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Abstract

The main goals of a switch scheme are high utilization, low queuing delay and fairness. To achieve high utilization the
Ž .switch scheme can maintain non-zero small queues in steady state which can be used if the sources do not have data to

Ž .send. Queue length delay can be controlled if part of the link capacity is used for draining queues in the event of queue
build up. In most schemes a simple threshold function is used for queue control. Better control of the queue and hence delay
can be achieved by using sophisticated queue control functions. It is very important to design and analyze such queue control
functions. We study step, linear, hyperbolic and inverse hyperbolic queue control functions. Analytical explanation and
simulation results consistent with analysis are presented. From the study, we conclude that inverse hyperbolic is the best
control function and to reduce complexity the linear control function can be used since it performs satisfactorily in most
cases. q 1999 Elsevier Science B.V. All rights reserved.

Keywords: ATM switch algorithms; ABR service; Congestion control; traffic management; Queue management

1. Introduction

Ž .The ATM asynchronous transfer mode is the
chosen technology for implementing B-ISDN
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Ž .broad-band integrated services digital network . The
ABR service in ATM can be used to transport data
traffic with minimum rate guarantee. ABR uses

Žclosed loop feedback to control the source rates see
Ž .. ŽFig. 1 a . The source sends periodically after every

. Ž .Nrmy1 data cells an RM resource management
w xcell to gather information from the network 1 . The

RM cells are turned around at the destination. The
switches along the path indicate the rate which they
can currently support. When the source receives the
backward RM cell, it adjusts its allowed cell rate
based on the explicit rate indicated in the RM cell.

The goals of a rate allocation scheme are to
maintain high utilization, small queuing delay, small
cell loss, and fairness among competing sources. In

Ž .order to support low quality video sources over
Ž .ABR Available Bit Rate service, it is also desirable
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Fig. 1. Feedback control and queue control functions.

that in the steady state, the rates and queuing delay
be constant. One way to achieve a high utilization
and low queuing delay is to vary the target rate as a
function of queue length. The function should be a
decreasing function of queue length. The function
should also be simple so that it can be implemented
in the hardware.

In this paper, we study several queue control
functions which satisfy the above needs. We present
an analytical explanation for the performance of
these functions. Then, we present simulation results
which are consistent with the analysis. The various
trade-offs between the queue control functions are

w xstudied using appropriate metrics. The ERICAq 2
switch scheme is used in the simulations.

2. Switch scheme model

Žw x.There are many ABR switch schemes 2–6 .
This section gives an overview of the switching

scheme model on which this study is based.
Ø An ABR switch scheme achieves the goals by

giving explicit feedback to the sources to adjust
their source rates. This type of switch is usually
known as a Explicit Rate Feedback switch.

Ž .Ø One way to achieve high utilization 100% and
control queuing delay by quick draining of queues
is, to vary the target ABR rate dynamically. Dur-

ing the steady state, the target ABR rate is 100%
while it is lower during the transient state. Higher

Žoverloads result in even lower target rates thereby
.draining the queues faster . In other words: Target

Ž . Žrate s f queue length = function current rate,
.link rate, HPR . HPR is the total rate of higher

Ž .priority classes like VBR variable bit rate and
Ž . Ž .CBR constant bit rate . The ‘‘ f queue length ’’

has to be a decreasing function of the queue
length. The switch scheme uses the above queue
control function to adjust the allocated rate de-
pending on the current switch queue size.

Ø The switch measures the load, queue length and
gives explicit feedback of target rate at fixed
intervals. This interval is called the ‘‘averaging
interval’’. The measurements are done using the
FRM cells and the feedback is given using the
BRM cells. We assume that only one feedback is
given in each averaging interval to the sources.
This avoids unnecessary conflicting feedbacks to
the sources.
The ERICAq algorithm used in this study fits

the above model.

3. Queue control functions

In this section the relationship between the queue
length and queue control function is presented for
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the above switch model. Then various queue control
functions to achieve the desired goals are presented.

