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Abstract—Network function virtualization (NFV) over multi-

cloud promises network service providers amazing flexibility in 

service deployment and optimizing cost. Telecommunications 

applications are, however, sensitive to performance indicators, 

especially latency, which tend to get degraded by both the 

virtualization and the multiple cloud requirement for widely 

distributed coverage. In this work we propose an efficient 

framework that uses the novel concept of random cloud selection 

combined with a support vector regression based predictive 

model for cost optimized latency aware placement (COLAP) of 

service function chains. Extensive empirical analysis has been 

carried out with training datasets generated using a queuing-

theoretic model. The results show good generalization 

performance of the predictive algorithm. The proposed 

framework can place thousands of virtual network functions in 

less than a minute and has high acceptance ratio.  

Keywords—multi-cloud computing; network function 

virtualization; service function chain; virtual network function; 

placement; latency; machine learning; support vector regression 

I. INTRODUCTION 

Network Function Virtualization (NFV) can potentially 
provide the benefits of flexible scaling, redundancy and lower 
total cost of operations. Substantial ground has been covered 
by European Telecommunications Standards Institute (ETSI) 
in terms of exposition and group specifications since the 
release of their first NFV whitepaper in 2012 [1].  Since then 
there has been increasing interest in the research community on 
various aspects of NFV. Most carrier networks have wide area 
and need to use multiple clouds. However, as mentioned in [2], 
the proposed solutions do not offer real support for some of the 
core requirements. When it comes to extracting carrier grade 
performance from NFV, especially in multi-cloud 
environments, much is still to be done [3], [4]. Two main areas 
where NFV falls short compared to traditional networks are 
capacity and performance. In this work we focus on 
performance, a major issue in telecommunications networks 
that require control over parameters like latency, jitter and 
packet loss and uptime of the order of five nines (downtime of 
just 26 seconds downtime in 30 days). Performance takes a hit 
when the dynamic telecommunications environment meets the 

ease of creation, destruction, migration and scaling of NFV as 
the possibility of uncontrolled virtualization increases. This has 
led the authors in [5] to comment that virtualization may lead 
to abnormal latency variations and significant throughput 
instability irrespective of utilization.  

Cloud computing and NFV have a natural synergy and it is 
expected that industry standard IT cloud technologies, will 
evolve to support the requirements of telecommunications 
networks [6]. With multi-cloud infrastructure, the 
telecommunications service providers (TSPs) can take the 
advantage of competitive pricing, better points of presence, 
flexibility of scaling and avoiding single point of failure (In 
this paper, reference to the term TSP also includes the ISPs, the 
Internet service providers). In their infrastructure overview 
ETSI has indicated latency and throughput requirements as the 
discouraging factors for use of public clouds. Several ITU 
recommendations, viz., G.107, G.109, G.113, G.114, define 
standards of various aspects of latency for carrier-grade mobile 
and fixed telephony.  

The Cloud Service Providers (CSPs) have to reconcile the 
conflicting requirements of high utilization of physical 
infrastructure with the desired network performance and 
optimize the cost of eventual placement. The proposed cost 
optimized latency aware placement (COLAP) framework 
implements two major concepts: 1) A fast algorithm 
implementing randomized selection of clouds for optimum 
cost, and 2) heuristics for placement using predictive 
containment of latency based on the machine learning 
technique of support vector regression (SVR).  

The rest of the paper is organized as follows. Section II 
presents a summary of the related work. In Section III, we 
discuss service chains and their placement in multi-cloud 
infrastructures. The problem description and solution are in 
Section IV. In Section V, we present the evaluation results. 
Finally, Section VI gives summary and ongoing work. 

II. RELATED WORK

Much of the work done on virtual machine placement falls 
into the category of static, reactive and on request from service 
providers [7]. A lot of work in this category involves setting up 
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the problem as an integer linear program (ILP), mixed integer 
linear program (MILP), mixed integer quadratic constrained 
program (MIQCP) or a similar problem with one or more 
objective optimizing resource level parameters like compute 
resource usage, storage usage, power consumption along with 
constraints like capacity and affinity. Since solving the 
placement problem is NP-hard [8], algorithms like greedy 
placement and heuristics like first fit decreasing (FFD), have 
been proposed to limit the time a linear or a quadratic 
programming solution takes to give a reasonable solution. As 
far as the VNF placement over NFV Infrastructure (NFVI) is 
concerned, MILP based solution in [9] takes into account both 
network level parameters (minimization of link utilization, 
latency and traffic flow) and NFVI level metric (minimization 
of computing resources). The authors in [10] have set up the 
problem as MIQCP to obtain a placement scheme for the 
network functions and chaining them together considering the 
limited network resources and functional requirements. 
Optimization of network operation costs and utilization to 
determine required number and placement of VNFs has been 
discussed in [11]. The authors provide dynamic programming 
based heuristic to solve larger instances with 1.3 times the 
optimal solution.  

