Congestion Avoidance in Computer Netwarks with a
Connectionless Network Layer: Concepts, Goals and Methodology

Raj Jain and K. K. Ramakrishnan
Distributed Systems Architecture and Performance
Digital Equipment Corporation

New Address: Raj Jain, Washington University in Saint Louis,
jain@ese.wustl.edu, http://www.cse.wnstl.edu/~jain

Abstract

Congestion occurs in a computer network when the resource demands
exceed the capacity. Packets may be lost due to too much queuing
in the network. During congestion, the network throughput may drop
and the path delay may become very high. A congestion control scheme
helps the network to recover from the congestion state. A congestion
avoidance scheme allows a network to operate in the region of low delay
and high throughput. Such schemes prevent a network from entering
the congested state. Congestion avoidance is a prevention mechanism
while congestion control is a recovery mechanism.

We compare the concept of congestion avoidance with that of flow con-
trol and congestion control. A number of possible alternative for con-
gestion avoidance have been identified. From these a few were selected
for study. The criteria for selection and goals for these schemes have
been described. In particular, we wanted the scheme to be globally
efficient, fair, dynamic, convergent, robust, distributed, configuration
independent, etc.

We model the network and the user policies for congestion avoidance
as a feedback control system. The key components of a generic conges-
tion avoidance scheme are: congestion detection, congestion feedback,
feedback selector, signal filter, decision function, and increase/decrease
algorithms. These components have been explained as well as the fea-
tures of simulation model used have been described.

1 Introduction

Recent technological advances in computer networks have resulted in a
significant increase in the bandwidth of computer network links. The
steadily increasing bandwidth of computer networks would lead one
to believe that network congestion is a problem of the past. In fact,
most network designers have found the opposite to be true. Conges-
tion control has been receiving increased attention lately due to an
increasing speed mismatch caused by the variety of links that compose
a computer network today. Congestion occurs mainly at routers {inter-
mediate nodes, gateways, or IMPs) and links in the network where the
rate of incoming traffic exceeds the bandwidth of the receiving node or
link.

The problem of congestion control is more complex to handle in net-
works with connectionless protocols than in those with connection-
oriented protocols. In connection-oriented networks, resources in the
network are reserved in advance during connection setup. Thus, one
easy way to control congestion is to prevent new connections from start-
ing up if congestion is sensed [1}. The disadvantage of this approach,
like any other reservation scheme, is that reserved resources may not
be used and may be left idle even when other users have been denied
permission. We are interested in the problem for networks with con-
nectionless protocols.

We are concerned with congestion avosdance rather than congestion
control. The distinction between these two terms is a rather subtle
one. Briefly, a congestion avoidance scheme allows a network to op-
erate in the region of low delay and high throughput. These schemes

CH2547-8/88/0000/0134$01.00 © 1988 IEEE

134

prevent a network from entering the congested state in which the pack-
ets are lost. We studied a number of alternative congestion avoidance
shemes. In this paper, we discuss the goals, the metrics used to quan-
tify the performance, and the fundamental components involved in the
design of any congestion avoidance scheme. We address the issue of
fairness in the service offered by a network. The role of algorithms
for increase/decrease of the amount of traffic a user may place on the
network is discussed, as well as the impact of the fairness of a range
of increase/decrease algorithms. We also describe the simulation tools
that we used to study alternative congestion avoidance schemes.

In section 2 we define the concepts of flow control, congestion control,
and congestion avoidance. We discuss the distinction between these
terms and show that the problem of congestion can not be solved sim-
ply by increasing memory size or increasing link bandwidth. Section
3 describes the requirements for an ideal congestion avoidance scheme.
Section 4 lists a number of alternative schemes for congestion avoid-
ance. From this list, we selected a few schemes for detailed study. The
criterion for selection are described. Section 5 defines a number of per-
formance metrics that were used to define optimality. Section 6 lists
the goals that we set for the design of the schemes. Most of these goals
are quantitative and verifiable. Section 7 describes the components of
a generic congestion avoidance scheme in the framework of a control
system. This helps in a systematic design of the scheme in that most
components can be designed in isolation. Two component algorithms
that are common to all schemes are window increase/decrease algo-
rithms and window update frequency. These are described in Sections
8 and 9, respectively. Finally, we describe the simulation model in
Section 10 and finally summarize the paper in Section 11.

A binary feedback congestion avoidance schenie is described in [19].

2 Concepts

In this section we define the basic concepts of flow control, congestion
control, and congestion avoidance. These three concepts are related
but distinct. They are related because all three solve the problem o.
resource management in the network. They are distinct because they
solve resource problems either in different parts of the network or in a
different manner. We also point out how decreasing cost of memory,
or increasing link bandwidth and processor speed are not sufficient to
solve these problems.

2.1 Tlow Control

Consider the simple configuration which two nodes are directly con-
nected via a link. Without any control, the source may send packets
at a pace too fast for the destination. This may cause buffer over-
flow at the destination leading to packet losses, retransmissions, and
degraded performance. A flow control scheme protects the destination
from being flooded by the source.

Some of the schemes that have been described in the literature are win-
dow flow-control, Xon/Xoff [7], rate flow-control [5], etc. In the window
flow-control scheme, the destination specifies a limit on the number of

Raj Jain
jain@cse thin horizontal

packets that the source may send without further permission from the
destination. The permission may be an explicit message or it may be
implicit in that an arriving acknowledgment may permit the source
to send additional packets. The Xon/Xoff scheme is a special case of
window flow-control in which the window is either infinity (Xon) or
sero (Xoff). In the rate flow-control schemes, the destination specifies
a maximum rate (packets per second or bits per second) at which the
source may send information.

2.2 Congestion Control

Now let us extend the configuration to include a network ! consisting of
routers and links that have limited memory, bandwidth, and processing
speeds. Now the source must not only obey the directives from the
destination, but also from all the routers and links in the network.
Without this additional control the source may send packets at a pace
too fast for the network, leading to queuing, buffer overflow, packet
losses, retransmissions, and performance degradation.

A congestion control scheme protects the network from being flooded
by its users (source and/or destination). ?

