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Abstract

TCP traffic may have poor performance over unreliable wireless links if packet losses due to transmission errors are
misinterpreted as indications of network congestion. TCP enhancements proposed in the literature differ in their signaling
and data recovery mechanisms, applicable network configurations, traffic scenarios and locations where required changes
are made. In this paper we summarize the approaches used in existing enhancements and analyze their practicality, generality
and impacts on performance. Motivated by this analysis, we propose an enhancement that requires only local changes, but
applies to a broader range of network configurations and traffic scenarios. Simulation comparison with existing algorithms
shows that this new enhancement can analyze the cause of packet losses and can achieve much better performance.

1 Introduction

Transmission Control Protocol (TCP), the most widely used reliable transport protocol, was designed mainly for wired
networks where transmission errors are rare and the majority of packet losses are caused by congestion. An important
assumption of TCP congestion avoidance algorithm is that packet losses and the resulting timeout at the source are indications
of congestion and the source should reduce its traffic rate on timeout [1].

When applied to wireless networks where transmission errors are frequent, TCP is found to have poor performance if
proper enhancements are not made. This is because the assumption behind TCP congestion control algorithm that the majority
of packet losses are caused by congestion is no longer true. When a wireless loss? is treated as a congestion loss, the effective
TCP transmission rate drops to half. If transmission errors happen frequently, the effective transmission rate of the wireless
link becomes almost zero even though the network is not congested.
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Figure 1. Window reduction due to wireless losses

A scenario of such transmission rate drop is illustrated in Figure 1. Suppose the network between the source? and the
destination can sustain a window size of six packets. TCP is transmitting at this rate when a transmission error on the
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IWe call packet losses caused by wireless transmission errors “wireless losses” and those by network congestion “congestion losses”.
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wireless link causes a packet loss, resulting in out-of-order packets at the destination. Following current congestion control
algorithm, the destination sends duplicate ACKs back to the source. Upon the receipt of three duplicate ACKs, the source
assumes that congestion has happened in the network, retransmits the lost packet and reduces the window by half. Thus, the
connection that can send six packets in a window is now sending only three, even though the network is not congested.

The rapid development of mobile and wireless networks is a driving force for wireless TCP enhancements. In the past
few years, numerous enhancements have been proposed. Theses enhancements differ in their signaling and data recovery
mechanisms, applicable network and traffic configurations, and locations where changes need to be made. These approaches
have big impacts on the feasibility, generality, effort and performance of the enhancements. In this paper we classify and
evaluate the approaches used by major enhancement proposals in the literature, and propose a new enhancement that requires
only local changes at the wireless hosts.

The rest of this paper is organized as follows. Section 2 is a review of related work. Section 3 is an analysis of the
approaches used in the existing enhancements. In Section 4, we present the idea and algorithms of our new enhancement.
Section 5 discusses possible mistakes our enhancement may make and their impact on performance. In Section 6, we present
comprehensive simulation results as compared with major existing enhancements. More notes and the conclusions are given
in Sections 7 and 8.

2 Related Work

The problem of TCP’s poor performance on wireless links has been noticed by many researchers, a number of enhance-
ments have been proposed. This section serves as a brief review of major enhancements proposed in the literature.

The Link layer retransmission protocols are probably the earliest solutions to the transmission error problem. These
protocols use Forward Error Correction (FEC) and Automatic Retransmission Request (ARQ) to build a reliable link layer so
that upper layers are less affected by the lossy characteristic of the wireless link. In reality, the retransmission mechanisms
in the two layers may respond to the same loss event and cause undesirable interaction. Although some studies show that
reliable link layer through retransmissions can achieve good TCP performance [7, 8, 9, 10, 11, 12], they also point out that the
retransmission schemes were designed for the characteristics of specific TCP connections and transmission error conditions.
When the error condition changes or when applied to TCP connections of different characteristics, an undesirable interaction
and performance degradation may happen.

I-TCP [2] is an early protocol that splits the entire path into two separate connections, a wired connection between the
source and the base station, and a wireless connection between the base station and the wireless host. I-TCP runs TCP/IP
independently on the two connections. Therefore, transmission errors happening on the wireless connection do not affect the
wired connection, and congestion happening on the wired connection does not affect the wireless connection. This method
is simple in concept and easy to implement. Its major drawback is that the acknowledgments received by the source do
not mean that the packets have been received by the intended destination. When the wireless host moves to another cell or
when the base station crashes, some acknowledged packets may never be received. So this method violates TCP’s end-to-end
semantics. The second drawback of this method is heavy buffering at the base station. Because the two TCP connections are
not coordinated, transmissions on the two connections may run at different rates. A large number of packets may pile up at
the base station, and may cause packet losses if the buffering is insufficient.

The Multiple Acknowledgments method [3] uses two types of acknowledgments to distinguish losses in wired network
and losses on wireless link. This method applies only to the configuration where only the last hop is wireless and the
wireless host is the destination. A partial acknowledgment (ACKp) 2 indicates that the base station has received the packet,
and a complete acknowledgment (ACKc) means the packet has been received at its final destination. When the base station
receives a packet, it sends an ACKp to the source and delivers the packet to the wireless host. If the local retransmission timer
expires, it retransmits the packet to the wireless host locally. TCP acknowledgments from the wireless host are forwarded
only if they are needed by the TCP at the source. ACKs that trigger unnecessary retransmissions are discarded. When the
source receives an ACKp, it marks that the packet has been received by the base station. Only when the packet is not received
by the base station, will the packet be retransmitted and the congestion control actions taken.