More recently dynamic and proactive techniques have been 
studied. The authors in [12] have proposed an ILP based 
solution for optimization of the response time. The authors in 
[13] use machine learning based workload prediction to take 
care of delays in place and scaling virtual functions. Of the 
three techniques studied, Support Vector Regression (SVR), 
Neural Networks (NN) and Linear Programming (LP), SVR 
displays superior prediction accuracy in a 9-12 minute window.  
Multi-agent based reinforcement learning approach has been 
presented in [14]. In [15], the authors apply genetic algorithm 
to the placement problem to get an algorithm that is faster 
compared to MILP based solutions and yet provides a good 
solution. Authors in [16] describe an architecture based on an 
orchestrator that ensures the automatic placement of the virtual 
nodes and the allocation of network services on them.  

III. SERVICE CHAIN PLACEMENT ON MULTIPLE CLOUDS 

This section aims at discussing the terminolgy involved in 
and the need for dynamic placement of service function chains 
across mutiple clouds.  

A. Virtual Network Functions and Service Function Chains 

Each network service (NS) is implemented through one or 
more service function chain (SFC). Each SFC consists of basic 
services like routing and middle boxes like firewall 
implemented as virtual network functions (VNF) which are 
chained to process the traffic in a particular way [17]. A VNF 
is software based and can be instantiated on virtual machines 
(VMs) created on commodity servers. Examples are LTE sub-
systems like Internet Multimedia Subsystem (IMS) and Packet 
Gateway (PGW) and network middleware like firewall, load 
balancers and WAN accelerators. A VNF forwarding graph or 
an SFC is a set of VNFs or services with a well-defined 
sequence for the packets to travel.  

vnf1    

vnf2    

vnf3    BRAS 

Aggr Switch 
Core Router Access 

Network 

SFC  for Broadband Service 

Users 

Internet 

 

Fig. 1. Broadband service function chain 

 A Policy is a set of rules that define actions to be taken 
under different conditions. Each policy is implemented as one 
or more service chains [18]. A simple policy could be to 
aggregate the subscriber traffic coming through the access 
network and then route it through the Broadband Remote 
Access Server (BRAS) for billing and accounting before being 
sent through the core router to the Internet. In Figure 1, The 
BRAS is shown to have multiple instances to cater to the 
amount of traffic requiring processing through this function. 

B. Placing Service Chains Across Multiple Clouds 

Upon request from a Telecommunications Service Provider 
(TSP), the Cloud Service Provider (CSP) or a cloud broker 
dimensions the SFC and places the required number of 
instances of VNFs on available clouds. Some services are 
dynamic where the type and number of VNFs would change 
frequently while others may be static where VNFs types may 
remain the same but capacity requirement may change. In 
either case the CSP would have to deal with changes in the 
capacity requirement of VNFs and links between them. If at 
any time the service level agreement (SLA) conditions are 
breached, the CSP has to pay the stipulated penalty. Thus, end-
to-end latency and processing delays need to be continually 
monitored and managed whether the placement is static or 
dynamic. 

Placing service chains as a unit rather than individual 
functions separately yield better results [19]. It gives an 
opportunity to achieve global minima for the parameter being 
optimized when placing a full chain. At the infrastructure level 
inter-VNF communication overheads can be reduced. If 
sufficient resources are not available to implement full service 
chains, then the request is rejected or, if the policy permits, 
degraded service (for instance without a firewall) is provided 
[17], [20].  

A tenant’s profile is specified as <cN, v1, v2 …vm, p> for 
each request. Here v1…vm gives the types of VNFs and order 
of traffic traversal (assuming a linear chain), cN is the native 
cloud through which the traffic enters and p is the desired 
packet rate (packet/second). Other stipulations like cost 
optimization and latency threshold (Lth) are part of the SLA. 
All the requests of the tenant service providers are 
consolidated to calculate the required number of instances of 
each VNF and the inter-VNF links of appropriate capacities. 
The CSPs cloud graph is represented as G=(C, T) where C is 
the set of available clouds c1,c2…ck and T is the set of inter-
cloud links tij, where i≠j, i,j≤k. The cloud broker/cloud service 
provider carries out the task of mapping this chain onto the 



available clouds to achieve optimal results for the tenant 
service provider. In our case, optimality refers to the least cost 
solution that meets the end-to-end latency threshold 
requirement. Other QoS parameters like jitter and packet loss 
can be taken care of in a similar manner. In Fig. 2 we have an 
example of mapping service chains to multiple clouds with 
traffic flowing from different areas through different VNFs. 
The end-to-end latency of the service function chain would 
depend on the placement of the constituent functions. 