In connection-oriented networks the congestion problem is generally
solved by reserving the resources at all routers during connection setup.
In connectionless networks it can be done by explicit messages (choke
packets) from the network to the sources (18], or by implicit means
such as timeout on a packet loss. Jain [14] and Ramakrishnan [18] have
discussed a number of schemes for congestion control and analyzed a
timeout-based scheme in detail.

2.3 Flow Control vs Congestion Control

It is clear from the above discussion that the terms flow control and
congestion control are distinct. Flow control is an agreement between
a source and a destination to limit the flow of packets without taking
into account the load on the network. The purpose of flow control is to
ensure that a packet arriving at a destination will find a buffer there.
Congestion control is primarily concerned with controlling the traffic
to reduce overload on the network. Flow control solves the problem of
the destination resources beiny the bottleneck while congestion control
solves the problem of the routers and links being the bottleneck. Flow
control is bipartite agreement. Congestion control is a social (network-
wide) law. Different connections on a network can choose different flow
control strategies, but nodes on the network should follow the same
congestion control strategy, if it is to be useful. The two parties in
flow control are generally interested in cooperating whereas the n par-
ties (e.g., different users) in congestion control may be noncooperative.
Fairness is not an issue for the two cooperating parties whereas it is an
important issue for n competing parties.

It should be noted that there is considerable disagreement among re-
searchers regarding the definitions of flow and congestion control. Some
authors [7} consider congestion control to be a special case of flow con-
trol, while others [20] distinguish them as above.

2.4 Congestion Avoidance

Traditional congestion control schemes help improve the performance
after congestion has occurred. Figure 1 shows hypothetical graphs
of response time and throughput of a network as the network load
increases. If the load is small, throughput generally keeps up with
the load. As the load increases, throughput increases. After the load
reaches the network capacity, throughput stops increasing. If the load

1In most of the discussion on congestion, we use the term network to mean
only the communication subnet not including the end nodes (called users).

2We use the term user to denote source or destination transport entity. Either
one could take action to limit the load on the network.

135

1

Throu- H
ghput ;
:

1

Load

A

Resp-
onse
Time

Power

Load

Figure 1: Network performance as a function of the load. Broken
curves indicate performance with deterministic service and inter-arrival
times.

is increased any further, the queues start building, potentially resulting
in packets being dropped. The throughput may suddenly drop when
the load increases beyond this point and the network is said to be
congested. The response time curve follows a similar pattern. At first
the response time increases little with load. When the queues start
building up, the response time increases linearly until finally, as the
queues start overflowing, the response time increases drastically.

The point at which throughput approaches zero is called the point of
congestion collapse. This is also the point at which the response time
approaches infinity. The purpose of a congestion control scheme {14,3}
is to detect the fact that the network has reached the point of congestion
collapse resulting in packet losses and to reduce the load so the network
can return to an uncongested state.

We call the point of congestion collapse a cliff due the fact that the
throughput falls off rapidly after this point. If the goal of the network
design is to maximize throughput while also minimizing response time,
then the knee is a better operating point as shown in Figure 1. This
is the point after which the increase in the throughput is small, but a
significant increase in the response time results. Figure 1 also shows
a plot of power [8] as a function of the load. Power is defined as the
ratio of throughput to response time. The peak of the power curve
occurs at the knee. We will discuss more about the use of power later
under performance metrics.

A scheme that allows the network to operate at the knee is called
a congestion avoidance scheme as distinguished from a congestion
control scheme which tries to keep the network to the left of the cliff.
A properly designed congestion avoidance scheme will ensure that the
users are encouraged to increase their load as long as this does not
significantly affect the response time and are encouraged to decrease
it if that happens. Thus, the network oscillates around the knee and
congestion never occurs. However, the congestion control schemes are
still required to protect the network should it reach the cliff due to

transient changes in the network.

2.5 Congestion Avoidance vs Congestion Control

The distinction between congestion control and congestion avoidance
is similar to that between deadlock recovery and deadlock avoidance.
Congestion control procedures are cures and the avoidance procedures
are preventive in nature. A congestion control scheme tries to bring
the network back to an operating state, while a congestion avoidance
scheme tries to keep the network at an optimal state. Without conges-
tion control a network may cease operating (zero throughput) whereas
networks have been operating without congestion avoidance for a long
time. The point at which a congestion control scheme is called upon de-
pends on the amount of memory available in the routers, whereas, the
point at which a congestion avoidance scheme is invoked, is independent
of the memory size. A congestion avoidance scheme may continuously
oscillate slightly around its goal (knee) without significant degradation
in performance, whereas, a congestion control scheme tries to minimize
the chances of going above the limit (cliff).

3 Design Requirements

Before we discuss the various schemes for congestion avoidance and
compare them it is helpful to point out some of the design requirements
that we followed. These requirements helped us limit the number of
schemes for further study. The key requirements are: no control during
normal operation, no extra packets, a connectionless network layer, and
configuration independence. We describe these requirements below.

3.1 No Control During Normal Operation

Congestion is a transient phenomenon. Networks are configured in
such a way that, on an average, the network is not overloaded. We
therefore refrained from schemes that would generate extra overhead
during normal (underloaded) conditions. This ruled out the use of such
techniques as sending encouragement packets to users during underload
and indicating overload by the absence of these packets.

3.2 No New Packets

The processing overhead for network services depends upon the number
of packets and the size of those packets. Performance measurements
of existing implementations have shown that the number of packets
affects the overhead much more than the size. Short acknowledgment
messages cost as much as 50% of the long data messages. This is
why piggybacking (combining two are more messages) helps reduce the
overhead.

In summary, adding an extra packet causes much more overhead than
adding a few bits in the header. We therefore preferred schemes that
did not require generation of new messages and concentrated instead
on adding only a few bits in the header.

3.3 Distributed Control

The scheme must be distributed and work without any central ob-
server. Thus, schemes where all routers send congestion information to
a central network control center were considered unacceptable.

136

3.4 Connectionless Network Layer

The key architectural assumption about the networks is that they use
connectionless network service and transport level connections. By this
we mean that a router is not aware of the transport connections passing
through it, and the transport entities are not aware of the path used
by their packets. There is no prior reservation of resources at routers
before an entity sets up a connection. The routers cannot compute
the resource demands except by observing the traffic flowing through
them.

