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Abstract

Widespread use of computer networks and the use of varied technology for the interconnection of computers las
made congestion a significant problem.

In this report, we summarise our research on congestion avoidance. We compare the concept of congesiton
avcidance with that of congestion control. Briefly, congestion control is a recovery mechanism, while congestion
avoidance is a prevention mechanism. A congestion control scheme helps the network to recover from the
congestion state while a congestion avoidance scheme allows a network to operate in the region of low delay and
high throughput with minimal queuing, thereby preventing it from entering the congested state in which packets
are lost due to buffer shortage.

A number of possible alternatives for congestion avoidance were identified. From these alternatives we selected
one called the binary feedback scheme in which the network uses a single bit in the network layer header to feed
back the congestion information to its nsers, which then increase or decrease their load to make aptimal nes
of the rescurces. The concept of global optimality in a distributed system is defined in terms of efficiency and
fairness such that they can be independently quantified and apply to any number of resources and users.

The proposed scheme has been simulated and shown to be globally efficient, fair, responsive, convergent, rohust,

distributed, and configuration-independent.

1 INTRODUCTION

Congestion in computer aetworks is becoming a sig-
nificant problem due to increasing use of the net-
works, as well as due to increasing mismatch in link
speeds caused by intermixing of old and new technol-
ogy. Recent technological advances such as local ares
networks (LANs) and fber optic LANs have resulted
in a significant in the bandwidths of com-
puter network links. However, these new technolo-
gies must coexist with the old low bandwidth media
such as the twisted pair. This heterogeneity has re-
sulted in mismatch of arrival and service rates in the
intermediate nodes in the network, causing increased
queuing and congestion.

We are concerned here with congestion avoidance
rather than congestion control. Briefly, a conges-
tion avoidance scheme allows a network to operate in

the region of low delay and high thronghpnt. These
schemes prevent a network from entering the con-
gested state in which the packets are lost. We will
elaborate on this point in the next section where the
terms flow control, congestion control, and conges-
tion avoidance will be defined and their relationship
to each other discussed.

We studied a number of alternative schemes for con-
gestion avoidance. DBased on a number of require-
ments described later in this report, we selected an
alternative called the dinary feedback scheme for de-
tailed study. This scheme uses only a single hit in
the network layer header to feed back the congextion
information from the network to users, which then in-
crease or decrease their load on the metwork to make
efficient and fair use of the resonrces. We present pre-
cise definitions of efficiency and fairness that can be
used for other distributed systems as well.
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Figure 1: Flow control vs congestion control.

This report is & summary of our work in the ares of
congestion avoidance in connectionless networks. We
have tried to make this summary as self-contained
and brief as possible. For further information, the
reader is encouraged to read detailed reperts in
[16,22,4,23).

3 CONCEPTS

In this section we define the basic concepts of flow
control, congestion control, and congestion avoid-
ance.

Consider the simple configuration shown in Figure 1a,
in which two nodes are directly connected vis a link.
Without any control, the source may send packets at
a rate too fast for the destination. This may cause
buffer overflow at the destination, leading to packet
losses, retranamissions, and degraded performance. A
flow control scheme protects the destination from
being flooded by the source.

Some of the alternatives that have been described in
the literature are window flow-control, Xon/Xoff [7],
rate flow-control [8}, etc. In the window fow-control
schems, the destination specifies a limit on the num-
ber of packets that the source may send without fur-
ther permission from the destination.

Let us now extend the configuration to incinde a
commaunication subnet (see Figure 1b} consisting of
routers and links that have limited memory, band-

width, and processing speeds. Now the source must
not only obey the directives [rom the destination. but
also from all the routers and linke in the network.
Without this additional control the source may send
packets st a rate too fast for the network, leading
to queuing, buffer overflow, packet losses, retrans-
missions, and performance degradation. A conges-
tion control scheme protects the network from being
flooded by its users {transport entitiex at source and
destination nodes).

In connection-oriented networke the congestion proh-
lem is generally solved by reserving the resources a
all routers during connection setup. In connectionless
networks it can be done by explicit messages {choke
packets) from the network to the sources [19], or by
implicit means such as timeout on a packet loss. In
[15,18,21}, & number of alternatives have heen dis-
cussed and a timeout-based scheme has been analyzed
in detail.

Traditional congestion control schemes help improve
the performance after congestion has occurred. Fig-
ure 2 shows general patterns of response time and
throughput of a network as the network load in-
creases, If the load is small, throughput gener-
slly keeps up with the load. As the load increases,
throughput increases. After the load reaches the net-
work capacity, throughput stope increasing. If the
load is increased any farther, the guenes start hnild-
ing, potentially resulting in packets being dropped.
Throughpat may suddenly drop when the load in-
creases beyond this point and the network is said 1o
be congested The respomse-time curve follows a sinvi-
lar pattern. At first the response time increases little
with load. When the quenes start building up, the
response time increases linearly until finally, az the
queues start overflowing, the response time increases
drastically.