 
Fig. 2. Mapping service function chain to multi-cloud 

 

IV. THE NFV PLACEMENT PROBLEM AND THE PROPOSED 

SOLUTION 

Placing network functions and programming network 
flows, in a cost-effective manner, while ensuring acceptable 
end-to-end delays represents an essential step toward enabling 
the use of NFV in production environments [21]. From the 
tenant’s point of view the placement problem boils down to 
placing network functions to meet criteria like cost, jitter, 
packet loss, latency, throughput in services like voice and 
video calls, content delivery, broadband services, carrier 
backbone or a combination of these. The cloud service 
provider would like to minimize the use of resources while 
meeting the tenant’s requirements. A strategy that reconciles 
these requirements is the optimal placement strategy. In this 
work, we discuss a strategy that would primarily optimize cost 
and at the same time keep end-to-end latency below the 
threshold prescribed by the carrier. From the discussion, it will 
become clear that the method would work for other quality of 
service parameters.  

A. Problem Description 

The cost of placing an SFC is a function of the choice of 
clouds and the amount of compute, storage and networking 
resources consumed. Latency depends on a number of factors 
like the state of compute, networking and storage resources, 
installed and used capacities of the servers and the links, 
traffic patterns on the link, the types of functions sharing the 
servers and distance between clouds. All these factors 
constitute the state St of the multi-cloud at time t. The factors 
governing the state may change during the course of the 
system’s operation [16]. The amount of latency introduced in 
a placement by the state of the clouds would, therefore, 
change over time. Given the state St, latency can be calculated 
using assumptions about the type of traffic, e.g., Poisson and 

service times and the queuing discipline. Herein lies our first 

problem. The process of creation of virtual resources to host 
network functions and booting them up takes 15-20 minutes 
[22]. Loading the network function software for various VNFs 
and chaining needs additional time. Placement plan based on 
calculations at time t based on the state St is actually carried 
out at a time t+1. This applies to initial placement as well as 
reconfigurations during operation. Fig. 3 shows a placement 
request for a 5-VNF service chain over four clouds. At the 
time of planning, the calculated end-to-end latency is 20 ms. 
When the actual placement takes place and the VNFs are 
booted up and chained, the actual latency turns out to be 
50ms. This would cause SLA violation right at the inception 
and trigger reconfiguration of the chain. Reconfiguration may 
require migration of virtual network functions and re-chaining 
causing disruption of service. Summing over several service 
chain instantiations, this can lead to a heavy penalty to be paid 
by the cloud service providers and a loss of customers and 
revenue to the communication service provider. This provides 
the motivation for prediction of the state at t+1 so that 
placement remains consistent with the requirements. 
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Fig. 3. Demonstrating need for predictive placement 

The second problem arises from the need to continuously 
keep latency below the specified threshold during operation. 
This may require reconfiguration and change of placement 
(migration). The algorithm should be fast in giving optimum 
SFC placement decisions for carrying out scaling or migration 
decisions to dynamically manage the network. This 
necessitates solving the placement problem fast but the 
problem is NP hard and ILP based solutions may take hours to 
converge to the optimum solution [15].  Hence, in many 
situations they may not be suitable for dynamic placement.  

We need fast methods, for example one producing a 
placement for a 100-function network in the sub-minute 
region, to make dynamic scaling a reality. Machine learning 
based predictive methods would fare well in dynamic situation 
as they work fast and unlike other methods they can capture 
all the known and unknown interacting parameters. The work 
that we report in this paper proves this hypothesis. 



B. Solution to the Placement Problem; the COLAP 

framework 

The proposed COLAP framework has two main 
components: the first component is a random selection 
algorithm for fast selection of the least-cost cloud set and the 
second, an efficient heuristic for lowest cost first (LCF) 
placement within the selected least-cost cloud set taking into 
account the predicted latency values at the expected time of 
placement. The framework provides interfaces for the 
CSP/Cloud-broker and the tenant TSP. It holds in its databases 
the cloud configuration data, tenant’s SLA (including latency 
threshold and cost budgets and tariffs. It takes tenant’s initial 
requests and online requests during operation.  

1) Optimization by random search: Minimization by 

random search has been mathematically studied in [23] and 

has been found to be competitive in many situations. Its 

application in the random cloud selection algorithm has 

proved to be quite efficient in our situation. There are two 

constraints that we are trying to meet simultaneously – cost 

and latency. We are optimizing cost across all clouds and 

trying to keep the latency within threshold (Lth). The usual 

method would be to search for m out of total n clouds (m≤n) 

which give the least total cost and the total latency            . 

