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Abstract

The main goals of a switch scheme are high utilization, low queuing delay and fairness. To achieve
high utilization the switch scheme can maintain non-zero (small) queues in steady state which can
be used if the sources do not have data to send. Queue length (delay) can be controlled if part of
the link capacity is used for draining queues in the event of queue build up. In most schemes a
simple threshold function is used for queue control. Better control of the queue and hence delay
can be achieved by using sophisticated queue control functions. It is very important to design and
analyze such queue control functions. We study step, linear, hyperbolic and inverse hyperbolic
queue control functions. Analytical explanation and simulation results consistent with analysis are
presented. From the study, we conclude that inverse hyperbolic is the best control function and to
reduce complexity the linear control function can be used since it performs satisfactorily in most
cases.

Keywords: ATM Switch algorithms, ABR service, congestion control, traffic management, queue
management.

1 Introduction

The ATM (asynchronous transfer mode) is the chosen technology for implementing B-ISDN (broad-
band integrated services digital network). The ABR service in ATM can be used to transport data
traffic with minimum rate guarantee. ABR uses closed loop feedback to control the source rates
(see Figure 1(a)). The source sends periodically (after every Nrm — 1 data cells) an RM (resource
management) cell to gather information from the network [1]. The RM cells are turned around at
the destination. The switches along the path indicate the rate which they can currently support.
When the source receives the backward RM cell, it adjusts its allowed cell rate based on the explicit
rate indicated in the RM cell.

The goals of a rate allocation scheme are to maintain high utilization, small queuing delay, small
cell loss, and fairness among competing sources. In order to support (low quality) video sources
over ABR (Available Bit Rate) service, it is also desirable that in the steady state, the rates and
queuing delay be constant. One way to achieve a high utilization and low queuing delay is to vary
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the target rate as a function of queue length. The function should be a decreasing function of queue
length. The function should also be simple so that it can be implemented in the hardware.

In this paper, we study several queue control functions which satisfy the above needs. We present an
analytical explanation for the performance of these functions. Then, we present simulation results
which are consistent with the analysis. The various trade-offs between the queue control functions
are studied using appropriate metrics. The ERICA+ [2] switch scheme is used in the simulations.

2 Switch Scheme Model

There are many ABR switch schemes ([2, 3, 4, 5, 6]).

This section gives an overview of the switching scheme model on which this study is based.

e An ABR switch scheme achieves the goals by giving explicit feedback to the sources to adjust
their source rates. This type of switch is usually known as a Explicit Rate Feedback switch.

e One way to achieve high utilization (100%) and control queuing delay by quick draining of
queues is, to vary the target ABR rate dynamically. During the steady state, the target ABR
rate is 100% while it is lower during the transient state. Higher overloads result in even lower
target rates (thereby draining the queues faster). In other words:

Target rate = f(queue length) x function (current rate, link rate, HPR)

HPR is the total rate of higher priority classes like VBR (variable bit rate) and CBR (constant
bit rate). The “f(queue length)” has to be a decreasing function of the queue length. The
switch scheme uses the above queue control function to adjust the allocated rate depending
on the current switch queue size.

e The switch measures the load, queue length and gives explicit feedback of target rate at
fixed intervals. This interval is called the “averaging interval”. The measurements are done
using the FRM cells and the feedback is given using the BRM cells. We assume that only one
feedback is given in each averaging interval to the sources. This avoids unnecessary conflicting
feedbacks to the sources.

The ERICA+ algorithm used in this study fits the above model.

3 Queue control functions

In this section the relationship between the queue length and queue control function is presented
for the above switch model. Then various queue control functions to achieve the desired goals are
presented.



The following terms are used in the discussion:

N number of sources.

ts “averaging interval”, the period at which feedback to the sources is calculated at the switch.
r;(t) rate of source i.

er;(t) explicit rate of source 7 calculated at the switch.

t, propagation time from the source to switch.

t; feedback delay is twice 2.

R; Available ABR capacity. For simplicity we assume the higher priority traffic such as CBR and
VBR are not present. Hence, R; is same as the link rate.