3The “partial acknowledgments” here are not the “partial acknowledgments” used to mean ACKs that cover new data but not all the data outstanding as
in RFC 2581.



By using partial acknowledgments, unnecessary end-to-end retransmissions on the wired networks are avoided. Packets
partially acknowledged but not completely acknowledged within a certain time will be considered as wireless losses and
will be retransmitted. This method can distinguish the cause of packet losses, at the cost of extra traffic to send the partial
acknowledgments. The main problem of this method is that it needs modification at the fixed host and the base station. If we
assume that the wireless host should be able to communicate with any computer on the Internet, then this method actually
requires all computers on the Internet to change their TCP algorithm.

The Control Connection method [4] creates a control connection to measure the congestion status on the wired network.
Suppose the payload connection has a last-hop wireless link and the wireless host is the destination. The control connection
has the same path in the wired network as the payload connection but terminates at the base station. Packets of both con-
nections are assumed to be routed in the same way and hence experience the same congestion in the wired network. If both
connections lose packets at the same time, then the lost packet in the payload connections is regarded as a congestion loss,
thus triggering the congestion control mechanism. If the control connection has no packet loss, then the lost packet in the
payload connection is regarded as a wireless loss. Other than retransmitting the lost packet, no congestion control will be
triggered.

This method is based on unrealistic assumptions. First, the assumption that the two connections have the same route is
questionable. Second, when congestion happens, the chance of packets being dropped at the same time on both connections
is not certain. In addition, in order to monitor the congestion status, the control connection need to run at a rate comparable
to the first connection, and thus adds a significant overhead traffic to the network.

The snooping protocol [5] introduces a snooping agent at the base station to observe and cache TCP packets going out
to the wireless host, as well as acknowledgments coming back. By comparing the cached packets and acknowledgments,
the agent is able to determine what packets are lost on the wireless link and schedule a local link layer retransmission. At
the same time, duplicate acknowledgments corresponding to wireless losses are suppressed to avoid triggering an end-to-end
retransmission at the source. Unlike other proposals, the snooping protocol can exactly find the cause of packet losses and take
actions to prevent the TCP source from making unnecessary window reductions. However, the snooping protocol requires
the base station to cache TCP segments and keep per-connection state, so the storage and processing at the base station are
heavy. Second, the base station needs to check TCP header to find the sequence numbers and the acknowledgments. When
the packets are encrypted, such as in IPSec traffic, this method does not work.

The original snooping protocol only works for traffic from the fixed host toward the wireless host. When the wireless
host is a source, the base station has to switch to the “explicit loss notification”. Proposed by the same author, the Explicit
Loss Notification (ELN) [6] uses a bit in the TCP header to communicate the cause of packet loss to the TCP source. At
the base station, a snooping agent monitors all TCP segments that arrive over the wireless link as well as acknowledgments
from the wired network. ELN does not cache TCP segments as in the snooping protocol, but keeps track of TCP sequence
numbers. These holes in the TCP sequence space correspond to segments that have been lost over the wireless link. When
an ACK corresponding to a hole arrives from the wired network, the ELN bit in the ACK is set before being forwarded to
the data source. When the source receives an ACK with ELN bit set, it retransmits the indicated segment but does not take
any congestion control action. ELN can detect the exact cause of packet loss and take correct action to prevent unnecessary
window reductions, but has the same drawbacks as the snooping protocol. In addition, ELN introduces unnecessary delay for
retransmitted packets. When the base station detects a wireless error, it does not ask for a retransmission immediately, but
waits for the duplicate ACKs coming back to trigger the retransmission.

The Delayed Duplicate Acknowledgments (DDA) algorithm [13] attempts to imitate the behavior of the snooping pro-
tocol, but makes modifications at the receiver rather than the base station. It assumes a link level retransmission scheme is
implemented. When out-of-order packets are received, the destination sends duplicate ACKs for the first two out-of-order
packets. If it gets more of them, the destination defers ACKs for these packets for a duration d. If during this period, the next
in-sequence packet arrives, the destination discards the deferred duplicate ACKs and sends a new ACK. If the in-sequence
packet does not arrive during this period, the destination releases the deferred duplicate ACKs to trigger a retransmission.
DDA is a simple proposal and requires modification only at the wireless host. However, it can not distinguish wireless and
congestion losses. By treating all packet losses as wireless losses, it increases the delay of retransmitted congestion losses.

Besides the above methods, several source-side enhancements have been proposed. These enhancements make use of
the returned acknowledgments at the source of the TCP connection to estimate the available bandwidth, experienced delay