Searching for m least-cost clouds, with constrained latencies, 

in an unsorted vector would have worst case time complexity 

of O((mn
2
-m

2
n). For a case of selecting 5 clouds out of 100 we 

end up with about 47,500 iterations. The random selection 

algorithm (Algorithm 1) converges fast and gives the least 

cost with a high accuracy.  

Algorithm 1: RANDOM_SELECTION (C, cv_model, r_clouds ) 

//C: set of available clouds, cv_model: trained model 
init small  //contains the smallest latency cost sum 
init lat  // latency 
init iter //set iterations large enough for convergence 
while (iter) 
 init r_clouds //holds final min cost set of clouds 
 //find a set of m unique clouds 
 while (m_clouds not unique)   

 m_clouds � random set of m clouds from set C 
end while 
//test set r_clouds still has lowest cost and lat≤threshold 
call PREDICT_LATENCY   //uses trained SVR model 

 for k=1,m 
 lat= lat+latk  //initial assessment of total latency 
 cost=cost+costk 
 end for 
 if cost<small 
 small = cost  
 r_clouds�m_clouds 
 end if 
end while    

 
The algorithm selects the desired number of unique clouds by 
repeated random selection always remembering the lowest 
cost cloud-set so far that has total latency below the given 
threshold. When the random selection no longer changes  
(alternatively, a fixed number of iterations can be used based 
on empirical studies), the process terminates and the resulting 
least-cost cloud-set is used for placement of the SFC. The cost 
includes that of cloud resources and inter-cloud links. The link 

costs are usually larger and ensure locality of clouds. This 
total cost and latency are upper bound as not all clouds may be 
required for placement. Our empirical study validates fast 
convergence to the global minimum. In one trial a total of fifty 
experiments were conducted to select the least cost set of five 
clouds out of ten. Each experiment was performed with 1500 
and 1700 iterations. The minimum possible cost was 51 units 
and latency threshold was set at 150 ms. In the former case, 
98% of times the minimum cost of 51 units was reached with 
latency of 137 ms. In the 1700 iteration case, 100% times the 
minimum cost clouds were selected with the latency below the 
threshold. For another trial of 5000 experiments, 50 each with 

the number of clouds increasing from 10 to 100 and iterations 
from 500 to 2000, the convergence rate is shown in Fig. 4. 
Somewhere between 1500 and 2000 iterations the algorithm 
converges to the minimum cost in 100% cases. 
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Fig. 4. Number of convergences in 50 experiments 

2) Predictive placement: At the heart of our framework is 

an intelligent latency prediction module that provides inputs 

for both the initial placement and the scaling functions. The 

main idea is to use a machine learning based predictive 

technique to predict latency at the time when the service chain 

would actually be activated. In the literature, we find use of 

many supervised machine-learning techniques in cloud 

computing settings such as: Artificial Neural Networks 

(ANNs), Bayesian networks, Ensemble classifiers and Support 

Vector Machines (SVMs). The authors in [24] have observed 

in their review that SVM is the best technique for 

classification. Our situation of multi-cloud resources is 

different from the ones studied.  

We worked with a number of methods and find interesting 
results using Support Vector Regression (SVR), which we will 
share in this paper. SVR offers the advantage of unique global 
minimum, shows good generalization properties on real-life 
test data, and handles non-linear functions. Additionally, we 
apply cross-validation (both k-fold and holdout) to make the 
method quite useful [25]. As we shall see shortly, appropriate 
choice of parameters results in predictions with low errors. 
Examination of literature shows that SVR technique has 
proved its superiority in problems like resource prediction, 



performance modeling, cost-effective storage allocation, and 
anomaly detection. Some important aspects of SVR are given 
below for better understanding of its use in COLAP. For a 
more thorough exposure, readers are referred to [26]. 

Let (xi,yi), i=1…n, be sets of data consisting of the 
predictor vectors xi and corresponding labels yi. Each predictor 
vector xi consists of values of ‘d’ selected features that 

together produce a particular label yi. Thus, xi ∈ ℝd 
and yi ∈ ℝ. 