Q(t) switch queue length (in cells)
R(t) aggregate input rate seen at switch. R(t) = SN | r4(t)

C(t) (conversion function) number of cells transmitted in time ¢ at link rate. C(t) = (R; x t)/424
if R; is given in Mbps.

Note : X(t) denotes that X is a function of time.

3.1 Queue Length Function

For the simplification of the analysis, we assume that the propagation delay ¢, from source to switch
switch is same for all sources. Due to propagation delay t,, the rate seen at the switch at time ¢ is
the same as source rate at time ¢ — ¢,. The sources adjust their rates to the explicit rate indicated
in the BRM cells. Due to propagation delay propagation delay , the sources adjust their rate at
time ¢ to the explicit rate generated at time ¢ — ¢,,.

In one averaging interval Q(t) is drained by R; x C(ts) cells. The queue builds up at input rate.
Then, Q(t) can be expressed as follows :

N
Q) = Qt - t5) }:n — R))C(ts)

N
Q) =Q(t—ts) + O_eri(t —ty) — R)C(t,)

=1

Q(t) = Q(t — ts5) + (R(t) — R))C(ts)

The switch scheme tries to adjust the input rate R(t) to match the output rate depending on
current queue size, i.e., R(t) = f(Q(t)) x Available ABR Capacity. We assume no higher priority
traffic, so R(t) = f(Q(t)) x R;. Hence,



Q(t) = Q(t —t5) + (f(Q(t —15)) — 1RO ()

and (f(Q(t —ts)) — 1)R; is the rate at which the queue changes in one averaging interval. The
function f(Q) is the queue control function. The queue length increases if f(Q) > 1, remains
constant if f(Q) = 1, and decreases if f(Q) < 1. Hence, by using an appropriate function f(Q),
the queue length can be controlled.

3.2 Explicit Rate Feedback
The explicit rate is calculated as follows
eri(t) = f(Q(t —ty)) x F(ri(t — tp), Link Rate, HPR)

The sources adjust their rates r;(¢) based on the explicit rate feedback from the switch. The
feedback reaches the switch after time ¢,. Hence, r;(¢) (source rate) can be expressed using the
following equation ;

ri(t) = eri(t —tp) = f(Q(t —ty)) x F(ri(t — 2tp), Link Rate, HPR)
Since ty = 2t,, we get
ri(t) = f(Q(t —ts)) x F(r;(t — ty),Link Rate, HPR)

For simplicity we have assumed there is no HPR traffic (Note in the presence of bursty VBR sources
there might not be any steady state of the system). So the above function becomes

ri(t) = f(Q(t — t;) x F(r;(t — t;), Link Rate)

For ERICA + scheme the above function is as follows

ri(t — t) x Link Rate Link Rate,

Input Rate n

ri(t) = f(Q(t —t5)) x mazimum(

where Input Rate is the ABR input rate measured at the switch. The scheme tries to match the
input rate to the link rate, by over allocating the rates if the queue is small. If the queue are large,
it is drained quickly by using (1-f(Q)) part of the link capacity.

For other schemes the following modification can be done to incorporate queue control function
with that scheme. Let er4(t) be explicit rate calculated by an algorithm A. Then add the following
as last step in the algorithm A:

era(t) = mazimum(f(Q(t —ty)) x era(t —ty), PCR)

where PCR is the peak cell rate. It can be shown that if the algorithm A converges to max-min
rates, then the modified algorithm also converges to the max-min rate. Further, the queue control
function f(Q) can be chosen so that the queue length (and hence delay) is constant in steady state.



3.3 Design of Queue Control Function
The design considerations for the queue control functions are as follows:

e If queue length is very small it should be increased, so that the scheme can maintain some
small queue which can used when the link is under utilized. This implies that f(Q) should
be greater than one for small queue lengths.

e In the steady state, we desire that the queue length be constant and the target rate to be the
max-min fairness rate. The function Q(¢) satisfies this goal if f(Q) = 1 in the steady state.

e If the queue is large then part of the link capacity is used to drain the queue. Hence f(Q)
should be less than one. It is desirable not to use all the capacity to drain the queue.
Therefore, there is a minimum threshold, the queue drain limit factor (QDLF), for f(Q).

e The f(Q) function has to be continuous. Discontinuities imply sudden changes which give
rise to oscillations.