The following terms are used in the discussion:
Ø Nsnumber of sources.
Ø t s‘‘averaging interval’’, the period at whichs

feedback to the sources is calculated at the switch.
Ž .Ø r t s rate of source i.i
Ž .Ø er t sexplicit rate of source i calculated at thei

switch.
Ø t spropagation time from the source to switch.p

Ø t s feedback delay is twice t .f p

Ø R sAvailable ABR capacity. For simplicity wel

assume the higher priority traffic such as CBR
and VBR are not present. Hence, R is same asl

the link rate.
Ž . Ž .Ø Q t sswitch queue length in cells
Ž . Ž .Ø R t saggregate input rate seen at switch. R t

N Ž .sÝ r tis1 i
Ž . Ž .Ø C t s conversion function number of cells

Ž . Žtransmitted in time t at link rate. C t s R =l
.t r424 if R is given in Mbps.l

Ž .Note: X t denotes that X is a function of time.

3.1. Queue length function

For the simplification of the analysis, we assume
that the propagation delay t from source to switchp

is same for all sources. Due to propagation delay t ,p

the rate seen at the switch at time t is the same as
source rate at time ty t . The sources adjust theirp

rates to the explicit rate indicated in the BRM cells.
Due to propagation delay propagation delay t thep

sources adjust their rate at time t to the explicit rate
generated at time ty t .p

Ž .In one averaging interval Q t is drained by
Ž .R =C t cells. The queue builds up at input rate.l s
Ž .Then, Q t can be expressed as follows:

N

Q t sQ ty t q r ty t yR C t ,Ž . Ž . Ž .Ž .Ýs i p l sž /
is1

N

Q t sQ ty t q er ty t yR C t ,Ž . Ž . Ž .Ž .Ýs i f l sž /
is1

Q t sQ ty t q R t yR C t .Ž . Ž . Ž . Ž .Ž .s l s

Ž .The switch scheme tries to adjust the input rate R t
to match the output rate depending on current queue

Ž . Ž Ž ..size, i.e., R t s f Q t =Available ABR Capacity.
Ž .We assume no higher priority traffic, so R t s

Ž Ž ..f Q t =R . Hence,l

Q t sQ ty t q f Q ty t y1 R C tŽ . Ž . Ž . Ž .Ž .Ž .s s l s

Ž Ž Ž .. .and f Q ty t y1 R is the rate at which thes l

queue changes in one averaging interval. The func-
Ž .tion f Q is the queue control function. The queue

Ž .length increases if f Q )1, remains constant if
Ž . Ž .f Q s1, and decreases if f Q -1. Hence, by us-

Ž .ing an appropriate function f Q , the queue length
can be controlled.

3.2. Explicit rate feedback

The explicit rate is calculated as follows:

er t s f Q ty tŽ . Ž .Ž .i f

=F r ty t , Link Rate, HPR .Ž .Ž .i p

Ž .The sources adjust their rates r t based on thei

explicit rate feedback from the switch. The feedback
Ž . Žreaches the switch after time t . Hence, r t sourcep i

.rate can be expressed using the following equation:

r t ser ty t s f Q ty tŽ . Ž . Ž .Ž .i i p f

=F r ty2 t , Link Rate, HPR .Ž .Ž .i p

Since t s2 t , we getf p

r t s f Q ty tŽ . Ž .Ž .i f

=F r ty t , Link Rate, HPR .Ž .Ž .i f

For simplicity we have assumed there is no HPR
Žtraffic note in the presence of bursty VBR sources

.there might not be any steady state of the system .
So the above function becomes

r t s f Q ty t =F r ty t , Link Rate .Ž . Ž . Ž .Ž . Ž .i f i f
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For ERICAq scheme the above function is as fol-
lows:

r t s f Q ty t =maxŽ . Ž .Ž .i f

r ty t =Link Rate Link RateŽ .i f
,ž /Input Rate n

where Input Rate is the ABR input rate measured at
the switch. The scheme tries to match the input rate
to the link rate, by over allocating the rates if the
queue is small. If the queue are large, it is drained