The point at which throughput approaches sero is
called the point of congestion collapse. Thir is also
the point at which the response time approsches in-
finity. The purpose of a congestion control scheme
{such as [15,3]) is to detect the fact that the network
has reached the point of congestion collapee resulting
in packet losses, and to reduce the load so that the
network returns to an uncongested state.

We call the point of congestion collapee & eliff due
the fact that the throughput falls off rapidly after this
point. We wse the term knee to describe the point
after which the increase in the throughput is small,
but after which a significant imcrease in the rexponne
time resuits. .
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Figure 2: Network performance as a function
of the load. Broken curves indicate
performance with deterministic service and
inter-arrival times.

A scheme that allows the network to operate at the
knee is called s congestion avoldance scheme, as
distinguished from & congestion control scheme that
tries to keep the network operating in the sone to
the left of the cliff. A properly designed congestion
avoidance scheme will ensure that the users are en-
couraged to increase their traffic load as long as this
does not significantly affect the response time and are
required to decrease them if that happens. Thus, the
network load oecillates around the knee. Congestion
control schemes are still required, however, to protect
the network should it reach the cliff due to transient
changes in the network.

The distinction between congestion control and con-
gestion avoidance is similar to that between deadlock
recovery and deadlock avoidance. Congestion con-
trol procedures are curative snd the avoidance pro-

cedures are preventive in nature. The point at which
a congestion control scheme it called upon depends
vpon the amount of memory available in the ronters,
whereas the point at which a congestion avoidance
scheme is invoked is independent of the memory size.

We elaborate further on these concepts in [16;.

3 ALTERNATIVES

Congestion control and congestion avoidance are dy-
namic system control issues. Like all other control
schemes they consist of two parts: a feedback mecha-
nism and a control mechanism. The feedhack mecha-
nism sllowe the system {network) to inform its nsers
{sources or destinations) of the current state of the
system, and the contrel mechanism allows the users
to adjust their loads on the system.

The problem of congestion control has heen discnssed
extensively in the literature. A number of feedhack
mechanisms have been proposed. If we extend those
mechanisms to opernte the network around the kuee
rather than the cliff, we obtain congestinn avoidance
mechanisms. For the feedback mechanisms we have
the following alternatives:

1. Congestion feedback via packets sent from
routers to sources

2. Feedback included in the routing messages ex-
changed among routers

3. End-to-end probe packets sent by sources

4. Each packet containing a congestion feedback
field filled in by routers in packets going in the
reverse direction- reverse feedhack

5. Each packet containing a congestinn feedback
field filled in by routers in packeis going in the
forward direction— forward feedhack

The firet alternative is popularly known as choke
packet [19] or source quench message in ARPAne:
[20]. It requires introducing additional traffic in the
network during congestion, which may not be desir-
able.

The second alternative, increasing the cost (ured
in updating the forwarding database) of congested
paths, has been tried before in ARPAnet's delay-
sensitive routing. The delays were found to vary too
quickly, resulting in a high overhead [18].



The third alternative, probe packets, also suffers from
the disadvantage of added overhead, unless probe
packets have a dual role of carrying other informa.
tion in them. If the latter were the case, there would
be no remson not to use every packet going through
the network as a probe packet. We may achieve this
by reserving a field in the packet that is used by the
network to signal congestion. This leads us to the
last two alternatives.

The fourth altermative, reverse feedback, requires
routers to piggyback the signal on the packets going
in the direction opposite the congestion. This alter-
native has the advantage that the feedback reaches
the source faster. However, the forward and reverse
traffic are not always related. The destinations of the
reverse traffic may not be the cause of or even the
participants in the congestion on the forward path.
Also, many networks {inciuding Digital Network Ar-
chitecture, or DNA) have path-splitting such that the
path from A to B is not necessarily the same as that
from B to A,

The fifth alternative, forward feedback, sends the sig-
nal in the packets going in the forward direction (di-
rection of congestion). In the case of congestion the
destination either asks the source to reduce the load
or returns the signal back to the source in the pack-
ets (or acknowledgments) going in the reverse direc-
tion. This is the alternative that we study here and
in [22,23].

The key architectural assumption about the networks
in this study is that they use connectionless network
service and transport level connections. By this we
mean that a router is not aware of the transport con-
nections passing through it, and the transport enti-
ties are not aware of the path used by their packets.
There is no prior reservation of resources at routers
before an entity sets up a connection. The routers
cannot compute the resource demands except by ob-
serving the traffic lowing through them. Examples
of network architectures with connectionless network
layers are DoD TCP/IP, DNA, and 1SO connection-
less network service weed with ISO transport class 4
9].

4 PERFORMANCE METRICS

A congestion avoidance scheme is basically a resource
allocation mechanism in which the subnet (set of in-
termediste nodes or routers} is a set of m resources
that has to be allocated to nn users {source-destination

pairs). There are two parties involved in any resnnrce
allocation mechanism: the resource manager and the
user. The resource manager's goal is to use the re-
source as efficiently as possible. Users, on the other
hand, are more interested in getting a fair share of
the resource. We therefore need to define efficiency
and fairpess.