The queue control function with above properties will be of the form
> 1 0<Q<Qo

=1 Qo <Q <@

<1 Q1 <Q< Q2

=QDLF @2 < Q<

where Qg < Q1 < Q2 < 00

Q) =

The following functions are possible candidates.

Step function
The step function has multiple thresholds (See figure 1(b)). This is the simplest one to implement
in hardware (lookup table).

— s 0<Q<Qo
=1 <<
=12  0<Q<

=QDLF @Q2:<Q <

where s, > 1 and QDLF < s, < 1 are step parameters. In general it can have n steps. In the
above case n = 4.

Linear function
The function f(Q) has linear relationship with queue length. (See figure 1(b))

=1-my%5) 0<Q < Qo

0

B -1 Q0<QSQ1
(@)= =1-m, 9% Q1 <Q< Q.
= QDLF @2 <Q <o

where my and m, are slope of the linear portions. This function can be implemented in an efficient
manner, using shift operations, if m, and m; are of the form 1/2* and the queue length is counted
in terms of Q.
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Figure 1: Feedback Control and Queue Control Functions

Hyperbolic function
The function f(Q) is a hyperbolic function of the queue length. (See figure 1(b))

= Ghore, 0<SQ<Qo

ihb*I)Q’i‘QO Q Q Q
f(Q) = =<ha_hf)% Q1<Q<Qy
= QDLF Q2 < Q<00

where h, and hy are the parameters which control the degree of curvature of the hyperbolic function.
This function takes more time to calculate, since it has a division operation. For a high value of h,
the hyperbolic function becomes similar to the step function. For an h, value near 1, the hyperbolic
function approaches the linear function.

Inverse Hyperbolic function
The fraction f(Q) is an inverse hyperbolic function of the queue length for overload conditions (see
Figure 1(b)). In the underload region, an hyperbolic function is used.

= vohorgs 0<Q<Qo

iAb—l)Q‘FQO Q Q < Q
_ — 0 < S W
f(Q) = :% Q1<Q<Qo

= QDLF Q2 <Q <0

where A, and A, are the parameters which control the degree of curvature of the inverse hyperbolic
and hyperbolic functions. This function is continuous and smooth at both Qg and Q;.

The curve used in the control function in underload region is called the “a-curve” and the one used
in over loaded region is called the “b-curve”. The parameters used in the a-curve sq, Mg, hg, Aq are
called a-parameters. sy, my, hp, Ap are called the b-parameters. Note that, since all the functions
are continuous, at ()2 we have the equation f(Q2) = QDLF. So, Q2 can be expressed in terms of
QDLF and a-parameter for linear, hyperbolic and inverse hyperbolic functions.
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Figure 2:
4 Metrics
To compare the performance of the queue control function the following metrics are chosen.

Convergence Time: The time the scheme takes to converge to steady state. To find the conver-
gence time, the variance and standard deviation of desired variable are calculated between
(1 X tg,(i+1) x tg) for i = 0,1,..., where t; ( = 100 ms) is a small time interval). Initially the
standard deviation is large due to oscillations. The convergence time is 7 x t; after which the
variance is small. Also the graphs of (mean+standard deviation) value of the variable versus
time are plotted. From the graph the convergence time can be calculated.

Standard Deviation: The standard deviation of various quantities like ACRs, queue length and
utilization is calculated. In order to separate the oscillations before steady state from affecting
the measurement, the variance is measured both before and after steady state is achieved.

Visual inspection of the graphs also gives a good idea about the convergence time and the variations.

5 Analytical Explanation

In this section we analyze the behavior of the proposed queue control functions. We assume a
simple configuration in our analysis. N infinite ABR sources (always having data to send) are
sending data to N ABR destinations (See figure 2). The performance study under more stressful
conditions is done by a simulation using the Generic Fairness configuration - 2 [7] in the section 7.