Ž Ž ..quickly by using 1y f Q part of the link capacity.
For other schemes the following modification can

be done to incorporate queue control function with
Ž .that scheme. Let er t be explicit rate calculated byA

an algorithm A. Then add the following as last step
in the algorithm A:

er t smax f Q ty tŽ . Ž .Ž .žA f

=er ty t ,PCRŽ . .A f

where PCR is the peak cell rate. It can be shown that
if the algorithm A converges to max-min rates, then
the modified algorithm also converges to the max-min

Ž .rate. Further, the queue control function f Q can be
Ž .chosen so that the queue length and hence delay is

constant in steady state.

3.3. Design of queue control function

The design considerations for the queue control
functions are as follows:
Ø If queue length is very small it should be in-

creased, so that the scheme can maintain some
small queue which can used when the link is

Ž .under utilized. This implies that f Q should be
greater than one for small queue lengths.

Ø In the steady state, we desire that the queue
length be constant and the target rate to be the

Ž .max-min fairness rate. The function Q t satisfies
Ž .this goal if f Q s1 in the steady state.

Ø If the queue is large then part of the link capacity
Ž .is used to drain the queue. Hence f Q should be

less than one. It is desirable not to use all the
capacity to drain the queue. Therefore, there is a

minimum threshold, the queue drain limit factor
Ž . Ž .QDLF , for f Q .

Ž .Ø The f Q function has to be continuous. Disconti-
nuities imply sudden changes which give rise to
oscillations.
The queue control function with above properties

will be of the form

)1, 0FQFQ ,° 0

s1, Q -QFQ ,0 1~f QŽ .
-1, Q -QFQ ,1 2¢sQDLF, Q -Q-`2

where Q -Q -Q -`.0 1 2

The following functions are possible candidates:

Step function
ŽThe step function has multiple thresholds see

Ž ..Fig. 1 b . This is the simplest one to implement in
Ž .hardware lookup table .

s , 0FQFQ ,° a 0

1, Q -QFQ ,0 1~f Q sŽ .
s , Q -QFQ ,b 1 2¢QDLF, Q -Q-`2

where s )1 and QDLF-s -1 are step parame-a b

ters. In general it can have n steps. In the above case
ns4.

Linear function
Ž .The function f Q has linear relationship with

Ž Ž ..queue length see Fig. 1 b .

° QyQŽ .0
1ym , 0FQFQ ,b 0Q0

1, Q -QFQ ,0 1~f Q sŽ .
QyQŽ .1

1ym , Q -QFQ ,a 1 2Q1¢QDLF, Q -Q-`2

where m and m are slope of the linear portions.b a

This function can be implemented in an efficient
manner, using shift operations, if m and m are ofa b
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the form 1r2 k and the queue length is counted in
terms of Q .0

Hyperbolic function
Ž .The function f Q is a hyperbolic function of the

Ž Ž ..queue length see Fig. 1 b .

h Q° b 0
, 0FQFQ ,0h y1 QqQŽ .b 0

1, Q -QFQ ,0 1~f Q sŽ .
h Qa 1

, Q -QFQ ,1 2h y1 QqQŽ .a 1¢QDLF, Q -Q-`2

where h and h are the parameters which controla b

the degree of curvature of the hyperbolic function.
This function takes more time to calculate, since it
has a division operation. For a high value of h thea

hyperbolic function becomes similar to the step func-
tion. For an h value near 1, the hyperbolic functiona

approaches the linear function.