or other congestion signal and use them to decide the congestion control actions in the presence of wireless losses. These
enhancements include TCP Santa Cruz [15], TCP Peach [16], TCP Westwood [18] and TCP Jersey [19]. Wireless TCP
[14] tries to distinguish wireless losses from congestion losses by measuring the ratio of the packet inter-packet arrival time
at the destination to the average inter-packet departure time at the source. The destination updates the transmission rate at
regular interval. This methods thus predicts the cause of packet losses. TCP Santa Cruz [15] uses the extra 40 bytes in the
option fields of the TCP header to return a time stamp to the source in the ACK packets. From the time stamp, the source
can monitor the relative delays that packets experience with respect to each other in the forward direction. Based on the
observation that congestion losses are preceded by an increase in the network bottleneck queue while wireless losses are not,
TCP Santa Cruz simply retransmit most losses without reducing the transmission window. TCP Peach [16] and TCP Peach+
[17] are designed particularly for satellite communications. Using specially designed dummy segments, the source can probe
whether there are unused resources in the network and accordingly increase its transmission rate. By adding a Sudden Start
phase and a Rapid Recovery phase, TCP Peach overcomes the impact of large bandwidth-delay product on TCP efficiency.
An important assumption of TCP Peach is that the routers must support priority queueing. In TCP Westwood [18], the
sender estimates the available network bandwidth dynamically by measuring the round trip time of returning ACKs. After a
congestion episode, TCP Westwood use the bandwidth estimate to set the congestion window and the slow start threshold.
Compared with TCP Reno, TCP Westwood introduces a faster recovery mechanism after a packet is lost, which happens
more often in wireless networks. TCP Jersey[19] uses a congestion warning mechanism implemented in the routers and an
available bandwidth estimator at the source of the connection to optimize the congestion window when network congestion
is detected.

The major problems these sender-side enhancements is the location of needed changes. Instead of making changes local
to the wireless link and host, they require changes in all computers that communicate with the wireless host. In a typical
scenario where a wireless service subscriber connects his wireless device to the Internet, these enhancements would require
all computers on the Internet to change their TCP code. Obviously this is not a practical solution.

3 A Classification of Wireless TCP Enhancements

Enhancement proposals in the literature differ widely in their mechanisms, applicable configurations and locations where
needed changes are made. This section is an attempt to summarize the approaches used in these proposals to generate insight
on the directions of practical and effective enhancements.

3.1 End-to-end vs Split

TCP is an end-to-end protocol — a packet is acknowledged only after it is received by its final destination. Enhancements
that preserved this semantic are called end-to-end enhancements. Some enhancements split the entire path into a wired
connection and a wireless connection and run TCP independently on both connections. When the transmission of a packet is
complete in one connection, it is acknowledged to the source and relayed to the next connection. Such enhancements do not
preserve TCP’s end-to-end semantic and are called split enhancements.

I-TCP [2] is the most typical split enhancement. Other methods we reviewed in the previous section are end-to-end
enhancements.

The main problems of split enhancements are its unreliable transmission (packets acknowledged may not be received) and
the buffer overflow caused by lack of coordination between the two TCP connections. Even though split enhancements can
be used in certain circumstances, end-to-end would be a desired TCP characteristic to preserve.

3.2 Local vs Global

The second important criterion to evaluate enhancements is the locations where the required changes are made. An
enhancement is considered local if it requires changes only in network components that are under the control of a wireless
service provider, such as the base stations and the wireless hosts. If an enhancement requires changes outside the control of a
wireless service provider, it is regarded as global. When a wireless service provider offers an Internet service, he can modify
the code in base stations and wireless hosts to improve TCP performance, but requiring immediate changes in all hosts that
his subscribers visit is simply impossible.

Theoretically, global enhancements can be deployed incrementally — individual fixed hosts can update their software
independently to improve the performance for wireless connections. However, in reality fixed hosts that mainly serve wired



connections are less likely to take the overhead of wireless enhancement just for the benefit of a few wireless connections.
Many legacy systems will stay for many years. We believe that wireless hosts or base stations are the right place for wireless
TCP enhancements, and the enhanced protocols must be able to talk with existing TCP versions in the wired network.
Therefore, we believe local enhancements are definitely more preferable than global enhancements.

Examples of global enhancements are the Multiple Acknowledgments method [3], the Control Connection method [4]
and the source-side enhancements [15, 16, 17, 18, 19]. All these methods required changes in the wired networks. They can
be used in proprietary systems where the sources, the destinations and the base stations are under the control of the service
provider, but these methods are not suitable for general purpose communications.

3.3 Transparent vs Snooping

If an enhancement needs to read header information in the IP payload at an intermediate node, we call it a snooping
enhancement. Otherwise, we call it a transparent enhancement.

The Snoop protocol [5], ELN [6], I-TCP [2] and the Multiple Acknowledgments [3] methods belong to the snooping
enhancements category. Note that the word snooping here does not imply the use of the Snoop protocol.

Generally, snooping enhancements cannot be applied to encrypted traffic (such as IPSec traffic) where TCP header is
readable only at the final destination. As security has become a growing concern, transparent enhancements are preferable to
snooping enhancements.

3.4 Two-Way vs One-Way

The ability to provide enhancement for traffic in both ways is the next important criterion. An enhancement is called one-
way or two-way, depending on whether the enhancement can be applied to one-way or two-way traffic. Many enhancements
were designed for traffic from the wired network to the wireless host under the assumption that downward traffic from the
wired network is the major traffic activity. Such methods are one-way enhancements.

The importance of this criterion lies in the fact that hardly any communication is only one-way. In reality, traffic in both
directions is subject to transmission errors. In order to fully mitigate the impact of transmission errors, the enhancement
should deal with traffic in both directions.

The Multiple Acknowledgments method [3] and the Control Connection method [4] are both one-ways enhancements.
The snooping protocol [5] and ELN [6] initially were one-way enhancements, but they can be combined to offer a two-way
enhancement.

3.5 Intermediate-Link vs Last-Hop

Enhancements that work only for wireless links as the last hop of TCP connections are called last-hop enhancements. On
the contrary, enhancements that work for intermediate wireless links, such as satellite links and ad-hoc networks are called
intermediate-link enhancements. Here, the last-hop wireless links are a special case of the intermediate wireless links.

