from
the targetqueue, so that when the average queue rises above
target, a quick response to congestion is achived, when the
second probability curve, comes into action. This belief, led

us to setting the midth slightly above the targetqueue.
Thus midth was set at 2.25 × minth (targetqueue = 2 × minth).

The guidelines for setting wq given in Floyd and
Jacobson (1993), are used. From Floyd and Jacobson
(1993), if the queue size changes from one value to another
it takes –1/ln(1 – wq) packet arrivals for the average queue
to reach 63% of the way to the new value. Thus we refer to
–1/ln(1 –wq) as the time constant of the estimator for the
average queue size. Following the approaches in Jacobson
et al. (1999) and Ziegler et al. (2001), in automatic mode we
set wq as a function of the link bandwidth. For MECN in
automatic mode, we set wq to give a time constant for the
average queue size estimator of one second. Thus we set

11 exp
rq C

w -Ê ˆ= - Á ˜Ë ¯
 (5)

where C is the link capacity in packets/second, computed
for packets of the specified default size.

4 Simulations and results

4.1 NS simulation configuration

This section illustrates the general simulation configuration
we used for our simulations. Figure 4, shows the dumpbell
configuration. A Number of sources S1, S2, S3, …, Sn are
connected to a router R1 through 10 Mbps, d ms delay links.
Router R1 is connected to R2 through a 1.5 Mbps, 40 ms
delay link and a number of destinations D1, D2, D3, …, Dn
are connected to the router R2 via 10 Mbps 4 ms delay links.
The link speeds are chosen so that congestion will happen
only between routers R1 and R2 where our scheme is tested.
An FTP application runs on each source. Reno-TCP is used
as the transport agent. (The modifications were made to the
Reno-TCP.) The packet size is 1000 bytes and the
acknowledgement size is 40 bytes. The number of sources is
varied to alter the congestion level. The RTT of the flows
can be varied by varying the delay d between the source and
router R1.

Figure 4 Dumb-bell network configuration for ns simulations

4.2 Illustrating MECN’s varying queue size
and AMECN’s stability

Here we investigate how MECN and Adaptive MECN
respond to a rapid change in the congestion level.
The simulations presented here illustrate MECN’s dynamic

8 A. Durresi, M. Sridharan and R. Jain

of the average queue size varying with the congestion level,
resulting from MECN’s fidex mapping from the average
queue size to the packet dropping probability. For Adaptive
MECN, these simulations focus on the transition period
from one level of congestion to another.

These simulations use a simple dumbbell topology
with a congested link of 1.5 Mbps. The buffer accomdates
40 packets. In all simulations wq is set to 0.0027, minth is set
to 5 packets, midth is set to 10 packets and maxth is set to
15 packets.

For the simulation in Figure 5, the forward traffic
consists of two long-lived TCP flows, and the reverse traffic
consists of one long-lived TCP flow. At time 25, 20 new
flows start, one every 0.1 seconds, each with a maximum
window of 25 packets. This illustrate the effect of a sharp
change in the congestion level. The graph in Figure 5
illustrates non-adaptive MECN, with the average queue size
changing as a function of the packet drop rate. The dark line
shows the average queue size as estimated by MECN, and
the dotted line shows the instantaneous queue.

Figure 5 MECN with increase in congestion

The graph in Figure 6 shows the same simulation using
Adaptive MECN. Adaptive MECN shows a similar sharp
change in the average queue size at time 25. However, after
roughly 15 seconds, Adaptive MECN has brought the
average queue size back to the target range, between 9 and
12 packets. The simulation with Adaptive MECN shown in
Figure 6, have a slightly higher throughput than the one
with MECN shown in Figure 5 (96.3% instead of 94.5%), a
slightly lower overall average queue size and a smaller
packet drop rate. The simulations with Adaptive MECN
illustrate that it is possible, but adapting Pmax, to control the
relationship between the average queue size and the packet
dropping probability and thus maintain a steady average
queue size in the presence of traffic dynamics.