In general, vectors in the training set are assumed to be 
independently and identically distributed from the universal 
dataset. The goal is to find a function f(x) that represents the 

labels yi with a precision of ϵ and is as flat as possible. Since 
data may be noisy, so finding an exact fit makes 
approximation too complex and sensitive to errors. It might 
lead to overfitting. Hence, the use of precision ϵ or the error- 
insensitive tube within which errors are ignored. In the linear 
case f(x) can be written as: 
 

 f(x)=<ω,x>+b where ω ∈ ℝd, b ∈ ℝd
 (1)  

Here, ωωωω  is the learned weight vector in which all the 
learning is concentrated and b is the bias. <.,.> represents the 
dot product. Flatness of the function requires that Euclidean 
norm ||ω||2 be minimized. Minimization of ||ω||2 is equivalent to 
maximization of the margin between the classes in the 
classification case. In the dual form the convex optimization 
problem can be written as: 

Minimize ½ ||ω||2  
Subject to yi-<ω,xi>-b ≤ ϵ  and <ω,xi>+b-yi≤ ϵ (2) 

The ½ in the minimization function comes from the width 
of margin being 2/||ω||. The value of ϵ can affect the number of 
support vectors used to construct the regression function. The 
bigger the ϵ, the fewer support vectors are selected. On the 
other hand, bigger ϵ values result in more ‘flat’ estimates. Such 
a function may, however, not exist, i.e., the convex 
optimization problem may not be feasible. To make the 
constraints feasible slack variables ξ and ξ* are introduced, 
which allows some points to be on the wrong side of the 
dividing plane. The optimization problem now becomes: 

Minimize ½||ω||2 + C Σi
n

=1 (ξ+ξi)  
Subject to yi-<ω,xi>-b ≤ ϵ +ξ and <ω,xi>+b-yi≤ ϵ +ξ*;  ξ, 

ξ
*
≥0 (3) 

The constant C determines the tradeoff between the flatness 
of f and the amount of error allowed above ϵ.  A low C makes 
the decision surface smooth; a high C aims at classifying all 
training examples correctly by giving the model freedom to 
select more samples as support vectors. We choose how 
significantly the misclassifications should be treated and how 
large the insensitive loss region should be, by selecting suitable 
values for the parameters C and ϵ. 

ω can be found by writing the Langrangian function and 
differentiating it with respect to ω. New predictions y’ can be 
found using Langrangian multipliers αi. We need to minimize 
the Langrangian functions with respect to ω, b and ξ and 
maximize with respect to α. This will give values of ω and b. 
y

’=∑(αi++αi-)xi.x
’+b. A set S of Support Vectors xs can be 

created by finding the indices i where 0 < α < C and ξ+ or ξ- = 0 
as the case may be. 

In practice, the data points may not be linearly separable. 
The data x is projected to a higher dimension using function 
ϕ(x). Then we find a linear discriminant function for 
transformed data ϕ(x). The nonlinear discriminant function is 
of the form g(x)=wϕ(x)+w0. Poor generalization and 
computational complexity that may result from projecting data 
to higher dimensionality involves can be avoided through the 
use of a kernel function that maps the input feature space of 
dimension d to a higher dimensional space in which the 
relation becomes linear. xi is implicitly replaced by Φ(xi) by 
carrying out dot product with k<xi,x> = Φ<xi,x>. In our 
studies, we have found that performance of RBF is better than 
the others. This choice is based on the cross validation error in 
our setting. The RBF kernel has the form given below. Here xi 
and xj are two sample feature vectors and ϒ is the parameter 
that sets the spread of the kernel.  

 K(xi,xj)=exp(-ϒ||xi-xj||)       (4) 

Where ϒ is the parameter that sets the spread of the kernel 

a)  Tuning of parameters: One of the advantages of 
SVR is that it has a very few parameter to train. The three 
hyper-parameters that we have focused on are ϵ, C, ϒ. Tuning 
these hyper parameters is one of the main challenges in 
improving the predictive accuracy. The ϒ parameter can be 
seen as the inverse of the radius of influence of samples 
selected by the model as support vectors. When ϒ is very 
small, the model is too constrained and cannot capture the 
complexity or “shape” of the data. If gamma is too large, the 
radius of the area of influence of the support vectors only 
includes the support vector itself and no amount of 
regularization with C will be able to prevent overfitting. The 
constant C determines the tradeoff between the flatness of ‘f’ 
and the amount of error allowed above ϵ.  A low C makes the 
decision surface smooth; a high C aims at classifying all 
training examples correctly by giving the model freedom to 
select more samples as support vectors. Most researchers have 
followed a standard procedure in using a grid search [27] to 
determine the appropriate values. We used grid search with 
cross-validation error as the guiding parameter. Both k-fold 
and 20% holdout methods were used to find the best 
combination of hyperparameters. 

The heuristic for placement works as in Algorithm 2. 
 