Examples of network architectures with a connectionless network layer
are DoD TCP/IP, Digital Network Architecture (DNA) [6], and ISO
Connectionless Network Service used with ISO Transport Class 4 [9].

4 Congestion Avoidance Schemes

Congestion control and congestion avoidance are dynamic system con-
trol issues. Like all other control schemes they consist of two parts: a
feedback mechanism and a control mechanism. The feedback mecha-
nism allows the system (network) to inform the users (source or des-
tination) of the current state of the system. The control mechanism
allows the users to adjust their load on the system. The feedback signal
in a congestion avoidance scheme tells the users whether the network is
operating below or above the knee. The feedback signal in a congestion
control scheme tells the users whether the network is operating below
or above the cliff.

The problem of congestion control has been discussed extensively in
literature. A number of feedback mechanisms have been proposed.
If we extend those mechanisms to signal operations around the knee
rather than the cliff, we obtain a congestion avoidance scheme. Of
course, the control mechanism will also have to be adjusted to help the
network operate around the knee rather than the cliff. For the feedback
mechanisms we have the following alternatives:

1. Congestion feedback via packets sent from routers to sources.

2. Feedback included in the routing messages exchanged among
routers.

3. End-to-end probe packets sent by sources.

4. Each packet contains a congestion feedback field that is filled in
by routers in packets going in the reverse direction.

5. A congestion feedback field is filled in by routers in packets going
in the forward direction.

The first alternative is popularly known as choke packet [16] or source
quench message in ARPAnet [17]. It requires introducing additional
trafic in the network during congestion, which m ay not be desirable. A
complement to this scheme is that of encouraging sources to increase the
load during underload. The absence of these encouragement messages
signals overload. This scheme does not introduce additional traffic
during congestion. Nevertheless, it does introduce control overhead on
the network even if there is no problem.

The second alternative, increasing the cost (used in the forwarding
database update algorithm) of congested paths, has been tried before in
ARPAnet’s delay-sensitive routing. The delays were found to vary too
quickly, resulting in a large number of routing messages and stability
problems. Again, the overhead was not considered justifiable {15].

The third alternative, probe packets, also suffers from the disadvantage
of added overhead unless probe packets had 2 dual role of carrying
other information in them. If the latter were the case, there would be
no reason not to use every packet going through the network as a probe
packet. We may achieve this by reserving a field in the packet that is

used by the network to signal congestion. This leads us to the last two
alternatives.

The fourth alternative, reverse feedback, requires routers to piggyback
the signal on the packets going in the direction opposite the congestion.
This alternative has the advantage in that the feedback reaches the
source faster. However, the forward and reverse traffic are not always
related. The destinations of the reverse traffic may not be the cause of
or even the participant in the congestion on the forward path. Also,
many networks (including DNA} have path splitting such that the path
from A to B is not necessarily the same as that from B to A.

The fifth alternative, forward feedback, sends the signal in the packets
going in the forward direction {direction of congestion). The destina-
tion either asks the source to adjust the load or returns the signal back
to the source in the packets (or acknowledgments) going in the reverse
direction. This is the alternative that we finally chose for further study.

The minimal forward feedback requires just one bit of feedback signal
with every packet. Although at first, one bit may not appear to be able
to carry enough information, we show in [19] that there is considerable
performance gain even by single-bit feedback.

Most of the discussion in this paper centers around window-based flow-
control mechanisms. However, we must point out that this is not a
requirement. The congestion avoidance algorithms and concepts can be
easily modified for other forms of flow control such as rate-based flow
control in which the sources must send below a rate (packets/second
or bytes/second) specified by the destination. In this case, the users
would adjust rates based on the signals received from the network.

5 Performance Metrics

The performance of a network can be measured by several metrics. The
commonly used metrics are: throughput, delay, and power.

Throughput is measured by the user bits transmitted per unit of time.
Thus, protocol overhead, retransmissions, and duplicate packets are not
considered in throughput computation. Some of the more important
applications of computer networks are: file transfer, mail, and remote
login. The first two are throughput sensitive. The response time (time
for the packet to reach the destination) is generally not so important.
On the other hand, for remote login, response time is more important
than throughput.

The aforementioned goal, maximizing throughput and minimizing re-
sponse time, are mutually contradictory in that all methods to increase
throughput result in increased response time as well and vice versa. To
resolve this contradiction, Giessler et al. [8] proposed the following

metric: «
Throughput

Power = ——————
Response time

Here, o is a positive real number. Notice that by maximizing power, one
tries to maximize throughput and minimize response time. Normally,
a = 1, lLe., increasing throughput and decreasing response time are
given equal weights. By setting @ > 1, one can favor file traffic by
emphasizing higher throughput. Similarly, by setting & < 1 one can
favor terminal traffic by emphasizing lower response time.

It must be pointed out that the throughput and response time used
above are system-wide throughput (total number of packets sent for
all users divided by the total time) and system-wide response time
(averaged over all users) giving us system power. The operating point
obtained in this manner is different from the one that would be obtained
if each of the n users tries to maximize their own individual power (ratio
of individual throughput and individual response time). Maximizing
individual power leads to a number of undesirable effects |2,10].

137

6 Goals

Design of a congestion avoidance scheme requires comparing a number
of alternative algorithms and selecting the right parameter values. To
help us do this we set a number of goals which are described in this
section. Each of these goals has an associated test to help us verify
whether a particular scheme meets the goal.

6.1 Efficiency

A network operating at the knee is said to be operating efficiently.
The efficiency is measured by the system power as defined earlier. The
congestion avoidance scheme should lead the network to the knee, that
is, the point of maximum system power.

Given any performance metric and a system of n users, there are two
kinds of efficient operating points: individual and global. Individually
efficient operating points occur when each user tries to maximize its
performance without regard for the performance of others. This may
or may not lead to the globally efficient operating point where the to-
tal system performance is the highest. In other words, at the globally
efficient operating point, there may still be opportunities for each indi-
vidual user to improve its performance (while degrading that of others).
We have explicitly chosen global efficiency and not individual efficiency
as our goal.