Figure 7 shows a similar simulation with 20 news flows
starting at time 0 and stopping at time 25. The simulations
with the MECN in Figure 7 shows the decrease in the
average queue size as the level of congestion changes at
time 25. Figure 8 shows the corresponding simulation for
Adaptive MECN, which has a similar decrease in traffic at
time 25, but with 15 seconds Adaptive MECN has brought
the queue back to the target range. The simulation with

Adaptive MECN shown in Figure 8, has a slightly
higher throughput to that of MECN shown in Figure 7
(94.5% instead of 93.4%).

Figure 6 AMECN with increase in congestion

Figure 7 MECN with decrease in congestion

Figure 8 AMECN with decrease in congestion

4.3 Comparison with adaptive RED

4.3.1 Dumb-bell topology
The Adaptive MECN algorithm, is closely modelled after
the Adaptive RED Floyd et al. (2001) algorithm and hence
it become imperative that we compare the performance of
AMECN with ARED. Adaptive RED, is the adaptive
version of RED, where the Pmax is adapted to keep the

 Adaptive multi-level explicit congestion notification 9

average queue, with the target range. The difference
between ARED and AMECN, is that in AMECN we use
multiple level of congestion feedback and adapts also the
parameters α and β, whereas in ARED we use binary
congestion feedback and uses static α and β.

Figures 9 and 10 shows a set of simulations with a
single congested link in a dumbbell topology shown in
Figure 4, with 100 long-lived TCP flows. The flows have
a RTT which varies from 100 ms to 150 ms and the
simulations include web traffic and reverse path traffic.
The congested link has a capacity of 7 Mb. Each point
shown in the results is from a single simulation, with the
x-axis showing the average queuing delay in packets over
the second half of the 100-second simulation and the y-axis
showing the link utilisation over the second half of the
simulation. The simulations were carried out for both
AMECN and ARED, for different target delays. Figure 9
shows the Link Efficiency vs. the Avergae Delay in the
router, for both ARED and AMECN and Figure 10 shows
the plot between the Target delays and the actual Measured
Delay. We see that while both the schemes confirms very
closely to the given target delay, AMECN gives better
throughput for a given average delay. Hence AMECN gives
higher throughput for a given targetdelay than ARED and a
lesser delay for a given Link Efficiency.

Figure 9 Throughput vs. average delay for dumb-bell
configuration

Figure 10 Measured delay vs. target delay for dumb-bell
configuration

4.3.2 Multiple congested gateways

This simulation configuration is used to study the
effect of the algorithm on Multiple Congested Gateways.
The configuration is show in Figure 11. Its a typical
parking lot configuration. Different flows in the network,
travel for different lengths. There are four routers in the
network, R0–R3. At routers R0 and R1 20 flows enter the
network and leave at R3. In addition 20 flows exist between
each of these pairs of nodes R0–R1, R1–R2 and R2–R3.
We intend to show that a system which uses AMECN on all
routers has a better overall throughput than a system which
uses ARED.

Figure 11 Simulation configuration for multiple congested
gateways

The throughput is measured by measuring the throughput
of all the individual flows and the then adding them up.
The queuing delay is got by measuring the average
queuing delay of each link over the simulation
period and then summing up the queuing delay of the three
links.

Figure 12 shows the results of a set of simulation, for
target queues for both AMECN and ARED. The target
queues were set same on all three links. The simulation
was run for 100 secs and the results were averaged over the
last 50 secs. As we can see the AMECN gives better
overall throughput than ARED, even in the multiple
congested case.

Figure 12 Throughput vs. average delay for multiple congested
links

10 A. Durresi, M. Sridharan and R. Jain

5 Conclusions and future work

In this paper, we presented the Adaptive MECN
scheme, which adapts the MECN parameter Pmax and
automatically sets the MECN parameters wq, midth and
maxth. The AMECN, maintains a buffer queue, which is set
according to the delay requirements of the users. The choice
of the target queue size, is a trade-off between the link
utilisation and delay. We show with our simulations that
AMECN has better delay and throughput performances than
Adaptive RED. We are currently working on developing a
control theory model for AMECN.