The last-hop scenario is still the most common network configuration in wireless networks. That is why the majority of
enhancement proposals are based on this configuration. Intermediate wireless links have begun to gain more attention because
of the growing use of ad-hoc networks and wireless LANs. Since intermediate wireless links also have the performance
degradation problem, intermediate-link enhancements are needed to solve the degradation problems.

The multiple Acknowledgments method [3], the Control Connection method [4], Snoop [5] and ELN [6] protocols are
all last-hop enhancements. Link layer retransmission protocols and Delayed Duplicate Acknowledgments [13] algorithm are
intermediate-links enhancements. They can be used regardless of the location of the wireless link.

3.6 Signaling vs Hiding

An enhancement is called hiding if it attempts to hide wireless losses from upper layers so that TCP code needs no
changes. The opposite approach is called signaling, which detects and reports the cause of packet losses to TCP layer so that
proper recovery actions can be taken. Hiding is the principle of most pure local link layer retransmission enhancements.

Signaling enhancements, on the other hand, report the cause of packet losses to TCP layer so that proper actions can be
taken to avoid the undesirable interaction. In this way, signaling enhancements can be applied to different connections and
transmission error conditions. All the source-side enhancements [14, 15, 16, 17, 18, 19] are signaling enhancements.



3.7 Summary of Classification

As analyzed above, end-to-end, local, two-way, intermediate-link, transparent and signaling are desirable characteristics
of wireless TCP enhancements. Table 1 is a summary of the major enhancement proposals in the literature. Although all
enhancement proposals work well under certain scenarios, we find that none of the major enhancements has all the desired
characteristics. Therefore, these enhancements will be limited in their practicality, generality or performance.

Table 1. Classification of existing enhancements

End-to-end | Local | Two-way | Int.-link | Transparent | Signaling

Retransmission Protocols Vv Vv Vv Vv Vv

I-TCP Vv Vv i i
Multiple Ack Vv N
Control Connection Vv Vv Vv
Snoop v v v v
ELN v v v v
Delayed Dupacks Vv Vv Vv Vv Vv
WirelessTCP Vv Vv Vv Vv
TCP Santa Cruz Vv Vv Vv Vv
TCP Peach Vv Vv Vv Vv
TCP Westwood Vv Vv Vv Vv
TCP Jersey v v v v

Note: Snooping and ELN were first proposed as one-way solutions, but they can be com-
bined to provide a two-way solution.

4 Congestion Coherence: A New Proposal

Our proposal is to implement local retransmissions on the wireless link and use a scheme based on the coherence of
congestion marking to detect the cause of packet losses. The term coherence is defined later in this paper. The details are
described below.

4.1 Assumptions

An important assumption of our proposal is that Explicit Congestion Notification (ECN) is implemented in the wired
network. ECN was developed from the binary congestion feedback scheme used in [20] and introduced into IETF by Floyd
and Ramakrishnan [21]. It uses two bits in the IP header and two bits in the TCP header for ECN capability negotiation and
feedback delivery. When its queue length exceeds a threshold, a router marks the packet as congestion experienced. At the
destination, the Congestion Experience bit is copied to the ECN-echo bit in the TCP acknowledgment and sent back to the
source with the ACK. Upon receiving the ECN-echo, the source reduces its congestion window to alleviate the congestion.

As a congestion control mechanism, ECN has proved to be more effective than using packet losses to signal the congestion
status of the network. It avoids unnecessary packet drops and retransmissions. In RFC 2309 [22], it was recommended to be
widely deployed as a router mechanism on the Internet, and was specified in RFC 2481 [23] in 1999. ECN implementation
is now widely supported and readily available at network routers.

4.2 Local Link Layer Retransmission
In our proposed enhancement, local retransmissions are performed in the link layer. All packets transmitted on the wire-

less link are locally acknowledged before being deleted from the sender’s buffer. Packets negatively acknowledged or not
acknowledged after a short timer times out are retransmitted.



Retransmissions of failed packets have higher priority than new packets. This is important to reduce the delay of the
retransmitted packets, and minimize the chance of triggering end-to-end retransmissions from the source. One way of imple-
menting higher priority is to use the “insert at the front” strategy. When a packet is detected to be lost, the link layer inserts
the failed packet into the front of the transmission queue and transmits it when the medium is available.

The maximum number of retransmissions for a failed packet is configurable. The link layer can either retransmit persis-
tently or stop after a specified maximum number of retransmissions.

Because of the possibility of successive failures, link layer in-sequence delivery is not supported. Therefore, out-of-order
packets at the destination can imply a congestion loss or a wireless 1oss.

4.3 Detecting Cause of Packet Losses

In order to distinguish between congestion and transmission errors, the wireless end needs a mechanism to detect the cause
of packet losses. To introduce the idea, assume that the wireless host is the TCP destination.

Out-of-order packets are the indications of packet losses. Both congestion losses and wireless losses cause out-of-order
packets and create holes in the packet sequence number space, but their consequences are different. A hole caused by a
wireless loss will be filled when its retransmission arrives, but a hole caused by a congestion loss will not be filled without
an end-to-end retransmission from the source. If the destination knows that the hole is a wireless loss, it should wait for the
retransmission. Timeout at the source is a way to trigger the end-to-end retransmission, but timeout is usually associated
with a prolonged period of idling. A better way to trigger the end-to-end retransmission is through the fast-retransmit. If the
destination knows the hole is a congestion loss, it should send the duplicate acknowledgments right away to trigger the fast
retransmit.
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Figure 3. Abrupt queue length change

The scheme to determine the cause of packet losses is based on the observation that congestion neither happens nor
disappears suddenly. Before congestion becomes so severe that a packet has to be dropped, some packets must be marked
as “Congestion Experienced” by ECN. Similarly, after a packet is dropped, congestion does not disappear immediately.
The queue size falls gradually and some packets are marked. Figure 2 depicts a likely queue length change scenario at the
congested router. Between the time that no packet is marked and the time that a packet is dropped, some packets must be
marked. An abrupt change depicted in Figure 3 is very unlikely.