We set the parameters of our congestion avoidance schemes to values
that mnaximize global power and fairness.

6.2 Responsiveness

Network configurations and traffic vary continuously. Nodes and links
come up and down. The load placed on the network by users is highly
varying. The optimal operating point is therefore a continuously mov-
ing target. It cannot be assumed that the optimal operating point
observed in the past is still optimal because the configuration or work-
load might have changed. If the feedback is limited to a binary signal
{19], this leads to schemes that continuously change the load slightly
below and slightly above the optimal level and verify the current state
by observing feedback signals obtained from the network.

When operating at the knee, to sense the state of the network, there is
a need for oscillation of the window around the optimal level. Any at-
tempt to eliminate oscillations also leads to the loss of responsiveness.
We explicitly tested the responsiveness of the algorithms by changing
router service times during a simulation and verifying that the operat-
ing point followed the change in the optimal window size.

6.3 Minimum Oscillation

Schemes with a smaller amplitude of oscillation are preferable over
those with a larger amplitude. We found that schemes with smaller
oscillations are also slower (less responsive) algorithms in that they
take longer to reach the target. We therefore need to make a suitable
tradeoff between the two requirements.

6.4 Convergence

If the network configuration and workload were to remain stable, the
scheme should bring the network to a stable operating point. Many al-
ternatives were rejected because they were divergent. This means that
the total load on the network either increased slowly towards infinity
or decreased towards zero without stabilizing.

We also found cases where the system throughput would converge to a

stable value but the individual user’s throughput would vary consider-
ably. We call this phenomenon false convergence. More specifically, it
could bg called global convergence without local convergence.

Among converging schemes, the preferred alternative is the one that
takes the least time to converge.

6.5 Fairness

In any system shared by n independent users, fairness is an important
issue. Fairness demands that given n users sharing a resource, each of
them should get the same share of the resources {unless the user itself
demanded less than its fair share). Thus, n users sharing a path and
each demanding infinite resources should have equal throughput. If the
throughputs are not exactly equal, the fairness can be quantified using
the following fairness function [11}:

(z

Fairness =
n

th

Here, z; is «'* user’s throughput.

In designing congestion avoidance schemes and in setting parameter
values our goal was to choose schemes and values that maximized fair-
ness. Often, we found that there is a tradeoff between efficiency and
fairness. The values that maximize system power are not necessarily
the same as those that maximize fairness and vice versa. In such cases,
we tried to err on the side of efficiency.

The definitions of fairness and efficiency presented in this paper treat
the network as a single resource to be shared equally among all uscrs.

6.6 Robustness

Robustness requires that the scheme work in a noisy (random) environ-
ment. Thus, schemes which work only for deterministic service times or
schemes that presume a particular distribution (exponential) for service
times were discarded. We tested robustness by varying distributions of
service times.

6.7 Simplicity

Simplicity of schemes is also an important goal. For most alternatives
we tried their simpler versions. Ouly if the simpler versions caused a
significant reduction in performance did we sacrifice simplicity.

6.8 Low Parameter Sensitivity

In designing the congestion avoidance schemes we studied sensitivity
with respect to parameter values. If the performance of a scheme was
found to be very sensitive to the setting of a parameter value, the
scheme was discarded.

6.9 Information Entropy

Information entropy relates to the use of feedback information. We
want to get the maximum information across with the minimum
amount of feedback. Given n bits of feedback, information theory tells
us that the maximum information would be communicated if each of
the 2" possible combinations were equally likely. In particular, with
one bit of feedback, maximum information would be communicated if
the bit was set 50% of the time, i.e.,

P(bit = 1) = P(bit = 0) = 0.5

138

User Network
Policies Policies
Control
Increase/ Congestion
Decrease Detection
[} ¥
Decison Feedback
Function Filter
[y]
Signal Feedback
Filter Selector
Feed
back

Figure 2: Components of a congestion avoidance scheme

6.10 Dimensionless Parameters

A parameter that has dimensions (length, mass, time) is generally a
function of network speed or configuration. A dimensionless parameter
has wider applicability. For example, in choosing the increase algo-
rithm we preferred to increase the window by an absolute amount of &
packets rather than a rate of ¢ packets/second. The optimal value of
the latter depends upon the link bandwidth. Our goal in developing the
congestion avoidance scheme was to have all parameters dimensionless,
thereby ensuring that the scheme would be applicable to networks with
widely varying bandwidths. Of course, we also studied the parameter
sensitivity and chose the least sensitive alternatives.

6.11 Configuration Independence

Configuration independence is a desirable goal. We therefore tested
our schemes for many different configurations. Although it is a noble
goal, generally it is possible to come up with a configuration where a
given scheme will not satisfy one of the goals. We have tried to identify
such limitations wherever appropriate.

In many network architectures, including DNA, paths are dynamically
calculated. As the routers go up or down, the paths change. The con-
gestion avoidance scheme should adapt to the changing configurations.

7 Components of an Avoidance Scheme

The two key components of any congestion avoidance scheme, the feed-
back mechanism and the control mechanism, have already been dis-
cussed earlier in this paper. We call these network policies and user
policies, respectively. A more detailed break down of these policies is
shown in Figure 2. This allows us to concentrate on one component
at a time and test various alternatives for that particular component.
During the analysis, it can be assumed that other components are op-
erating optimally. Of course, one would need to verify at the end that
the combined system worked satisfactorily under imperfect conditions.

The network policy consists of three algorithms: congestion detection,
feedback filter, and feedback selector. The user policy also consists ¢
three algorithms: signal filter, decision function, and increase/decrease
algorithm. These generic algorithms apply to many different congestion
avoidance schemes. For example, these six algorithms would apply

whether we choose to implement network feedback in the form of source
quench messages or we implement it via a field in the packet header.

7.1 Congestion Detection

Before the network can feedback any information, it must determine
its state or load level. In a general case, the network may be in one of
n possible states. The congestion detection function helps map these
states into one of the two possible load levels: overload or underload
(above or below the knee). A k-ary version of this function would result
in k levels of load indications. A congestion detection function, for
example, could work based on the processor utilization, link utilization,
or queue lengths.