The change in queue length in a averaging interval ¢ is given by:

AQ = (f(Q(t —t5)) = 1) x Ry x C(ts)



e Initial behavior: In the beginning, the queue lengths grow depending on the initial ICR (initial
cell rate). So the maximum queue depends on the ICR and round trip time and is independent
of the queue control function used. The feedback information reaches the sources and the
sources adjust their rates accordingly.

e Under utilized: The switch initially estimates that the link is under utilized. The queue
control function during under utilization is f(Q) > 1 for Q@ < Q. So, the switch gives
feedback to the sources to increase their rates. Due to the increased rates the queue length
at the switches increase. The rate of increase of the queue length is dictated by the b-curve
of the queue control function.

e QOver loaded: Either due to the increase in the source rates or due to the high ICRs an
overload condition occurs and queues at the switch grow. Initially the feedback information
is not accurate; hence the queue might grow beyond the ()2 threshold. In such a heavy
overloaded condition, the queues are quickly drained by using the (1-QDLF) fraction of the
link capacity. In the meantime the feedback control loop is established, and the switch gives
reliable feedback to the sources. For the lightly over loaded region, i.e., queue length in range
of @1 < Q < @9, the a-curve is the queue control function. The value of f(Q) is less than
one in this region, which effectively decrease the queue length.

e Steady state: The feedback information tries to match the input rate to output rate. As the
input rate approaches output, rate the oscillations die down and the network reaches steady
state. In the steady state, the rates and the queue lengths remain constant, since f(Q) =1

It is shown in [8] that additive increase and additive decrease leads to the steady state. For all four
queue control functions f(Q) > 1 for Qp < Q < @1 and f(Q) < 1 for Q1 < Q < Q2. The change in
queue length depends on the value of f(Q)—1. Hence, the change in the queue length is an additive
increase for under utilized region and an additive decrease in the over loaded region. Therefore,
the queue length converges to a value between Qg and (1. An interesting point to note is that the
amount of increase and the amount of decrease itself is dictated by the current queue length and its
distance from the steady state queue length range. The behavior of the queue length for the inverse
hyperbolic function is shown in figure 2(a). The figure shows the queue length (y-axis) versus time
(x-axis). The queue length decreases linearly in the range Q2 < @ < oo (highly overloaded) with
slope QDLF'. For queue length in the range @1 < @ < Q2 (lightly overloaded, near the steady
state) the slope is given by f(Q) — 1. Hence, the queue decreases hyperbolically (inverse of f(Q)
function of a-curve) with respect to time. In the steady state, (Qo < @ < Q1) the queue length is
constant. In under utilized range 0 < @ < Qg, the queue increases inverse hyperbolically since the

slope is f(Q) — 1 and f(Q) is hyperbolic.

5.1 Step Function
If Q(t —ty) < Qo then f(Q(t —tf) = s > 1, so the queue grows till feedback information is

passed to the sources asking them to decrease their rate. The queue grows for ¢; time and it can
be expressed as follows:

Q) = Q(t —t5) + (s — 1) x RiC(ty)



If the condition Q¢ < Q(t) < @1 is satisfied and the input rate matches the output rate, then the
steady state is achieved, and the queue remains at this constant length.

If Q1 < Q(t) < Q2 then the Q(t) starts decreasing with slope —(1 — s,). This decrease also takes
place for ¢ time, if the queue ends up between Qg and @) and if input rate is close to output rate
then again the steady state is achieved.

Therefore, for the system to achieve the steady state, the value of queue length after one feedback
interval should be within the range Q¢ and ;. This requirement is satisfied if the condition
Q1> Qo+ (sp — 1) x RiC(ts) holds. Since step function has discontinuities, it is very sensitive to
queue length value near the thresholds and steady state might not be reached if the parameters
are not set properly. If parameters are not set properly, then the queue grows from a value below
Qo for t; time, crosses @1, and decreases for ¢; time to a value less than Qg. Then, this pattern
repeats.