As a result, congestion losses are normally preceded and followed by marked packets, see Figure 4. We call this phe-
nomenon congestion coherence of ECN marking.
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Figure 4. Congestion coherence

Figure 4 shows the markings of packets passing through a congested router. These packets may belong to different
connections or flows, but from the destination’s point of view, only the packets that belong to the same connection are visible
to its TCP. Since the inter-packet time interval is normally much smaller than the duration of congestion, the congestion
coherence phenomenon also happens in individual connections.

The neighborhood of a lost packet is defined by the coherence context within the same connection. There are different ways
to define the coherence context, but we find that defining the coherence context of packet n as packets {n — 1,n + 1,n + 2}
of the same connection yields effective results. More discussion on coherence context is given in Section 7. A packet loss
will be considered as a congestion loss if any packet in its coherence context is marked by ECN. In this case, the wireless
host responds with duplicate acknowledgments to trigger an end-to-end retransmission and window reduction at the source
as specified in RFC 2481 [23].

In contrast to the congestion loss situation, if none of the neighbors of a lost packet is marked, the lost packet is most
likely lost due to a wireless error. In such cases, the wireless host holds the duplicate acknowledgments until the packet is
successfully received through retransmissions on the local link layer.

There are cases where a wireless loss happens during congestion. The Congestion Coherence algorithm will make a
mistake in determining the cause of packet loss, but the congestion control actions it takes are needed because of the on-
going congestion. Section 5 will discuss the mistake scenarios in more details.

Occurrence of transmission errors is normally independent of congestion. If any packet in the coherence context is marked
by ECN, congestion control actions are needed to reduce the TCP transmission rate. The chance of having a congestion loss
without a marked packet in the coherence context is very small.

The same idea can be applied to the wireless source case. When the wireless source receives duplicate acknowledgments, it
checks whether the coherence context contains an ECN-Echo. If yes, then the duplicate acknowledgments are likely caused
by a congestion loss, so the source invokes the congestion control. Otherwise, the duplicate acknowledgments are likely
caused by a wireless loss. In this case, the source ignores duplicate acknowledgments until the local retransmission succeeds.

4.4 Algorithm

In our proposed approach, the modifications to the existing TCP algorithm are made in the wireless end. Based on
the technique discussed above, this approach is named Congestion Coherence (CC). Figures 5 and 6 show the modified
destination and source algorithms.

It should be noticed that the modifications to the receiving and sending algorithms are made on the same end. The
Congestion Coherence algorithm at the wireless end hides the lossy characteristic from the other end so no change is needed
in the fixed end, intermediate routers and the base station. If the wireless link is in the middle, such as a satellite link or in an
ad-hoc wireless network, the modifications can be made on either end.

4.5 Proposal Summary

The proposed enhancement is a transport layer signaling enhancement with link layer retransmissions. By utilizing the
congestion coherence of ECN marking, it provides a light-weight TCP enhancement on wireless links. It has all the desirable
characteristics discussed in Section 3.

Even though this enhancement needs ECN support in all routers in the wired network, we still consider it as a local
enhancement. This is because ECN is a protocol to improve wired networks even though no enhancement for wireless links
is needed.



e The TCP destination follows existing algorithm for sending new acknowledgments,
first and second duplicate acknowledgments.

e When the third duplicate acknowledgment is to be sent, TCP destination checks
whether the coherence context is marked. If yes, the acknowledgment is sent right
away. Otherwise, it is deferred for w ms, which is predetermined according to the
time to complete a local link layer retransmission. A timer of w ms is started.

o If the expected packet arrives during the w ms, a new acknowledgment is generated
and the timer is cleared.

o If the timer expires, all deferred duplicate acknowledgments are released.

Figure 5. CC Destination Algorithm

The proposed enhancement also applies to two-way traffic, intermediate wireless links and encrypted traffic.

5 Mistake Scenarios

The Congestion Coherence algorithm provides a calculated guess of the cause of packet losses. However, congestion
and wireless errors are not exclusive events. When they happen together, the exact cause may not be easily distinguished.
In addition, bursty background traffic may also affect the determination of the cause. In this section, we analyze such
complicated scenarios and discuss whether appropriate congestion control and packet recovery actions are taken.

There are two scenarios in which the Congestion Coherence algorithm could make a mistake in determining the cause of
the packet losses.

The first mistake scenario is a wireless error occurring in a congestion episode. In this scenario, the neighbors of the lost
packet are marked because of the on-going congestion. Therefore, the Congestion Coherence algorithm treats the wireless
loss as a congestion loss. The wireless host releases the third duplicate acknowledgment to trigger an end-to-end retrans-
mission for the recovery of the lost packet and to start the congestion control actions as a standard TCP procedure at the
fixed host. In this case, the end-to-end retransmission is unnecessary because local link layer retransmission will deliver the
packet again. However, starting the congestion control is needed because of the congestion. Since congestion control is more
important than retransmitting a single packet, sending the third duplicate acknowledgment is the correct action.