7.2 Feedback Filter

After the network has determined the load level, it may want to verify
that the state lasts for a sufficiently long period before signaling it
to the users. This is because a feedback of state is useful only if the
state lasts long enough for the the users to take action based on it.
A state which changes very fast may lead to confusion. By the time
users become aware of the state, it no longer holds and the feedback is
misleading. Therefore, we need a (low-pass) filter function to pass only
those states that are expected to last long enough for the user action to
be meaningful. Examples of feedback filters are exponential weighted
average or moving average of processor utilization, link utilization, or
queue lengths.

7.8 Feedback Selector

After the network has determined that it is overloaded (or underloaded)
and has ensured that the state is likely to last long enough, it needs
to communicate this information to users so that they may reduce
(or increase) the traffic. A feedback selector function may be used to
determine the set of users to be notified. In other words, the network
may want all users to reduce the traffic or it may selectively ask some
users to reduce and others to increase the traffic. In the simplest case,
it may give the same feedback signal to all users.

7.4, Signal Filter

The users receiving the feedback signals from the network (routers)
need to interpret the signal. The first step in this process is to ac-
cumulate a number of signals. Due to the probabilistic nature of the
network, all these signals may not be identical. Some may indicate that
the network is overloaded while others may indicate that it is under-
loaded. The user needs to combine these to decide its action. Some
examples of received signal filter are majority voting (50%), or three-
quarter majority (75%), or unanimous (100%). The percentage may
be used after applying a weighting function, for example, giving higher
weight to recent signals.

7.5 Decision Function

Once the user knows the network load level, it has to decide either to
increase its load or decrease its load. The function can be broken down
into two parts: the first part determines the direction and the other
determines the amount. These parts are called decision function and
increase/decrease algorithms, respectively.

The decision function takes feedback signals for the last T seconds,
for instance, as input parameter, and determines the load level of the
network path. The key parameter is T -, the interval for which it should

139

accumulate feedback. This determines the window update frequency.
We will further discuss window update frequency later in this paper.

In its simplest form a decision function may be a 2-way function indi-
cating whether the load should be increased or decreased. Some would
argue that it may be a 3-way function including a gray aree where no
action is taken.

Another generalization often mentioned is to make a decision but not
act on it unless we reach the same decision again, one or more times in
the future. This may seem to increase the probability of reaching the
right decision.

Both the generalizations mentioned above result in postponement of the
action thereby causing the system to stay in the same state longer. This
may be useful if the goal (knee) is stable but in a computer network the
knee is a continuously moving target and it is helpful to reconfirm the
state by perturbing the load, however slightly, one way or the other.

The costs of the two types of errors, increasing the traffic under over-
load and decreasing the traffic under underload, determine whether
the users should err on the side of being pessimnistic or optimistic. For
cliff-based policies (congestion control schemes), it is better to be pes-
simistic because the cost (loss of a packet) of miss-signal is high. For
knee-based policies (congestion avoidance schemes), the two costs are
approximately equal (assuming the knee is far away from the cliff). We
therefore recommend a two-way decision function and no postponement
of action.

7.6 Increase/Decrease Algorithm

The key part of a control scheme is the control, i.e., the action taken as
a result of the feedback. For congestion avoidance schemes this part lies
in the increase/decrease algorithms used by the users. These algorithms
are a key to achieving efficiency as well as fairness. The choice of other
components of the congestion avoidance scheme depends upon the type
of feedback chosen, whereas, the increase/decrease algorithins can be
discussed and analyzed generically in great detail and apply to several
feedback mechanisms. We discuss some of these alternatives in the next
section. A more complete discussion may be found in [4].

8 Increase/Decrease Algorithms

In this section we compare a number of alternative algorithms for win-
dow increase and decrease. We show that an additive increase, mul-
tiplicative decrease algorithm provides fair and stable operation and
that it is important to keep windows as real valued variables which are
rounded-off to the nearest integer.

We assume that the source and destination transport entities are using
a window-based flow-control. Thus, increasing the window increases
the load on the network and decreasing the window decreases the load.
It must be pointed out, however, that all the arguments apply equally
well to other forms of flow control such as rate based flow-control, in
which the destination permits the source to send data at a pre-specified
rate (bits/second or packets/second). In this case, it is obvious that
increasing the rate increases the load and vice versa.

A general increase {or decrease) algorithm would take the current con-
trol {flow-control window) and feedback signals as input arguments and
produce the new control as an output argument. However, as discussed
above, we assume that the feedback signals have been analyzed by other
components of the congestion avoidance scheme and the decision pro-
vided to this component is to increase or decrease the traffic. Thus,
the key parameter to the increase/decrease algorithms is the current
window.

We considered two types of increase/decrease algorithms:

1. Additive - The window is increased or decreased by a fixed

amount.
w

]

w+ ky

w=w— ko

2. Multiplicative - The window is increased or decreased by a fixed

multiple.
w=rwr >1

w=rw,0<r; <1

More general increase/decrease algorithms using linear and non-linear
functions of the window were also considered and are described in [4].
Here, we concentrate on choosing one of the following four combina-
tions:

1. Multiplicative Increase, Multiplicative Decrease
2. Multiplicative Increase, Additive Decrease
3. Additive Increase, Additive Decrease

4. Additive Increase, Multiplicative Decrease

In all these alternatives we assume that the computed value is rounded
to an integer value and that the window is never allowed to go below
1.

The two key requirements of the increase/decrease policy are that it
should allow a single user network to operate as close to optimality as
possible and that it should allow a multi-user network to operate as
fairly as possible. In comparing the above alternative we will assume a
simplified model of the network in which all users share the same path
and therefore receive the same feedback. If :*" user has a window w;,
the network gives the signal to go up if and only if:

"
E wi < Winee
i=1

Here, wg,... is the window at the knee of the throughput (or response
time) curve for the given network configuration.