Acknowledgement

This research work has been partially supported by
National Science Foundation Awards NSF-CNS-9980637
and NSF-CNS-0413187.

References
Athuraliya, S., Li, V.H., Low, S.H. and Yin Q. (2001)

‘REM: active queue management’, IEEE Network, May–June,
Vol. 15, No. 3, pp.48–53.

Chiu, D. and Jain, R. (1989) ‘Analysis of the increase/decrease
algorithms for congestion avoidance in computer networks’,
Journal of Computer Networks and ISDN Systems, Vol. 17,
No. 1, July, pp.1–14.

Clark, D.D. and Fang, W. (1993) ‘Explicit allocation of best-effort
packet delivery service’, IEEE/ACM Transactions on
Networking, Vol. 6, No. 4, pp.362–373.

Durresi, A., Sridharan, M., Liu, C., Goyal, M. and Jain R. (2001)
‘Traffic management using multilevel explicit congestion
notification’, Proceedings of the 5th World MultiConference
on Systemics, Cybernetics and Informatics SCI’2001, ABR
over the Internet, July, pp.12–17.

Feng, W., Shin, K.S., Kandlur, D.D. and Saha, D. (2002)
‘The BLUE active queue management algorithms’,
IEEE/ACM Transactions on Networking, Vol. 10, No. 4,
pp.513–528.

Floyd, S. and Henderson, T. (1999) The NewReno Modification to
TCP’s Fast Recovery Algorithm, RFC 2582, April.

Floyd, S. and Jacobson, V. (1993) ‘Random early detection
gateways for congestion avoidance’, IEEE/ACM Transactions
on Networking, Vol. 1, No. 4, pp.397–413.

Floyd, S. (1997) RED: Discussions of Setting Parameters,
http: //www. aciri.org/floyd/REDparameters.txt, November.

Floyd, S. (2003) ‘HighSpeed TCP for large congestion windows’,
ACM CCR, RFC 3649, December.

Floyd, S. and Fall, S. (1993) ‘Random early detection gateways
for congestion avoidance’, IEEE/ACM Transactions on
Networking, Vol. 1, No. 4, pp.397–413.

Floyd, S. and Fall, S. (1997) Router Mechanisms to Support
End-to-end Congestion Control, cite-seer.nj.nec.com/floyd97
router.html.

Floyd, S. and Fall, S. (1999) ‘Promoting the use of end-to-end
congestion control in the internet’, IEEE/ACM Transactions
on Networking, Vol. 7, No. 4, pp.458–472.

Floyd, S., Gummadi, R. and Shenker, S. (2001) Adaptive RED:
An Algorithm for Increasing the Robustness of RED,
http://citeseer.nj.nec.com/floyd01adaptive.html.

Floyd, S., Allman, M., Jain, A. and Sarolahti, P. (2006)
‘Quick-Start for TCP and IP’, IETF INTERNET-DRAFT
draft-ietf-tsvwg-quickstart-07.txt, October.

Hollot, C.V., Misra, V., Towsley, D. and Gong, W. (2001)
‘On designing improved controllers for AQM routers
supporting TCP flows’, Proceedings of IEEE Infocom
2001, Anchorage, Alaska, USA, April 22–26, Vol. 3,
pp.1726–1734.

Jacobson, V., Nichols, K. and Poduri, K. (1999) RED in a
Different Light, http://citeseer.nj.nec.com/j acobson99red.
html.

Jain, R., Kalyanaraman, S. and Viswanathan, R. (1994)
‘Rate based schemes: mistakes to avoid’, ATM Forum/
94-0882, September, http://www.cs.wustl.edu/_jain/atmf/ftp/
af9409-mistakes.txt.