Inverse hyperbolic function
Ž .The fraction f Q is an inverse hyperbolic func-

Žtion of the queue length for overload conditions see
Ž ..Fig. 1 b . In the underload region, an hyperbolic

function is used.

l Q° b 0
, 0FQFQ ,0

l y1 QqQŽ .b 0

1, Q -QFQ ,0 1~f Q sŽ .
l Qa 1

2y , Q -QFQ ,1 2
l q1 Q yQŽ .a 1¢QDLF, Q -Q-`2

where l and l are the parameters which controla b

the degree of curvature of the inverse hyperbolic and
hyperbolic functions. This function is continuous and
smooth at both Q and Q .0 1

The curve used in the control function in under-
load region is called the ‘‘a-curve’’ and the one used
in over loaded region is called the ‘‘b-curve’’. The
parameters used in the a-curve s ,m ,h ,l are calleda a a a

a-parameters. s ,m ,h ,l are called the b-parame-b b b b

ters. Note that, since all the functions are continuous,
Ž .at Q we have the equation f Q s QDLF. So, Q2 2 2

can be expressed in terms of QDLF and a-parameter

for linear, hyperbolic and inverse hyperbolic func-
tions.

4. Metrics

To compare the performance of the queue control
function the following metrics are chosen:

ConÕergence time: The time the scheme takes to
converge to steady state. To find the convergence
time, the variance and standard deviation of desired

Ž Ž . .variable are calculated between i= t , iq1 = tk k
Ž .for is0,1, . . . , where t s100 ms is a small timek

.interval . Initially the standard deviation is large due
to oscillations. The convergence time is i= t afterk

which the variance is small. Also the graphs of
Ž .meanqstandard deviation value of the variable
versus time are plotted. From the graph the conver-
gence time can be calculated.

Standard deÕiation: The standard deviation of
various quantities like ACRs, queue length and uti-
lization is calculated. In order to separate the oscilla-
tions before steady state from affecting the measure-
ment, the variance is measured both before and after
steady state is achieved.

Visual inspection of the graphs also gives a good
idea about the convergence time and the variations.

5. Analytical explanation

In this section we analyze the behavior of the
proposed queue control functions. We assume a sim-
ple configuration in our analysis. N infinite ABR

Ž .sources always having data to send are sending
Ž .data to N ABR destinations see Fig. 2 . The perfor-

mance study under more stressful conditions is done
by a simulation using the Generic Fairness configu-

w xration - 2 7 in Section 7.
The change in queue length in a averaging inter-

val t is given bys

DQs f Q ty t y1 =R =C t .Ž .Ž .Ž .ž /f l s

Ø Initial behaÕior: In the beginning, the queue
Žlengths grow depending on the initial ICR initial

.cell rate . So the maximum queue depends on the
ICR and round trip time and is independent of the
queue control function used. The feedback infor-
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Ž . Ž .Fig. 2. a Queue behavior for inverse hyperbolic function. b N source – N destinations configuration

mation reaches the sources and the sources adjust
their rates accordingly.

Ø Under utilized: The switch initially estimates that
the link is under utilized. The queue control func-

Ž .tion during under utilization is f Q )1 for Q-

Q . So, the switch gives feedback to the sources0

to increase their rates. Due to the increased rates
the queue length at the switches increase. The rate
of increase of the queue length is dictated by the
b-curve of the queue control function.

Ø OÕer loaded: Either due to the increase in the
source rates or due to the high ICRs an overload
condition occurs and queues at the switch grow.
Initially the feedback information is not accurate;
hence the queue might grow beyond the Q2

threshold. In such a heavy overloaded condition,
Žthe queues are quickly drained by using the 1-

.QDLF fraction of the link capacity. In the mean-
time the feedback control loop is established, and
the switch gives reliable feedback to the sources.
For the lightly over loaded region, i.e., queue
length in range of Q FQFQ , the a-curve is1 2

Ž .the queue control function. The value of f Q is
less than one in this region, which effectively
decrease the queue length.