The fairness goal dictates that regardless of any starting point all n
users should converge to the same final window wy,../n. While going
down, the users with higher windows should go down more than those
with lower windows, i.e., the decrease should be proportional (multi-
plicative). While going up, the users with lower windows should go
up more than those with higher windows, i.e., the increase cannot be
multiplicative. These observations leave us only with the fourth alter-
native of additive increase and multiplicative decrease. The other three
alternatives are unfair, that is, they may stabilize at points where the
windows are not equal. Instead of proving it mathematically, we show
an example in Figure 3. We consider a network shared by two users.
The optimal window for this network configuration wy,.. is assumed
to be 15.5. User 1 starts first and User 2 joins in later. Figure 3a shows
the window sizes for the two users (called window trajectories) with
both users following an additive increase by 1 and additive decrease by
1 algorithm. After a while the two users stabilize with the following
sequence of window sizes and feedback signals:

User 1 Window: 14 15 14
User 2 Window: 1 2 1
Total Window: 15 17 15
Network Signal: up down wup

Thus, the system reaches a stable state where the first user oscillates
with an average window of 14.5, while the second user oscillates with
an average window of 1.5. The throughput of the first user is approxi-
mately ten times that of the second. The algorithm is unfair.

L — ey

195 “ Jser 2 !
. el

i RijRIT

w“ HJ" s ppmansnsnsnssasasmsnsssanaen

Window
~
A

Tima

a. Additive Increase,
Additive Dec¢rease

Gacrease Factor=d.g@

window
: R T
Ry

Time

b. Additive Increase,
Multiplicative Decrease

Figure 3: Different increase/decrease algorithms may lead to fair or
unfair stable operating points.

It can similarly be shown that the first two alternatives with multi-
plicative increase are unfair.

The window trajectory, using the fourth alternative (additive increase
and multiplicative decrease) for the same network configuration, is
shown in Figure 3b. With this algorithm the two users stablize at
window size very close to each other. This algorithm is fair in most
cases. The unfairness occurs in this case mainly due to the control
(window) being discrete (integer valued).

It is important that the window values be maintained as real numbers
even though actual windows used are integer valued. We studied the
effect of discrete control by studying the variation of the window at a
user in isolation assuming that the network feedback is perfect (based
on the global knowledge). The values computed using the increase and
decrease algorithms are real valued variables. However, if the computed
window comes out to 2.6, for instance, the user must decide whether to
use 2 (truncated) or 3 (rounded) as the number of packets (implemented
window) which will be sent in the next cycle.

If only integer values are maintained for the window, additive increase
and multiplicative decrease may also stabilize to unfair values, although
this may not be the case for all values of increase amounts and decrease
factors. By exhaustively searching the parameter space, we verified the
fairness of the additive increase and multiplicative decrease algorithm
when the implemented window size is obtained by rounding the com-
puted window.

8.1 Increase Amount and Decrease Factor

The additive increase and multiplicative decrease with rounding lead
to a fairly stable operation for all values of the two parameters, namely,
the increase amount and the decrease factor. However, not all values
are equally good. The values affect the time required to converge to a

stable operation and the amount that the total traffic on the network
will oscillate during stable operation. The goal is to minimize the time
to convergence as well as to minimize the oscillation size during stable
operation. Unfortunately, these two goals are contradictory in the sense
that the parameter values that decrease the time needed to reach stable
operation tend to increase the oscillation size also.

We recommend using an increase amount of 1 and a decrease factor of
0.875. The first value was chosen to minimize the size of oscillations and
also to ease computations on a wide variety of processors. Multiplying
by 0.875 (1 — £) requires an arithmetic shift operation and subtraction.

8.2 Birth Policies

Another alternative to convergence time and the oscillation size
dilemma is the use of a birth policy. The parameter values are ini-
tially chosen to minimize the time to convergence. Once convergence is
reached, another set of parameter values is used which minimizes the
oscillation size. The convergence is detected by a change of direction (a
decrease following an increase or vice versa). We see that an alterna-
tive birth policy does allow the user to reach the knee faster. However,
the additional complication of keeping an additional code to detect the
direction change may not be considered worthwhile.

8.3 Source Bound Case

In the discussion so far, we have assumed that the sources are able to
send as many packets as the optimal window computation requires. An
interesting case to consider is what happens if the source (and not the
network or the destination) is the bottleneck. In this case, the network
always gives increase signals to the user which computes a new larger
window but is not able to send more than w packets in one round-trip
delay. Based on w packets per cycle, the network continues to ask the
user to increase the load. In this case, it is possible for the computed
window to increase continuously and overflow. Actually, in this case
the computed window has no meaning and therefore should never be
increased beyond w-+ dw, where dw is the increase amount and w is the
previously ‘used’ window. This leads to the rule that a user does not
increase the window if it has not been able to implement the previous
increase.

8.4 Destination Bound Case

If the destination has limited buffering then it can impose a limit on
the window used by the source. The source should never increase the
window beyond that permitted by the destination. It tries to satisfy
both the destination as well as the network.

8.5 K-ARY Search

In addition to the four alternatives of additive/multiplicative, in-
crease/decrease, we also tried a k-ary search for the operating point
determined by the knee. The well-known binary search is a special
case of k-ary search with k=2. In the k-ary search, the user remembers
the highest and lowest windows at which the direction was changed.
A direction change is defined as an increase followed by a decrease or
vice versa. If wi,u and wyig, are the two window values at which the
direction was changed, the user next tries the window:

Whigh ~ Wiow
W= Wy + ————

Here, k is a real number greater than 1.

We found that the k-ary search not only requires additional state vari-
ables (wigw and whign) to be maintained, but it also is less responsive.

141

Dest
Source ination
t=0 1
w‘—wx
t=rp 7
0 fn(wlp,wl)
t=ro+r)
=fn(wy)

Figure 4: Decision Frequency. After the window w is changed from
wy to wy, the feedback f received during the second round-trip delay
interval is a function of w;. That received during the first round-trip
delay is a function of both wy and w,.

It works fine in stable configurations.
number of users or router speeds change during simulation, we need

However, in cases where the

algorithms to allow previously remembered values to be forgotten in
favor of the new information. This introduces additional complexity
making the k-ary search not worthwhile pursuing.