5.2 Linear Function

If Q(t —tf) < Qo, then f(Q(¢)) > 1. Similar to the step function the queue keeps growing for ¢s
time with a slope of (f(Q(t —t;)) — 1) x R;. But unlike the step function, the slope now depends
on the value of queue length. After ¢ seconds, if the queue Q(t) > @1, the queue length starts
decreasing with a slope of (f(Q(t) — 1) x R;. The slope now depends on the value of the queue
length so the there are no sudden changes in the slope. Therefore the oscillations are fewer when
compared to the step function. If the system is near the steady state, then the oscillations decrease,
the queue length reaches a value between @)y and ()1, and system reaches the steady state.

5.3 Hyperbolic Function

The analysis for this case is similar to above. If h, and h, parameter are close to one (typical values
are hg = 1.15,hy = 1.05) the hyperbolic function has similar behavior as the linear function. If
hq is high then the hyperbolic function is close to the step function. Since the hyperbolic function
has a larger curvature initially and then smoothes out, f(Q1 + Q) value will be smaller than
corresponding f(Q1 + §Q) value obtained using the linear function. Hence, the fluctuations in the
rates are greater, but the queue draining is faster.

5.4 Inverse Hyperbolic Function

The behavior of the queue length versus time for the inverse hyperbolic function is shown in fig-
ure 2(a). The behavior of this queue control function has been explained earlier in this section. Since
the inverse hyperbolic function is continuous and smooth near ()1, it gives rise to less oscillations
compared to other cases.



6 Simulation: Configuration and Parameters

In this section the two configurations used in the simulations are explained. In all the simulation
no higher priority (CBR and VBR) traffic is present.

6.1 Simple Configuration: N Source - N Destinations

In this configuration: (See figure 2)

e N infinite sources send data to N destinations

e The traffic is one way

e The initial values of ICR are chosen randomly in the range (0,link rate)

e All links are of length 1000 Km, which corresponds to a propagation delay of 5 ms.
e All links have a bandwidth of 149.76 Mbps (after accounting for SONET overhead).

e The sources start at random time between (0, tgrr), where t gy is the round trip time. tppr
= 30 ms for the above configuration.

6.2 Generic Fairness Configuration - 2 (GFC-2)

This configuration (See figure 3) was used to test the performance of the queue control functions
and the switch scheme under more stressful conditions. The value of link distance D was chosen to
be 1000 Km. In this configuration the expected max-min fairness rate for the different VC’s are:
A VCs = 10 Mbps, B VCs = 5 Mbps, C VCs = 35 Mbs, D VC = 35 Mbps, E VCs = 35 Mbps, F
VC = 10 Mbps, G VCs = 25 Mbps, H VCs = 52.5. This configuration is explained more in [7].

D(1) E(2) F(1) H(2) A(3) CO(3) G(7)
45 zZD D D D 2D
A(ib S5Wl SW2 SW3 SW4a S5WS5S S5Wo SWY EE”)
S0 LOO O 150 50
T T vops T Taopsl T Mbps T Mbps T Mbps T Mbps
B(1) Di1) E(@ | B A(1) F(1) B(1) H() o) G(7)
A1) - .
Congested link Congested link Congested link
for 4 Vs Jfor C Vs for BYVCs

Naote: Entryfexit finks af fength D, speed 150 Mbps

Figure 3: Generic Fairness Configuration - 2
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Table 1: Simple Configuration: Results