Ø Steady state: The feedback information tries to
match the input rate to output rate. As the input
rate approaches output, rate the oscillations die
down and the network reaches steady state. In the
steady state, the rates and the queue lengths re-

Ž .main constant, since f Q s1

w xIt is shown in Ref. 8 that additive increase and
multiplicative decrease leads to the steady state. For

Ž .all four queue control functions f Q )1 for Q F0
Ž .Q-Q and f Q -1 for Q FQ-Q . The change1 1 2

Ž .in queue length depends on the value of f Q y1.
Hence, the change in the queue length is an multi-
plicative increase for under utilized region and an
additive decrease in the over loaded region. There-
fore, the queue length converges to a value between
Q and Q . An interesting point to note is that the0 1

amount of increase and the amount of decrease itself
is dictated by the current queue length and its dis-
tance from the steady state queue length range. The
behavior of the queue length for the inverse hyper-

Ž .bolic function is shown in Fig. 2 a . The figure
Ž . Ž .shows the queue length y-axis versus time x-axis .

The queue length decreases linearly in the range
Ž .Q FQ-` highly overloaded with slope QDLF.2

ŽFor queue length in the range Q FQ-Q lightly1 2
.overloaded, near the steady state the slope is given

Ž .by f Q y1. Hence, the queue decreases hyperboli-
Ž Ž . .cally inverse of f Q function of a-curve with

Ž .respect to time. In the steady state Q FQ-Q ,0 1

the queue length is constant. In under utilized range
0FQ-Q , the queue increases inverse hyperboli-0

Ž . Ž .cally since the slope is f Q y1 and f Q is hyper-
bolic.

5.1. Step function

Ž . Ž Ž ..If Q ty t -Q then f Q ty t ss )1, sof 0 f b

the queue grows till feedback information is passed



( )B. Vandalore et al.rComputer Networks 31 1999 1935–1949 1941

to the sources asking them to decrease their rate. The
queue grows for t time and it can be expressed asf

follows:

Q t sQ ty t q s y1 =R C t .Ž . Ž .Ž . Ž .f b l f

Ž .If the condition Q -Q t -Q is satisfied and the0 1

input rate matches the output rate, then the steady
state is achieved, and the queue remains at this
constant length.

Ž . Ž .If Q -Q t -Q then the Q t starts decreasing1 2
Ž .with slope y 1ys . This decrease also takes placea

for t time, if the queue ends up between Q and Qf 0 1

and if input rate is close to output rate then again the
steady state is achieved.

Therefore, for the system to achieve the steady
state, the value of queue length after one feedback
interval should be within the range Q and Q . This0 1

requirement is satisfied if the condition Q )Q q1 0
Ž . Ž .s y1 =R C t holds. Since step function hasb l f

discontinuities, it is very sensitive to queue length
value near the thresholds and steady state might not
be reached if the parameters are not set properly. If
parameters are not set properly, then the queue grows
from a value below Q for t time, crosses Q , and0 f 1

decreases for t time to a value less than Q . Then,f 0

this pattern repeats.

5.2. Linear function

Ž . Ž Ž ..If Q ty t -Q , then f Q t )1. Similar tof 0

the step function the queue keeps growing for t f
Ž Ž Ž .. .time with a slope of f Q ty t y1 =R . Butf l

unlike the step function, the slope now depends on
the value of queue length. After t seconds, if thef

Ž .queue Q t )Q , the queue length starts decreasing1
Ž Ž Ž .. .with a slope of f Q t y1 =R . The slope nowl

depends on the value of the queue length so the there
are no sudden changes in the slope. Therefore the
oscillations are fewer when compared to the step
function. If the system is near the steady state, then
the oscillations decrease, the queue length reaches a
value between Q and Q , and system reaches the0 1

steady state.

5.3. Hyperbolic function

The analysis for this case is similar to above. If
Žh and h parameter are close to one typical valuesa b

.are h s1.15, h s1.05 the hyperbolic functiona b

has similar behavior as the linear function. If h isa

high then the hyperbolic function is close to the step
function. Since the hyperbolic function has a larger

Žcurvature initially and then smoothes out, f Q q1
. Žd Q value will be smaller than corresponding f Q1

.qd Q value obtained using the linear function.
Hence, the fluctuations in the rates are greater, but
the queue draining is faster.