9 Window Update Frequency

The issue of window update frequency involves a decision on how of-
ten the users should change their windows. This is another component
algorithm (along with increase/decrease) that is common to many dif-
ferent congestion avoidance schemes that we considered. The ideas that
are common to all avoidance schemes are being discussed here. A more
specific discussion relating to the binary feedback scheme appears in
[19].

The key results we want to present in this section are that windows
should be adjusted once every two round-trip delays (two window turns)
and that only the feedback signals received in the past cycle should
be used in window adjustment. We present a set of control theoretic
arguments and show that the simplest control scheme is obtained with
these two restrictions.

In every system control scheme, we have a choice of exercising control
(e.g., changing a window) every time we have a new feedback signal
from the system. Exercising control too often may lead to unnecessary
oscillations, while delaying control for long may lead to a lethargic
system that takes too long to converge. The optimal control frequency
depends upon the feedback delay, that is, the time required for the
control to take effect.

To demonstrate the feedback delay, consider an example of a new source
of traffic deciding to join the network with a large starting window
of w;. As shown in Figure 4, this is a case of the source changing
its window from wy to w; with wy = 0. Let us assume that this
happens at time ¢ = 0. The effect of this window change will not be felt
immediately. In fact, the first few packets will find the network response
to be the same as before the source came on. The first network feedback
to the source will come with the first packet at time ¢ = ro, where r,
is the round-trip delay corresponding to the old control (zero window
from this source). It is only the first packet in the next window cycle
({(wy + 1)** packet) that will bring a network feedback corresponding
to window w;. This packet would enter the network at time ¢ = ro
and come back at time ¢ = r, + r;, where r; is the round-trip delay

corresponding to window wy. The key point to notice is that it takes
at least 3 two round-trip delays for the effect of a window change to
be observed. The feedback signals y(n) (a vector) observed in the nf®
cycle cqrrespond to the windows during cycles n —1 and n — 2.

y(n) = fn{uw(n — 1}, w(n - 2)}

Here, w(n) is the window in cycle n. It may be determined as a function
of all past feedback and window history:

w(n +1) = frf{w(n - 7),y(n —¢),2=0,1,2,...,5 =0, 1,2,...}

Once we understand the delayed feedback aspect, it is possible to write
down the state space equations for the system and determine the opti-
mal control policy. The most general control functions may require us
to remember a long history. The simplest control policy is obtained if
we keep the window constant for two cycles, so that w(n — 1) = w(n)
for n even, and use only the feedback for the last cycle, that is, for even
values of n:
y{n) = fo{w(n - 1}}
w(n + 1) = fn{w(n),y(n)}

This is the argument for adjusting the window only every two round-
trip delays and for using the feedback signals obtained during the last
round-trip interval.

10 Simulation Model

Various schemes for congestion avoidance were studied using a combina-
tion of analytical and simulation modeling techniques. In this section,
we describe the simulation model used. The model described in [12], has
been extended to simulate congestion avoidance algorithms. The model
written in SIMULA simulates portions of network and transport layers
and was used initially to study timeout algorithms {13] and a timeout
based congestion control scheme [14]. In the model, the transport layer
protocol is simulated in detail. In particular, the flow control portion
is a verbatim copy of the DNA’s transport layer specifications [6]. The
routers and links are modeled as a single queue.

A number of features of the model including the trace facility and
various modules have been described in [12]. Several new features have
been added which we describe here.

The model allows for a variety of configurations. An example config-
uration is shown in Figure 5a. A number of sources on one local area
network communicate with a number of destinations on another local
area network and connect to the first by a number of routers. Its logi-
cal representation is shown in Figure 5b. There is no limitation on the
number of users or number of routers.

Routers and links are represented by queues, each of which can have
a different service rate. The service time is determined by the packet
length and the service rate. Local traffic is assumed to reduce the
service rate. Thus, even if all routers and links are operating at the
same speed, different service rates may be used depending upon the
percentage of resources used up by local traffic. Satellite links consist
of a ground station followed by a long propagation delay. The ground
station is simulated like other intermediate nodes, that is, a queue with
a given service rate. The propagation delay is represented as a constant
delay. A path may contain any number of satellite links.

It is possible to specify starting times individually for each user. This
helps us verify that the scheme adapts to a changing workload as users
go on/off the network. It is also possible to simulate a transient change
in service rate caused by increased local traffic or by nodes/links go-
ing down and coming back up. During a transient the service rate of

3The delay may be more if the network feedback signals are based on the state
of the network in the previous cycle rather than this cycle.

142

s

a. Two LANs interconnected
via a low speed network.

b. Logical Representation

Figure 5: Example configuration. Two LANs interconnected via lower
speed links possibly including a satellite link.

the bottleneck, as well as number of buffers there, may be changed
(increased/decreased) to any specified value.

Many simulation experiments for a range of values of a large number
of parameters (almost 40 input parameters may be specified) may be
run to allows us to study the behavior of any performance variable as
a function of the parameter values, thereby finding the optimal value
as well as determining the sensitivity.

10.1 Workload

The workload is specified by the number of active users and the packet
size distribution. Once a user is active, it has a sufficient supply of
packets to transmit, and is limited only by the flow-control windows.
The packet sizes can take a number of different distributions such as:
constant, uniform, exponential, bimodal, erlang, etc. Constant values
are useful in running deterministic simulations and debugging.

By specifying the network service time that is less than the source ser-
vice time, the model allows the simulation of a case where the through-
put is limited by the source and not the network. We use this case to
verify that all the algorithms do work in the source-bound case also.

10.2 Assumptions

In our congestion avoidance study, we concentrated on a no loss case.
We assumed that the routers have a large buffer capacity. The per-
formance degradation is caused not by packet losses (as was the case
with previous congestion control studies) rather by increased queueing
in the network.

The simulation assumes equal paths, i.e., packets from all sources join
the path at first router and leave it at the last router.

10.3 Limitations
The simulation model has the following known limitations:

1. The acknowledgments traveling back from the destination to the
source are not explicitly simulated. The source is informed of the

packet delivery as soon as the packet is accepted by the destina-
tion.