Algorithm 2: PLACE_SERVICE_CHAIN (vnf types, demands, traffic) 

Set up cloud data // all ck ∈ C and tk,j ∈  T  

Set up client data // all vi ∈ V 
Call TRAIN_MODEL (predictors, labels,cv_model)   
Latency threshold�Lth 

Cost budget � CB 

NCloud�cN  

vi
c 
� demands 

n�length of the service function chain (number of VNFs) 
native  � true  
if (native==1) 

for vi, i=1,n //place as many VNFs as possible in the native cloud 
if cc

N –cu
N > vi

c // native cloud has unused capacity 
pop vi 

cu
N� cu

N+vi
c     // update capacity 



     else 
break 

     end if 
end for 

end if 

if vnf!=0       // for remaining vnfs 
call RANDOM_SELECTION    //get a set of lowest cost clouds 
sort ascending r_clouds on cost   //r_cloud: set of smallest latency clouds 
while vnf!=0 

 place vnfs  //on sorted clouds 
 update capacity 
 update bandwidth 
 update vnfs_placed status 

end while 
end if 
if all_vnf_placed & latency of chain<Lth & cost of chain<CB 

output placement details 
else  

report failure to place 
end if 
 

TABLE I.  SYMBOL TABLE 

Sym

-bol 

Description Sym-

bol 

Description 

ck Cloud k cN Native cloud 

C Set of all clouds 
available 

vi 
c Capacity demand for VNF i 

tkj Link from cloud k to j n Types of VNFs 

T Set of all inter-cloud 
links 

cc 
N Equipped cap of native 

cloud 

vi 
VNF i cu

N Used cap of native cloud 

V Set of VNFs   

Lth Latency threshold m No of clouds selected 

CB 
Cost budget vi

c Compute capacity required 
for VNF i 

 

 The placement algorithm uses cloud and tenant data as 
input. It is also presumed that a separate module for predicting 
latencies has produced a trained model. The placement 
normally begins with the native cloud (can be overridden by 
setting native = 0). The algorithm accommodates as many 
VNFs/services as possible in the native cloud. For the 
remaining VNFs the SVR module predicts latency of various 
clouds. This algorithm uses Algorithm 1 to select the set of m 
least cost clouds. The number m can be decided to start with 
enough capacity to place all the VNFs. For the least cost set, 
the algorithm calculates the assignment of VNFs in the 
sequence in which they appear in the SFC. The final cost and 
latency is reported. If the clouds are exhausted and placement 
is not completed then failure to place is reported. If this case 
happens frequently then the number m needs to be increased. 

V. EVALUATION OF THE FRAMEWORK 

We have evaluated our framework in two ways: simulation 
using queuing-theoretic model and actual implementation on 
Cloudlab. In both the cases, we generate data that is used for 
training of models using SVR. In this work, we have reported 
results of the models trained with datasets obtained via 
simulation. 

A. The experimental set-up 

The experimental set-up consists of the network 
configuration as shown in Fig. 5. As we shall see in Section V 
(D), the method scales well for larger number of virtual 
functions. The traffic entering the aggregation switch (VNF1) 
splits into two streams, one each going to PE-router1 (VNF2) 
and PE-router2 (VNF3) based on some policy. Traffic may 
originate in one of many user clusters. The end-to-end latency 
of the chain would be greater of the latency given by the two 
routes VNF1-VNF2-VNF4-VNF5 and VNF1-VNF3-VNF4-
VNF5. 

 

Fig. 5. Experimental service chain configuration 

 We have used a test configuration of 10 clouds that are 
fully interconnected. As has been seen in Section IV (B), 
randomized selection converges fast even for much larger 
number of clouds. The compute capacities of the VMs hosting 
VNFs are a single consolidated figure for processor, memory 
and storage (as in Amazon EC2) and are given in the Table II.  

TABLE II.  COMPUTER RESOURCE CATEGORIZATION 

Integrated capacity vCPUs Memory Storage 

1 1 1GB Flexible 

2 2 2GB Flexible 

4 4 4GB Flexible 

6 4 8GB Flexible 

8 8 8GB Flexible 

10 8 16GB Flexible 

 
 The demanded capacities could be fractions of these sizes. 
The link capacities are chosen from the set {0.016, 0.064, 
0.100, 0.155, 0.622, 2.5} representing the capacities in Gbps. 
The links are presumed to be bi-directional. However, the 
traffic flow in the experiment is in the direction of ingress at 
VNF1 to egress at VNF5. 

Development of trained prediction models: Selection of the 
predictor variables forms an important aspect of working with 
SVR. Too many features make the model complex, increase 
training time and the test error. Feature selection improves 
accuracy and speed. We have used cross-validation error as 
the guiding factor for inclusion of features in our models. The 
set of variables used for this experiment are given in Table III. 