Queue a b Q1 Q2 Convg Mean Std Dev Std Dev
Control | param param time(secs) Q(cells) (bef 1 sec) (after 1 sec)
Step 0.75 1.01  4Q¢ 26 Qo - 252.93  552.21017 501.60
0.90 1.01  4Q9 26 Qo - 98.04 651.82 241.43
0.90 1.05 4Qo0 26 Qo - 663.63 1226.70 840.36
0.95 1.01  4Q9 26 Qo - 251.51 816.62 393.26
0.95 1.05 4Qo0 26 Qo - 124.11 805.32 240.04
0.95 1.01 2Q0 26 Qo - 896.90 1386.87 1036.66
0.95 1.01  8Qo 26 Qo - 483.20 1001.54 644.73
Linear 1/16 1/16 2 Qo 26 Qo 0.20 311.85 335.61 0.69
1/16  1/16 4Qo 26Qy  0.32 403.52  457.90 0.69
1/16 1/16 8 Qo 26 Qo 0.61 402.85 622.02 0.69
Hyperbolic | 1.15 1.05 2@ 26 Qo - 509.94 423.89 205.65
1.15 1.05 4Q9 26 Qo 0.32 214.19 500.14 0.86
1.15 1.05 8 Qo 26 Qo 0.82 220.96 862.25 0.63
Inverse 36 1.05 2Qo 26 Qo 0.22 313.17 525.51 0.69
Hyperbolic | 165  1.05 4Q, 26Qy  0.25 209.50  580.15 0.50
6.75 1.05 8 Qo 26 Qo 1.12 202.27 704.02 16.98

7 Simulation: Results

In this section the simulation results using the above two configurations are given. The graphs
of rates, queue length and utilization are given. The tables and the graphs are used to study the
performance of different queue control functions. In the simulations for both configurations, QD LF
was chosen to be 0.5.

7.1 Simple Configuration: Results

The table 1 shows the performance for different step values (parameters) of the step queue control
functions as the queue threshold () is varied. The mean bottleneck link queue length, its standard
deviation before one second and after one second (last two columns) are shown in the table. Note
that @9 is fixed given the QDLF and other parameters of the linear and hyperbolic functions.
Number of sources N = 3.

The following things can be observed from the Table 1.

e The step function never converges entirely. The values are fluctuating near the target values,
so the standard deviation after one second is lower than the standard deviation in the first
second.

e The linear and hyperbolic and inverse hyperbolic functions reach steady state after one second
since the standard deviation after one second is very small.
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As Q7 increases, the convergence time increases for the linear, hyperbolic and inverse hyper-
bolic functions

For @1 = 2Qy, the linear function converged. The value of f(Q) for hyperbolic function value
is less compared to that of linear function, so the queue is drained faster and () becomes
less than ()g. Therefore for the hyperbolic function the queue length and rate values are
oscillating near the target value. This is mainly because the hyperbolic function is not smooth
(not differentiable) near @;. The inverse hyperbolic is smooth at (1 so the queue lengths do
converge in this case.

For Q1 = 8Q), the convergence time for hyperbolic function and inverse hyperbolic is more
than linear. This happens since the both hyperbolic and inverse hyperbolic function vary
slowly near the steady state. The queue length variance is more for the inverse hyperbolic
function.

The graphs 4(a), 4(e), 5(a), 5(e) show the ACR rate of the three sources.

The mean and standard deviation of the rates and the queue lengths are calculated for every 100
milliseconds. These are shown in figures 4(b), 4(f), 5(b) and 5(f) for ACR rates and in figures
4(d), 4(h), 5(h) for the queue lengths. From these graphs the converging time can be estimated. In
steady state the oscillations are small, the standard deviation is small compared to mean. So the
quantity (mean + standard deviation) has a value close to the mean in the steady state.

For the step function, there is oscillation in all the quantities (rates, queue and utilization). For
linear and hyperbolic functions, the oscillations die down and the system reaches steady state. In
the steady state, the rate and queue length are constant and utilization is 100%. Hence the linear,
hyperbolic and inverse hyperbolic queue control functions fulfill the desired goal. This is consistent
with the analytical explanation given in the previous section.

In all the cases when the queue length and the rates converge, the queue length is non-zero hence,
the utilization at the steady state is 100%.

7.2

GFC-2 Configuration: Results

The following parameters were used in the simulations for this configuration.