The second mistake scenario is a buffer overflow caused by a sudden burst of background traffic as shown in Figure 3.
The burst of background traffic has to come and disappear so rapidly that neighboring packets of the lost packets are not
marked. Such mistake scenario is normally a misconfiguration of the marking-control parameters and rarely happens. In this
case, the Congestion coherence algorithm regards the packet loss as a wireless loss and will wait for retransmission of this
packet by the local link layer. It holds the third and further duplicate acknowledgments to avoid end-to-end retransmission
and congestion control actions by TCP at the fixed host. In the absence of a local retransmission, the destination times out
and releases the deferred duplicate acknowledgments to trigger the end-to-end retransmission and congestion control actions.
The cost of this mistake is a delay in the end-to-end retransmission and congestion control actions. Since the congestion
caused by the background traffic is transient, this delay has a very limited impact on the TCP performance.

Our simulation results show that the mistakes are very rare and their impact on the performance is negligible.

6 Performance Comparison

In order to evaluate the performance of the proposed Congestion Coherence enhancement, we performed a set of simula-
tions with the ns simulator [24], and the results are compared with several known enhancements.



e The TCP source follows existing algorithm for sending packets and updating the
congestion window upon receiving new acknowledgments, and first and second du-
plicate acknowledgments.

e When the third duplicate acknowledgment arrives, the source checks whether any
acknowledgment in the coherence context is an ECN-Echo. If yes, the packet cor-
responding to the duplicate acknowledgments is sent right away and the congestion
window is reduced to half if a reduction has not been done in the previous RTT.
Otherwise, the source ignores the duplicate acknowledgment and a timer of w ms is
started.

e If a new acknowledgment arrives during the w ms, the timer is cleared and new
packets are sent as if the duplicate acknowledgments did not happen.

o If the timer expires, the packet corresponding to the duplicate acknowledgments is
sent and the congestion window is reduced to half if a reduction has not been done
in the previous RTT.

Figure 6. CC Source Algorithm

6.1 Simulation Model

The simulations are performed on the simplified network model shown in Figure 7, where s, so are the sources and dy , do
are the destinations. The link between intermediate routers r; and r5 is the bottleneck link. The link between r5 and d; is a
wireless link. The numbers beside each link represent its rate and delay.

L

1.5Mb, 1ms -~

1.5Mb, 20ms

rl r2
(12)
10Mb, 1ms 10Mb, 1Ims

Figure 7. Simulation model

The experiment traffic is an FTP session from s; to d; using TCP Reno as the transport protocol. A UDP flow from
s2 10 dy generated by an exponential on-off model is used as the background traffic. The mean burst period and the mean
silence period are 100 ms, and the burst data rate is 500 kbps. Both TCP and UDP packet sizes are 1000 bytes, and TCP
acknowledgments are 40 bytes long.

Packets transmitted on the wireless link are subject to random transmission errors. The raw packet error rate varies from
0.001 to 0.1. Considering the packet size of 1000 bytes, the bit error rate is roughly 10~7 to 10~2. For transmission systems
that use FEC, this bit error rate should be the residual error rate of FEC.

Link layer retransmissions are implemented on the wireless link. Packets sent but not acknowledged at the link layer in
40 ms are resent. Retransmitted packets have high priority than new packets, but they are also subject to transmission errors
at the same rate. The waiting time w at the destination is set at 81 ms so that packets delivered within two retransmissions
are accepted.

The marking policy of the Random Early Detection (RED) algorithm is important to congestion coherence. The average
queue length and the probabilistic marking in the original RED proposal [25] generate nice congestion coherence, but we find
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that actual queue length and a deterministic marking region provide even better coherence. This can be done by configuring
the queue weight as 1 and choosing a th,,., sSmaller than the buffer size. The marking probability is shown in Figure 8.

marking probability

no action dropping

p_max

gueue size

th_min th_max buffer size

Figure 8. Marking and dropping policy used for congestion coherence

In our simulations, we studied the router and TCP traces to find out what happened to each packet and what decision our
scheme made for each lost packets. By analyzing these traces, we can determine the wireless losses, the congestion losses,
the retransmissions, the timeouts and the mistakes rate.

To demonstrate the steady state measurement, the simulation time should be long enough to minimize the effect of the
initial transient state. In our experiment, we tried various simulation times and found the results of 500 seconds show the
essential features without noticeable differences from longer simulations, so all aggregate measurements are collected from
500-second simulations.

In our simulations, we compared the performance of TCP Reno, DDA, Snoop, TCP Westwood and Congestion Coher-
ence. When the wireless host is a source, Snoop is replaced by ELN. The script of Snoop is a modification of the Snoop
script provided in ns2, and the code for TCP Westwood is download from TCP Westwood Home Page [26]. Among these en-
hancement methods, Congestion Coherence is the only one that uses ECN. To show that ECN without congestion coherence
does not solve the degradation, we also included TCP Reno with ECN in our comparison. We did not compare with I-TCP,
Multiple Acknowledgments, Control Connection and other source-side enhancements.

We experimented with various network configurations, including wireless link as the last hop (wireless destination), as the
first hop (wireless source) and as an intermediate link. Congestion Coherence works for all three configurations and has a
similar performance. The performance comparisons presented below are for the wireless destination configuration.