TABLE III.  PREDICTOR VARIABLES AND OUTPUT LABEL 

 Predictor variables Label (output) 

x1 Origin cloud compute capacity Installed y: Latency (ms) 

x2 Destination cloud compute capacity installed  

VNF1 

VNF2 

VNF4 VNF5 

Aggr. Sw. BRAS P-Router 

PE-Router1

VNF3 

PE-Router2 



x3 Link capacity installed (Gbps)  

x4 Link capacity used (Gbps)  

x5 Origin cloud compute capacity used  

x6 Destination cloud compute capacity used  

x7 No of user clusters  

x8 Distance between origin and destination clouds  

The training vector has the form x = [x1, x2, x3, x4, x6, x7, x8]
T 

and y is the label. A brief justification for including these 
features follows. The equipped computer capacities govern the 
number of VMs created and VNFs instantiated on a server. 
These VMs cause interference in each other’s operations 
because of shared resources which may lead to delays. Each 
additional Gbps of equipped capacity does not give the same 
increase in traffic carrying capacity. The amount of traffic that 
can actually be carried depends on grade of service required. 
Traffic depends on the number of clusters and latency depends 
on traffic requiring this feature to be included. Propagation 
delay depends on length of the link which is approximated by 
the distance between the clouds. 

B. Training datasets 

Data plays an important role in building up trained models. 
The quality and quantity of the datasets will affect the learning 
and prediction performance. To make the training process 
credible, we obtained training datasets by two methods – 
simulation involving node and link queuing delays and test bed 
implementation on using CloudLab. In simulation, all 
significant delays: processing delay in the clouds, queueing 
delay in the virtual machines, propagation delay in the link, 
queueing delay in the link and transmission delays [28] were 
accounted for. The network would carry voice, data and video 
traffic. Some of these appliations are real time and their 

packets will go with higher priorioty. Queuing delay is the 
variable part of the end-to-end delay and depends on the 
network load and how the traffic behaves. The total time spent 
in the network by voice and data packets can follow any 
distribution. It may be presumed that we have a M/G/1 
queueing system of infinite capacity with non-preemptive 
priority [29]. Traffic mixing allows us to use Kleinrock 
independence approximation to perform queue-wise 
calculations. 

 When the traffic exceeds the capacity of a node then there 
is a node queuing delay before the packets can be processed. 
The processing delay includes the time the node spends in 
error correction and other functions of the node (say flow 
volume calculation in BRAS) till the time the packet is 
assigned to an outgoing link queue for transmission.  The link 
queuing delay is time between assignment of a packet to a 
queue and beginning of its transmission. The transmission 
delay is time between the transmission of the first and the last 
bits of a packet. The propagation delay is time between 
transmission of the last bit at the node and it being received at 
the next node. Retransmission delays have not been included. 

A C++ program was written to generate the dataset using 
the parameters described above for a special case of M/D/1 
queues. The link length feature has been normalized by 500 to 
keep the numbers comparable with other feature value. The 
model is trained with latencies depending on the anticipated 
startup lag. A snapshot of part of one of the training sets is 
given in Table IV: 

TABLE IV.  EXTRACT OF A TRAINING DATASET 

x1 x2 x3 x4 x5 x6 x7 x8 y 

1 1 0.3 0.15 0.5 0.5 10 0.1 1.71872 

6 2 2.5 1.25 3 1 10 0.4 1.73968 

6 2 2.5 1.75 4.2 1.4 10 0.4 1.79711 

6 1 2.5 0.5 1.2 0.2 10 0.2 1.80429 

2 1 0.064 0.0064 0.2 0.1 10 100.4 7.87455 

6 1 0.622 0.311 3 0.5 10 0.6 7.89943 

2 6 0.155 0.124 1.6 4.8 10 0.6 7.9167 

4 1 0.016 0.0096 2.4 0.6 10 0.6 7.91769 

4 6 0.1 0.03 1.2 1.8 10 0.4 4.64659 

1 4 0.155 0.0155 0.1 0.4 10 0.2 4.67738 

1 6 0.064 0.0256 0.4 2.4 10 0.2 4.70646 

2 6 0.155 0.0775 1 3 10 0.4 4.76358 

1 1 0.622 0.2488 0.4 0.4 10 0.4 2.2482 

2 6 2.5 2 1.6 4.8 10 0.4 2.2689 

6 2 0.1 0.04 2.4 0.8 10 0.4 2.34874 

1 4 0.155 0.1085 0.7 2.8 10 0.2 2.35271 

The features are as described in Section IV (A). The values 
of x1, x2, x5, and x6 are integrated capacities as per Table II. The 
link capacities x3 and x4 are in Gbps. The number of clusters x7 
is taken as 10 in the data shown. The inter-cloud distance x8 is 
the distance in miles scaled down by a factor of 500.  