Thresholds: Q¢ = 176, Q1 =4 X Qq, Q2 = 26 X Qy, QDLF = 0.5
Step: s = 0.95, s = 1.01

Linear: m, = 1/16, my = 1/16

Hyperbolic: hy = 1.15, my = 1.05

Inverse Hyperbolic: A\, = 16.5, A\, = 1.05

The table 2 shows the performance for three queue control functions. The table shows the H (1)
VC’s mean rate, switch queue length for SW5 and its convergence time, standard deviation before

12



Table 2: GFC-2 Configuration: Results

Queue Quantity ~ Convergence  Mean Std Dev Std Dev
Control Time (secs) (before 1 sec) (after 1 sec)

Step H(1) ACR - 72.81 184 4.46
SW5 Queue - 284.28 878.63 281.85

Linear (1) ACR 1.25 52.46 14.38 1.08
SW5 Queue 1.3 455.46 1043.71 220.42

Hyperbolic H(1) ACR 1.45 52.77 13.57 0.58
SW5 Queue 1.3 361.32 968.27 201.86

Inverse Hyperbolic H(1) ACR 1.51 52.38 14.04 0.92
SW5 Queue 2.0 1443.72 3829.17 999.62

one second and after one second. The queue length variation is present in all three cases. The rate
variation is much less in the linear and hyperbolic functions compared to the step function. This
is also evident from the graphs which are explained in the next section.

7.3 GFC-2 Configuration: Graphs

The graphs in Figure 6 and 7 were obtained by simulating the GFC-2 configuration using the step,
linear and hyperbolic and inverse hyperbolic queue control functions. Graphs 6(a), 6(e), 7(a) and
7(e) show the ACR rate for one VC of each of A through H type VCs versus time when different
queue control functions are used. From these graphs it can be seen that the expected rates are
obtained when linear, hyperbolic and inverse hyperbolic functions are used for queue control.

The (c) and (g) graphs have the queue length for all the switches. The maximum queue is due to
the initial overload, before the first round trip time. Once the feedback control loop is established
the f(Q) value is QDLF and queues are drained quickly.

When step function (Figure 6(b)) is used the oscillations are more compared to the oscillations when
other functions are used. The graphs 6(b), 6(f), 7(b), 7(f) plot mean plus standard deviation for
VC (ACR) rates. The figures 6(d), 6(h), 7(d), 7(h) plot corresponding (mean+standard deviation)
graphs for the queue lengths.

Note that in the graphs when the step function is used, some of the VCs do not get their max-min
fair share rates and the VCs near the fair share have considerable oscillations. The step function
is very sensitive to queue length variation near the thresholds. Since the configuration is complex,
with large number of VCs passing through each of the switches, the queue length and hence the
rates vary. For the graphs 6(e), 7(a) and 7 the oscillations are only present before steady state. The
oscillations die down and the rates become steady since the function f(Q) changes smoothly. The
maximum queue length is same for all queue control functions since this depends only on the ICR.
When the inverse hyperbolic function is used the queues are larger since in this case the steady
state queue length is near @);.
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Figure 7: GFC-2 Configuration:: Rate, Queue and Utilization graphs: Hyperbolic and Inverse
Hyperbolic queue control function



7.4 Summary of Results

The simulation results obtained by using different queue control functions in the simple and the
GFC-2 configurations are consistent with the analytical explanation. The step function is sensi-
tive to queue thresholds (Qg, @1, Q2) used. The other functions are not sensitive to these queue
thresholds. Small steady state queuing delay can be achieved by choosing nearby values for (Jy and

Q1-

8 Conclusion

In this paper we have considered the problem of designing a simple and robust queue control
function for switch schemes. A switch scheme tries to maximize utilization, minimize queuing
delay and give max-min fair rates to the sources. It is also desirable to have less oscillations
in rates and queue length to support (low quality) video over ABR service. We assume a switch
scheme model which dynamically adjusts the rate of the sources to match the output rate and drain
large queues. The design considerations were discussed with analytical explanations. Four different
queue control functions were analyzed. The choice of parameters for the queue control functions
was both explored analytically and by simulation. The simulation showed that even in complex
configuration (like GFC-2) the system behavior was consistent with of the analytical explanation.
When the step function is used, the systems oscillates and does not converge in most cases. From
both the analytical and the simulation results, it can be concluded that the inverse hyperbolic is
the best queue control function, followed by the hyperbolic and the linear queue control functions.
For simpler implementation complexity, the linear function is recommended.
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