5.4. InÕerse hyperbolic function

The behavior of the queue length versus time for
Ž .the inverse hyperbolic function is shown in Fig. 2 a .

The behavior of this queue control function has been
explained earlier in this section. Since the inverse
hyperbolic function is continuous and smooth near
Q , it gives rise to less oscillations compared to other1

cases.

6. Simulation: configuration and parameters

In this section the two configurations used in the
simulations are explained. In all the simulation no

Ž .higher priority CBR and VBR traffic is present.

6.1. Simple configuration: N source – N destinations

Ž .In this configuration: see Fig. 2
Ø N infinite sources send data to N destinations.
Ø The traffic is one way.
Ø The initial values of ICR are chosen randomly in

Ž .the range 0, link rate .
Ø All links are of length 1000 km, which corre-

sponds to a propagation delay of 5 ms.
ŽØ All links have a bandwidth of 149.76 Mbps after

.accounting for SONET overhead .
ŽØ The sources start at random time between 0,

.t , where t is the round trip time. t sRTT RTT RTT

30 ms for the above configuration.

( )6.2. Generic fairness configuration - 2 GFC-2

Ž .This configuration see Fig. 3 was used to test
the performance of the queue control functions and
the switch scheme under more stressful conditions.
The value of link distance D was chosen to be 1000
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Fig. 3. Generic fairness configuration - 2.

km. In this configuration the expected max-min fair-
ness rate for the different VC’s are: A VCs s 10
Mbps, B VCs s 5 Mbps, C VCs s 35 Mbs, D VC
s 35 Mbps, E VCs s 35 Mbps, F VC s 10
Mbps, G VCs s 25 Mbps, H VCs s 52.5. This

w xconfiguration is explained more in Ref. 7 .

7. Simulation: results

In this section the simulation results using the
above two configurations are given. The graphs of
rates and queue length are given. The tables and the
graphs are used to study the performance of different

queue control functions. In the simulations for both
configurations, QDLF was chosen to be 0.5.

7.1. Simple configuration: results

Table 1 shows the performance for different step
Ž .values parameters of the step queue control func-

tions as the queue threshold Q is varied. The mean1

bottleneck link queue length, its standard deviation
Žbefore one second and after one second last two

.columns are shown in the table. Note that Q is2

fixed given the QDLF and other parameters of the
linear and hyperbolic functions. Number of sources
Ns3.

Table 1
Simple configuration: results

Queue a b Q Q Convg Mean Std dev Std dev1 2
Ž . Ž . Ž . Ž .control param param time s Q cells before 1 s after 1 s

Step 0.75 1.01 4Q 26Q - 252.93 552.21017 501.600 0

0.90 1.01 4Q 26Q - 98.04 651.82 241.430 0

0.90 1.05 4Q 26Q - 663.63 1226.70 840.360 0

0.95 1.01 4Q 26Q - 251.51 816.62 393.260 0

0.95 1.05 4Q 26Q - 124.11 805.32 240.040 0

0.95 1.01 2Q 26Q - 896.90 1386.87 1036.660 0

0.95 1.01 8Q 26Q - 483.20 1001.54 644.730 0

Linear 1r16 1r16 2Q 26Q 0.20 311.85 335.61 0.690 0

1r16 1r16 4Q 26Q 0.32 403.52 457.90 0.690 0

1r16 1r16 8Q 26Q 0.61 402.85 622.02 0.690 0

Hyperbolic 1.15 1.05 2Q 26Q - 509.94 423.89 205.650 0

1.15 1.05 4Q 26Q 0.32 214.19 500.14 0.860 0

1.15 1.05 8Q 26Q 0.82 220.96 862.25 0.630 0

Inverse 36 1.05 2Q 26Q 0.22 313.17 525.51 0.690 0

hyperbolic 16.5 1.05 4Q 26Q 0.25 209.50 580.15 0.500 0

6.75 1.05 8Q 26Q 1.12 202.27 704.02 16.980 0
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Fig. 4. Simple configuration: rate and queue graphs: step and linear queue control function.
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Fig. 5. Simple configuration: rate and queue graphs: hyperbolic and inverse hyperbolic queue control function.
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The following things can be observed from Table
1:
Ø The step function never converges entirely. The

values are fluctuating near the target values, so
the standard deviation after one second is lower
than the standard deviation in the first second.