Kalyanaraman, S., Jain, R., Fahmy, S., Goyal, R. and
Vandalore, B. (2000) ‘ERICA switch algorithm for
ABR traffic management in ATM networks’,
IEEE/ACM Transactions on Networking, Vol. 8, No. 1,
pp.87–98.

Katabi, D., Handley, M. and Rohrs C. (2002) ‘Internet
congestion control for future high bandwidth-delay product
environments’, Proceeding of ACM SIGCOMM 2002,
Pittsburgh, PA, USA, August, pp.69–102.

King, R., Riedi, R. and Baraniuk, R. (2005) ‘TCP-Africa:
an adaptive and fair rapid increase rule for scalable TCP’,
Proceeding of IEEE Infocom 2005, Barcelona, Spain, Vol. 3,
March 13–17, pp.1838–1848.

Low, S., Andreq, L. and Wydrowski, B. (2005) ‘Understanding
XCP: Equilibrium and Fairness’, Proceeding of IEEE
Infocom 2005, Barcelona, Spain, Vol. 2, March 13–17,
pp.1025–1036.

Low, S.H., Paganini, F. and Doyle, J.C. (2002) ‘Internet
congestion control’, IEEE Control Systems Magazine,
Vol. 22, pp.28–43.

Mathis, M., Semke, J. and Mahdavi, J. (1997) ‘The macroscopic
behavior of the TCP congestion avoidance algorithm’,
ACM SIGCOMM Computer Communications Review,
Vol. 27, No. 3, pp.67–82.

Mathis, M., Mahdavi, J., Floyd, S. and Romanow, A. (1996)
‘TCP selective acknowledgement options’, RFC 2018,
October, http://www.ietf.org/rfc/rfc2018.txt.

Medina, A., Allman, M. and Floyd, S. (2005) ‘Measuring the
evolution of transport protocols in the internet’, A CM CCR,
Vol. 35, No. 2, April, pp.37–52.

Network Simulator (2007) NS-2 Network Simulator,
http://www.isi.edu/nsnam/ns/.

Ramakrishnan, K. and Floyd, S. (1999) ‘A proposal to add explicit
congestion notification (ECN) to IP’, RFC 2481, January,
http://www.faqs.org/rfcs/rfc2481.html.

 Adaptive multi-level explicit congestion notification 11

Ramakrishnan, K., Floyd, S. and Black, D. (2001)
‘A proposal to add explicit congestion notification (ECN) to
IP’, IETF RFC 3168, September, http://www.faqs.org/rfcs/
rfc3168.html.

Ramakrishnan, K.K. and Jain, R. (1990) ‘A binary feedback
scheme for congestion avoidance in computer networks’,
ACM Transcations on Computer Systems, Vol. 8, No. 2, May,
pp.158–181.

Wang, C., Li, B., Hou, Y.T., Sohraby, K. and Lin, Y. (2004)
‘LRED: a robust active queue management scheme based
on packet loss ratio’, Proceedings of IEEE Infocom 2004,
Hong Kong, March 7–11, Vol. 1, pp.1–12.

Wei, D.X., Jin, C., Low, S.H. and Hegde, S. (2006) ‘FAST
TCP: motivation, architecture, algorithms, performance’,
IEEE/ACM Transactions on Networking, Vol. 14, No. 6,
pp.1246–1259.

Wu, Q. and Rao, N.S.V. (2005) ‘A class of reliable UDP-based
transport protocols based on stochastic approximation’,
Proceeding of IEEE Infocom 2005, Barcelona, Spain, Vol. 2,
March 13–17, pp.1013–1024.

Ziegler, T., Fdida, S. and Brandauer, C. (2001) Stability Criteria
for RED with Bulk-data TCP Traffic, http://www-rp.lip6.fr/
sf/WebSF/PapersWeb/red.net2000.pdf.