C. Simulation results  

The training sets generated by the developed generator 
program was used to create models in MATLAB R2016a and 
WEKA. These were tested on a 64 bit machine with i7 Intel 
quad core processor, L2 Cache (per Core): 256 KB, L3 Cache: 
6 MB, and 8 GB RAM. Important outcomes are described 
below: 

1) Tuning of the models: We carried out extensive trials 
with k-fold and 20% holdout cross-validation. It was seen that 
20% holdout gives better results in terms of lower errors. 
Therefore, for arriving at a workable combination of C, ϒ and 
ϵ, we carried out further experiments with 20% holdout cross-
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validation. A number of such runs narrowed down the values to 
C=1×10-2 and ϒ=1. In both Matlab and Weka, the cross-
validation loss with externally tuned parameters was less than 
that from the system tuned values by as much as an order of 
10.  

2) SVR Quality of Generalization: The basic idea of using 
latency prediction to improve placement of virtual functions at 
the time the service chain will be functional would only work if 
the predictive model produces good predictions of latency (or 
any other quality of service parameter that we may choose to 
work with). The results with the Weka tool show that SVR 
works quite well on different datasets as can be seen from the 
training and test root mean square errors (RMSE) (Fig. 7a and 
7b). The training dataset had 280 examples and the test set had 
56.  

 

Fig. 7a.  SVR training error 

 

Fig. 7b.  SVR test error 

 In the Matlab implementation the mean prediction error, the 
RMSE, and the RMSE test error were of the same order: -5.85, 
2.16, and  2.59, respectively.  

 Low test set RMSE for the used training set show good 
generalization on unseen test points. For a larger training set 
the test errors are expected to settle slightly above training 
errors. This is confirmed with a training set with 2720 
examples (Fig. 8a and 8b). 

 

Fig. 8a. Training error with larger dataset 

 

Fig. 8b. Test error with larger dataset 

 

 A comparative plot of training and test errors obtained 
through WEKA implementation is given in Fig. 9.  The test 
errors are lower than training errors showing that the predictive 
model generalizes on unseen data. 

D. Placement Speed and Efficiency 

It is important for dynamic scaling that the algorithm and 
heuristic used are able do a large number of placements in a 
small time. If the algorithm takes a long time in placing the 
chain or making changes in response to changes in quality of 
service, or deteriorating performance parameters, then the 
changes may not be suitable for the situation as it evolves. On 
the other hand, if maintaining the required performance does 
not need all the resources that have been contracted then not 
de-scaling would use up higher amount of resources leading to 
avoidable expenses. According to various assessments in the 
literature the run time complexity of training an SVM model is 
in the range O(n2) to O(n3). According to [30] and [31], the 
complexity is O(max(n,d) min(n,d)2) where d is the size of the 
feature set. If n is much larger than d then it is closer to O(nd2). 
However, the time complexity of the search is linear. It took 
about 1.19 s to train with 2721 examples in Weka and 0.76 s in 
MATLAB. For speed of placement, we tested with 10 clusters 
each requesting 10 to 100 SFCs of 5 VNFs each. Thus the 
number of VNFs varied from 500 to 5000. We see that the 
algorithm is able to place up to 3000 VNFs less than 1 minute 
(Fig. 10a).  

  

Fig. 10a. Placement time Vs. No. of 
SFCs 

Fig 10b. Acceptance rate Vs No. of 
SFCs 
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Fig. 9. Training and test errors for the predictive model 
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 Finally, any acceptable method should maximize successful 
tenant request placements. Failure to place service chains 
would affect tenants quality of service and CSPs revenues. For 
a medium sized placement request, viz., 100 SFCs or 500 
functions, the acceptance rate turns out to be 99-100% (Fig. 
10b). As the number of service chains increase, the acceptance 
rate may fall because of lack of capacity to place the complete 
service chains. When corrected for capacity the acceptance rate 
for our algorithm remains above 90% up to the tested 
configuration of 500 SFC or 2500 VNFs. 

VI. SUMMARY AND ONGING WORKS 

NFV in multi-cloud environment makes a great business 
sense both for telecommunication service providers as well as 
cloud service providers. Meeting network performance 
parameters is currently difficult in such deployments. Our 
proposed framework consisting of random cloud selection with 
SVR based predictive placement allows fast and accurate 
placement of service function chains optimizing placement cost 
and meeting the latency threshold. 

We are working on enhancing the framework with time 
adaptive real time-SVR (ART-SVR) for taking care of periodic 
traffic variatons  as well as real-time nature of 
telecommunications network. The new models are being 
currently tested both by simulation and on CloudLab. 
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