Ø The linear and hyperbolic and inverse hyperbolic
functions reach steady state after one second since
the standard deviation after one second is very
small.

Ø As Q increases, the convergence time increases1

for the linear, hyperbolic and inverse hyperbolic
functions

Ø For Q s2Q , the linear function converged. The1 0
Ž .value of f Q for hyperbolic function value is

less compared to that of linear function, so the
queue is drained faster and Q becomes less than
Q . Therefore for the hyperbolic function the0

queue length and rate values are oscillating near
the target value. This is mainly because the hy-

Žperbolic function is not smooth not differen-
.tiable near Q . The inverse hyperbolic is smooth1

at Q so the queue lengths do converge in this1

case.
Ø For Q s8Q , the convergence time for hyper-1 0

bolic function and inverse hyperbolic is more
than linear. This happens since the both hyper-
bolic and inverse hyperbolic function vary slowly
near the steady state. The queue length variance is
more for the inverse hyperbolic function.

Ž . Ž . Ž . Ž .Fig. 4 a and 4 e , and Fig. 5 a and 5 e show the
ACR rate of the three sources.

The mean and standard deviation of the rates and
the queue lengths are calculated for every 100 ms.

Ž . Ž . Ž . Ž .These are shown in Figs. 4 b , 4 f , 5 b and 5 f for

Ž . Ž . Ž . Ž .ACR rates and in Figs. 4 d , 4 h , 5 d and 5 h for
the queue lengths. From these graphs the converging
time can be estimated. In steady state the oscillations
are small, the standard deviation is small compared

Žto mean. So the quantity mean q standard devia-
.tion has a value close to the mean in the steady

state.
For the step function, there is oscillation in all the

Ž .quantities rates, queue and utilization . For linear
and hyperbolic functions, the oscillations die down
and the system reaches steady state. In the steady
state, the rate and queue length are constant and
utilization is 100%. Hence the linear, hyperbolic
and inÕerse hyperbolic queue control functions ful-
fill the desired goal. This is consistent with the
analytical explanation given in the previous section.

In all the cases when the queue length and the
rates converge, the queue length is non-zero hence,
the utilization at the steady state is 100%.

7.2. GFC-2 configuration: results

The following parameters were used in the simu-
lations for this configuration:
Ø Thresholds: Q s 176, Q s 4 = Q , Q s 260 1 0 2

=Q , QDLFs0.5.0

Ø Step: s s0.95, s s1.01.a b

Ø Linear: m s1r16, m s1r16.a b

Ø Hyperbolic: h s1.15, m s1.05.a b

Ø Inverse hyperbolic: l s16.5, l s1.05.a b

Table 2 shows the performance for three queue
Ž .control functions. The table shows the H 1 VC’s

mean rate, switch queue length for SW5 and its
convergence time, standard deviation before one sec-
ond and after one second. The queue length variation

Table 2
GFC-2 configuration: results

Queue Quantity Convergence Mean Std dev Std dev
Ž . Ž . Ž .control time s before 1 s after 1 s

Ž .Step H 1 ACR - 72.81 18.4 4.46
SW5 queue - 284.28 878.63 281.85
Ž .Linear H 1 ACR 1.25 52.46 14.38 1.08