2. Each packet passing through the network brings with it the feed-
back. The acknowledgments returning from the destination bring
the feedback back to the source. If there is acknowledgment-
withholding so that a single acknowledginent is sent for a number
of packets received, the destination would need an algorithm to
combine multiple feedbacks received or to piggyback all of them
on the single acknowledgment. We have not yet studied such

cases.

11 Summary

We have introduced a new term congestion avoidance in this paper.
It has been distinguished from other similar terms of flow control and
congestion control. We showed that the preventive nature of conges-
tion avoidance helps the network use its resources in a globally optimal
manner. We have shown that the key to congestion avoidance in con-
nectionless networks is feedback from the network to the users about its
state and a cooperative effort on the part of the users to adjust their de-
mands based on this feedback. We described the goals for a congestion
avoidance scheme and the criteria used to select the set of acceptable
alternatives. We showed that the problem of congestion avoidance can
be broken down into a number of components and discussed the in-
terrelationships among these components. The demand (flow-control
window) increase/decrease algorithms used by sources play a key role in
the design of a congestion avoidance scheme. These algorithms, as well
as the question of demand update frequency, were discussed. The goals
that we set to measure the goodness of congestion avoidance schemes
were quantified using a simulation model.

This is the first paper describing our research on congestion avoidance.
In [19] we describe the design of a congestion avoidance scheme using
binary feedback.

12 Acknowledgments

Many architects and implementers of Digital’s networking architecture
participated in a series of meetings over the last three years in which
the ideas presented here were discussed and improved. Almost all mem-
bers of the architecture group contributed to the project in one way or
another. In particular, we would like to thank Tony Lauck and Linda
Wright for encouraging us to work in this area. Radia Perlman, Art
Harvey, Kevin Miles, and Mike Shand are the responsible architects
whose willingness to incorporate our ideas provided further encourage-
ment. We would also like to thank Bill Hawe, Dave Oran, and John
Harper for feedback and interest. The idea of proportional decrease was
first proposed by George Verghese. The concept of maximal fairness
was proposed by Bob Thomas.

References

[1] V. Ahuja, “Routing and Flow Control in Systems Network Archi-
tecture,” IBM Systems Journal, Vol. 18, No. 2, 1979, pp. 298 -
314.

[2] K. Bharat-Kumar and J. M. Jaffe, “A New Approach to
Performance-Oriented Flow Control,” IEEE Transactions on Com-
munications, Vol. COM-29, No. 4, April 1981, pp. 427 - 435.

[3] W. Bux and D. Grillo, “Flow Control in Local-Area Networks of
Interconnected Token Rings,” IEEE Transactions on Communica-
tions, Vol. COM-33, No. 10, October 1985, pp. 1058-66.

143

{4] Dah-Ming Chiu and Raj Jain, “Congestion Avoidance in Com-
puter Networks with a Connectionless Network Layer. Part III:
Analysis of Increase/Decrease Algorithms,” Digital Equipment
Corporation, Technical Report #TR-509, August 1987.

David Clark, “NETBLT: A Bulk Data Transfer Protocol,” Mas-
sachusetts Institute of Technology, Lab for Computer Science,
RFC-275, February 1985.

5

(6

Digital Equipment Corp., “DECnet Digital Network Architecture
NSP Functional Specification, Phase IV, Version 4.0.0,” March
1982.

{7

M. Gerla and L. Kleinrock, “Flow Control: A Comparative Sur-
vey,” IEEE Transactions on Communications, Vol. COM-28, No.
4, April 1980, pp. 553 - 574.

8

A. Giessler, J. Haanle, A. Konig and E. Pade, “Free Buffer Alloca-
tion - An Investigation by Simulation,” Computer Networks, Vol.
1, No. 3, July 1978, pp. 191-204.

International Organization of Standardization, “ISO 8073: Infor-
mation Processing Systems - Open Systems Interconnection - Con-
nection Oriented Transport Protocol Specification,” July 1986.

o

[10] J. M. Jaffe, “Flow Control Power is Nondecentralizable,” IEEE
Transaction on Communications, Vol. COM-29, No. 9, September

1981, pp. 1301-1306.
[11

Raj Jain, Dah-Ming Chiu, and William Hawe, “A Quantitative
Measure of Fairness and Discrimination for Resource Allocation
in Shared Systems,” Digital Equipment Corporation, Technical
Report TR-301, September 1984.

[12] Raj Jain, “Using Simulation to Design a Computer Network Con-
gestion Control Protocol,” Proc. Sixteenth Annual Modeling and
Simulation Conference, Pittsburgh, PA, April 1985.

[13] Raj Jain, “Divergence of Timeout Algorithms for Packet Retrans-
mission,” Proc. Fifth Annual International Phoenix Conf. on Com-
puters and Communications, Scottsdale, AZ, March 26-28, 1986,
pp. 174-179.

[14] Raj Jain, “A Timeout-Based Congestion Control Scheme for Win-
dow Flow-Controlled Networks,” IEEE Journal on Selected Areas
in Communications, Vol. SAC-4, No. 7, October 1986, pp. 1162-
1167.

|15] J. M. McQuillan, L Richer, and E. C. Rosen, “The New Routing
Algorithm for the ARPANET,” IEEE Transactions on Communi-
cations, Vol. COM-28, No. 5, May 1980, pp. 711-719.

[16] J.C. Majithia, et al., “Experiments in Congestion Control Tech-
niques,” Proc. Int. Symp. Flow Control Computer Networks, Ver-
sailles, France. February 1979.

[17] John Nagle, “Congestion Control in TCP/IP Internetworks,”
Computer Communication Review, Vol. 14, No. 4, October 1984,
pp. 11-17.

[18] K. K. Ramakrishnan, “Analysis of a Dynamic Window Conges-
tion Control Protocol in Heterogeneous Environments Including
Satellite Links,” Proceedings of Computer Networking Sympo-
sium, November 1986.

(19] K. K. Ramakrishnan and Raj Jain, “Congestion Avoidance in
Computer Networks with a Connectionless Network Layer. Part
II: An Explicit Binary Feedback Scheme,” Digital Equipment Cor-
poration, Technical Report #TR-508, August 1987.

[20] A.S. Tanenbaum, Network Protocols. Prentice-Hall: Englewood
Cliffs, NJ, 1981.