6.2 Performance Results

Our first group of results, shown in Figure 9, is the TCP congestion window and queue length of each proposal. They
are collected from 40-second simulation traces. The raw packet error rate (without counting the improvement of local link
layer retransmissions) in the simulation is 0.1, corresponding to a bit error rate of roughly 10~5. A calculation shows that the
delay and bandwidth the wireless connection can support a window size of about 10 packets, but as shown in the figure, the
window sizes of TCP Reno and ECN are reduced frequently. Their corresponding queue size graph shows the queue at the
bottleneck link is almost always empty. Therefore, their link efficiency is very low. Snoop and DDA solve the problem of
unnecessary window reductions caused by transmission errors. The window size is significantly increased and the bottleneck
link is better utilized. Nevertheless, the spikes in the bottom of Snoop and DDA cwnd figure indicate these two methods
suffer severe degradation from timeouts. Congestion Coherence avoids unnecessary window reductions and timeouts. The
queue size figure shows that Congestion Coherence has high link efficiency also.

The major metric to evaluate the enhancement proposals is goodput, which is defined as the number of packets successfully
received and acknowledged by the wireless destination, excluding the retransmitted packets. The goodput of the five proposals
under different packet error rates is shown in Figure 10. TCP Reno performs reasonably well when the packet error rate is
very small, but as the packet error rate increases, its performance degrades quickly. The performance curve confirms that
TCP needs enhancement on wireless links. Plain ECN performs better than TCP Reno when the error rate is very small,
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Figure 9. Comparison of congestion window and queue size
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but its performance degrades quickly as the error rate increases. DDA does not degrade much with the error rate, but its
performance under small error rates is low. TCP Westwood seems to have the worst performance for most packet error rates.
Congestion Coherence shows much better performance than other methods.
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Figure 10. Goodput

In addition to the goodput, we also analyzed the simulation trace and collected other data that helped us understand why
one enhancement works better than another.
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Figure 11. Wireless losses

Figures 11 and 12 show the number of wireless and congestion losses. The number of wireless losses equals the total
number of packets transmitted on the wireless link times the packet error rate. The numbers of congestion losses of TCP
Reno, Snoop and DDA are significantly more than other methods because they use packet losses as a congestion control
mechanism. As the packet error rate increases, wireless losses reduce the congestion window so frequently that the window
seldom grows to the level that a packet needs to be dropped. This explains the smaller number of congestion losses of TCP
Reno in the right half of Figure 12. In contrast, methods using ECN do not suffer from congestion losses on a regular basis.
Congestion losses happen only when bursts of background traffic generate so many packets that the buffer of bottleneck
link cannot absorb. As analyzed in the beginning of Section 4, having fewer congestion losses helps to reduce end-to-end
retransmissions and the chance of timeout.

Figure 13 shows the average congestion window size. As the packet error rate increases, wireless losses cause unnecessary
window reductions in TCP Reno, plain ECN and TCP Westwood, but the window sizes of Snoop, DDA and Congestion
Coherence are not affected much by transmission errors. The slight drop in the right upper corner is caused by transmission
errors in the retransmitted packets. This figure confirms that Snoop, DDA and Congestion Coherence solve the problem of
unnecessary window reductions.

Figure 14 shows the number of timeouts that occurred during the simulation period. When the packet error rate is small,
TCP Westwood, TCP Reno, Snoop and DDA have the largest number of timeouts because they use packet losses for con-
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Figure 12. Congestion losses
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Figure 13. Average congestion window size

gestion control. Their buffer occupancy at the bottleneck link can grow so high that bursts in background traffic can cause
continual losses. Since two or more losses in a window cause a timeout. This translates to a large number of timeouts. ECN
and Congestion Coherence have very few timeouts because most of their congestion losses are avoided. Background traffic
causes occasional losses, but seldom become multiple losses in one window. As the packet error rate increases, the number
of timeouts in TCP Reno, plain ECN and TCP Westwood increases dramatically because a larger number of wireless losses
increase the chance of multiple losses in one window. When the error rate is below 0.014, TCP Reno has more timeouts
than plain ECN. As the congestion window of TCP Reno is reduced frequently by wireless losses (Figure 13) and congestion
losses become fewer (Figure 12), TCP Reno behaves almost identical to ECN. The timeouts of Snoop and DDA are caused
mainly by congestion losses. They remain constant for all packet error rates. Congestion Coherence has the smallest number
of timeouts among all proposals. This figure is the evidence showing that only our proposal avoids the degradation caused
by timeouts.

Figure 15 shows the number of end-to-end retransmissions. This number depends on the number of congestion losses,
wireless losses and timeouts, as well as the enhancement method used. In fact, congestion losses in all methods are retrans-
mitted. Wireless losses in TCP Reno and plain ECN are retransmitted. When a timeout happens, one full window of packets
are retransmitted. Snoop and DDA avoid the majority of end-to-end retransmissions of wireless losses, but they still have
a large number of retransmissions because of congestion losses and timeouts. Plain ECN reduces congestion losses, but
cannot recover from wireless losses. All its wireless losses are retransmitted. Congestion Coherence avoids the majority of
congestion losses, and waits for the local retransmission for wireless losses, so it has the smallest number of retransmissions.