SW5 queue 1.3 455.46 1043.71 220.42
Ž .Hyperbolic H 1 ACR 1.45 52.77 13.57 0.58

SW5 queue 1.3 361.32 968.27 201.86
Ž .Inverse Hyperbolic H 1 ACR 1.51 52.38 14.04 0.92

SW5 queue 2.0 1443.72 3829.17 999.62
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Fig. 6. GFC-2 configuration: rate and queue graphs: step and linear queue control function.
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Fig. 7. GFC-2 configuration: rate and queue graphs: hyperbolic and inverse hyperbolic queue control function.
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is present in all three cases. The rate variation is
much less in the linear and hyperbolic functions
compared to the step function. This is also evident
from the graphs which are explained in the next
section.

7.3. GFC-2 configuration: graphs

The graphs in Figs. 6 and 7 were obtained by
simulating the GFC-2 configuration using the step,
linear and hyperbolic and inÕerse hyperbolic queue

Ž . Ž . Ž . Ž .control functions. Graphs 6 a , 6 e , 7 a and 7 e
show the ACR rate for one VC of each of A through
H type VCs versus time when different queue con-
trol functions are used. From these graphs it can be
seen that the expected rates are obtained when linear,
hyperbolic and inverse hyperbolic functions are used
for queue control.

Ž . Ž .The c and g graphs have the queue length for
all the switches. The maximum queue is due to the
initial overload, before the first round trip time. Once

Ž .the feedback control loop is established the f Q
value is QDLF and queues are drained quickly.

Ž Ž ..When step function Fig. 6 b is used the oscilla-
tions are more compared to the oscillations when

Ž . Ž . Ž .other functions are used. The graphs 6 b , 6 f , 7 b ,
Ž . Ž .7 f plot mean plus standard deviation for VC ACR

Ž . Ž . Ž . Ž .rates. Figs. 6 d , 6 h , 7 d , 7 h plot corresponding
Ž .meanqstandard deviation graphs for the queue
lengths.

Note that in the graphs when the step function is
used, some of the VCs do not get their max-min fair
share rates and the VCs near the fair share have
considerable oscillations. The step function is very
sensitive to queue length variation near the thresh-
olds. Since the configuration is complex, with large
number of VCs passing through each of the switches,
the queue length and hence the rates vary. For the

Ž . Ž . Ž .graphs 6 e , 7 a and 7 e the oscillations are only
present before steady state. The oscillations die down

Ž .and the rates become steady since the function f Q
changes smoothly. The maximum queue length is
same for all queue control functions since this de-
pends only on the ICR. When the inverse hyperbolic
function is used the queues are larger since in this
case the steady state queue length is near Q .1

7.4. Summary of results

The simulation results obtained by using different
queue control functions in the simple and the GFC-2
configurations are consistent with the analytical ex-
planation. The step function is sensitive to queue

Ž .thresholds Q ,Q ,Q used. The other functions are0 1 2

not sensitive to these queue thresholds. Small steady
state queuing delay can be achieved by choosing
nearby values for Q and Q .0 1

8. Conclusion

In this paper we have considered the problem of
designing a simple and robust queue control function
for switch schemes. A switch scheme tries to maxi-
mize utilization, minimize queuing delay and give
max-min fair rates to the sources. It is also desirable
to have less oscillations in rates and queue length to

Ž .support low quality video over ABR service. We
assume a switch scheme model which dynamically
adjusts the rate of the sources to match the output
rate and drain large queues. The design considera-
tions were discussed with analytical explanations.
Four different queue control functions were ana-
lyzed. The choice of parameters for the queue con-
trol functions was both explored analytically and by
simulation. The simulation showed that even in com-

Ž .plex configuration like GFC-2 the system behavior
was consistent with the analytical explanation. When
the step function is used, the systems oscillates and
does not converge in most cases. From both the
analytical and the simulation results, it can be con-
cluded that the inverse hyperbolic is the best queue
control function, followed by the hyperbolic and the
linear queue control functions. For simpler imple-
mentation complexity, the linear function is recom-
mended.
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