Finally, the mistake rate in determining the cause of packet losses is shown in Figure 16. TCP Reno, plain ECN, TCP
Westwood assume all losses are caused by congestion, so their mistake rate is the percentage of wireless losses in all losses.
Plain ECN makes almost the same number of mistakes as TCP Reno, but it has a much higher mistake rate because of its small
number of congestion losses. DDA assumes all packet losses are due to transmission errors, so its mistake rate decreases
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Figure 15. End-to-end retransmissions

when the packet error rate increases. Snoop knows the exact cause of all packet losses by monitoring packets arriving at the
base station, so its mistake rate is zero. Congestion Coherence takes advantage of congestion coherence and makes the right
guess in most cases, but it makes mistake when very bursty traffic causes sudden packet losses without having neighboring
packets marked. In our simulations, Congestion Coherence’s mistake rate ranges from 0.06% to 1.2%. This rate is very small
compared to other methods (except Snoop), and has a minimal impact on performance.

In summary, the simulation results show that Congestion Coherence avoids the majority of congestion losses and is able
to distinguish wireless loss from congestion losses. It is the only enhancement that avoids the three degradations of TCP
performance over wireless links — end-to-end retransmissions, unnecessary window reductions and timeouts. Therefore, the
performance of TCP is improved to a level that other enhancements cannot achieve.

7 Discussions
This section discusses some implementation details, alternatives and possible extensions for future study.

Coherence Context The coherence context used in our simulation is three packets, one before the lost packet and two after.
It should be emphasized that the coherence context is defined from a destination or source’s point of view. So the packets in
the coherence context belong to the connection between the source and the destination. At the routers, because of packets
from other connections, the packets in a coherence context may not be consecutive, but they are received consecutively at the
destination. We tried different size of the coherence context. It turned out that smaller coherence context tends to mistake
congestion losses as wireless losses and causes more timeouts while larger coherence context tends to mistake wireless losses
as congestion losses and causes more unnecessary end-to-end retransmissions. The other coherence context of size three, i.e.,
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two before the lost packet and one after, gives similar result.

Location of Wireless Link  Most enhancement proposals in the literature assume the wireless link is the last hop, congestion
losses happen only between the fixed host and the base station, and wireless errors happen only between the base station and
the wireless host. When the wireless link is a hop that connects two wired networks, like the satellite links, or when there
are multiple wireless links as in an ad-hoc network, this assumption is no longer true. These solutions do not work in these
cases. The Congestion Coherence algorithm does not assume the location or the number of wireless links. As long as ECN
is used in intermediate routers and the wireless links implement local retransmission, the algorithm will work.

Mark-Front Strategy It should be noticed that the mark on packets carries the congestion information of the route to
the destination. The earlier the information is delivered to the source, the more effective the source’s response can be. In
[27], we proposed to use the packet at the front of the queue, instead of the packet at the end of the queue, to carry the
congestion information. This is called the mark-front strategy and has been shown to require smaller buffers, to generate
higher throughput and to provide better fairness. In this paper, we assume marking and dropping are always performed on
the packet in the front of the queue. Marking is done when a packet is leaving the queue and dropping is done when a packet
enters a full queue.

Marking Policy The current RED marking policy based on average queue length works well with congestion coherence.
The Congestion Coherence algorithm can be deployed with current ECN protocol and RED marking policy. However, our
simulations show that a marking policy that uses actual queue length, a random marking region and a deterministic marking
region provides even better results. The gentle option described in [28] and implemented in ns2.17, is a better marking policy
than early versions of the RED algorithm.

More Complex Network Scenarios The results presented in this paper are based on the simple model illustrated in Figure
7. We have tried more complex models, including more wired/wireless connections sharing the same bottleneck link, different
link delays and rates, and a two-state Markovian error model that simulate fading and blackout. The performance results are
similar. Because of space limitation, they are not included in this paper.

8 Conclusions

Through analysis and simulation results, we have come to the following conclusions:

1. Transmission errors in wireless links can cause severe degradation in TCP performance because current TCP algorithm
interprets packet losses as indication of network congestion. Before service providers offer reliable high-speed data
service on wireless networks, a practical and efficient wireless TCP enhancement must be developed.
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2. Current wireless TCP enhancement proposals vary widely in their mechanisms and algorithms. In this paper, we
classify the existing proposals and evaluate their practicality. Particularly, we find that a practical enhancement must
maintain TCP’s end-to-end semantic and any changes must be local to the wireless portion of the network. The abilities
to work with encrypted communication, two-way traffic and intermediate wireless links are also desired.

3. The key of wireless TCP enhancement is the ability to determine the cause of packet losses. We find that the ECN
signals carried by neighboring packets provide a simple and effective way to determine the cause. Unlike packet drops
that lack coherence among neighboring packets, packet markings are coherent in a sequence of packets. If neighboring
packets are marked as congested, the lost packet is most likely a congestion loss. If none of the neighboring packets is
marked, then the lost packet must be a wireless loss.

4. Based on the congestion coherence observation, we proposed a Congestion Coherence algorithm for wireless TCP
enhancement. This algorithm, although needs ECN support in the network, requires only minor changes in the wireless
host. Since ECN is a protocol that has been recommended to deploy widely as a router mechanism to improve wired
networks in RFC 2481 [23], the Congestion Coherence algorithm can be categorized as a local enhancement.

5. Current RED marking policy works well with the Congestion Coherence algorithm, but we found that actual queue
length and a deterministic marking region provides even better results. The new marking policy is a special case of the
current RED marking policy with the queue weight of 1.

6. With comprehensive simulation results, we show that the Congestion Coherence algorithm eliminated the majority
of end-to-end retransmissions, unnecessary window reductions and timeouts caused by transmission errors, and thus
achieves a high level of performance.
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