For our current problem of congestion avoidance, the
routers are our resources and therefore we use the
terms routers and resources interchangeably. The
concepte introduced here, however, are general and
apply to other distributed resource allocation proh-
lems as well. Similarly, for the cnrrent prohlem,
the demands and allocations are measnred by pack-
ets/second {throughput), but the concepts apply 1o
other ways of quantifying demands and allocations

Readers not interested in definstions of these metrics
may skip to the next section on the proposed scheme.

4.1 Single Resource, Single User

Consider first only one user and one resource. In this
case fairness is not an issue. If the user is allowed
to increase its demand (window), the throughput in-
creases. However, the response time (total waiting
time at the resource) also increases. Althongh we
want to achieve as high a throughput as possible, we
also want to keep the response time as small as possi-
ble. One way to achieve a tradeoff hetween these cnn-
flicting requirements is to maxiniize resonrce power
[8,17], which is defined by:

Rescurce Thronghpmt™

Repourcell evste Resource Response Time

Here, a is a constant. Generally, o = 1. Other values
of a can be used to give higher preference to through-
put (@ > 1) or response time (a < 1). The con-
cepts presented in this report apply to any value of
a. However, unless otherwise specified we will aspume
throughout this report that a = 1. The resource
power is maximum at the knee.

For any given inter-arrival and service time distribu-
tions, we can compute the throughput at the knee.
We call this the knee-capacity of the reronrce.

The maximally efficient operating polint for the
resource is its knee. The efficiency of resonrce usage

is therefore quantified by:

. Resource Power
-nrce Efichncy = Resource Power at Knee




The resource is used at 100% efficiency at the knee.
As we move away from the knee, the resource is
being used inefficiently, that is, either underutilized
{throughput lower than the knee-capacity} or overuti-
lised (high response time).

4.3 Single Resource, Multiple Users with
Equal Demands

With multiple users we have an additional require-
ment of fairness. The allocation is efficient as long as
the total throughput ia equal to the knee-capacity of
the resource. However, a maximally efficient alloca-
tion may naot be fair, as some users may get better
treatment than others. The fairness of an allocation
is a function of the amounts demanded as well as the
amounts allocated. To simplify the probiem, let us
first consider the case of equal demands in which all
users have identical demands (D). The maximally
fair allocation then consists of equal allocations to
all users, i.e., a; = A for all . The fairness of any
other (non-equal} allocation is measured by the fol-
lowing fairness function {11j:

Fuirnes = (i 2 (1)

where z; = a,/D.

This function has the property that its value always
lies between O and 1 and that 1 (or 100%) represente
a maximally fair allocation.

Notice that we use user tAroughput to measure alloca-
tions and demands because of its additivity property:
total throughput of n users at s single resource is the
sum of their individual throughputas.

4.3 Single Resource, Muitiple Users with
Unequal Demands

Given a resource with knee-capacity of Tinee, each of
the n users deserves & fair share of Tynee/n. However,
there is no point in allocating Tinee/n to & user who
is demanding less than Tynee/n. It would be better to
give the excess to another user who needs more. This
argument leads us to extend the concept of manimally
fair allocation such that the fair share ¢; is computed
subject to the following two constraints:

1. The resource is fully allocated:

n
Z 8i = Thnee

iml

2. No one gets more than the fair share ar itede-
mands
a, = min{d,,t!}

Given the knee capacity of a resource and indi-
vidual user demands, the above two constraints al-
lows us to determine the maximally fair allocation
{A}, A3,..., AL}, If actual allocation {ay,....an} is
different from this, we need a distance function to
quantify the fairness. We do this by using the fair-
ness function of equation 1 with z, = a,/A].

The efficiency of the resource usage can he computeid
as before by computing resource power from the re-
source throughput (which is given as the sum nf ncer
throughputs in this case) and the resource respnn=e
time. The allocation that is 100% efficient and j00"7
fair is the optimal allocation.

We must point out that the above discussion for a
single resource case also applies if there are maltiple
{m) routers but all routers are shared by all n users.
In this case the set of m routers can be combined and
considered as one resource.

4.4 Multiple Resources, One User

We have extended the concepts of fairness and ef-
ficiency to a distributed system with multiple re-
sources. Let us first consider a case of a single user 20
that fairness is not an issue. For the subnet conges-
tion problem, the user has a path P passing through
m resources (routers) {ry,ra2,...,rm}. The resaurce
with the lowest service rate determines the uger’s
throughput and is called the bottieneck resonrce.
The bottleneck resource has the highest utilization
(ratio of throughput to service rate} and contributes
the most to user's response time. The maximally effi-
cient operating point for the system is definect as the
same as that for the bottleneck router. Thus, given a
system of m resources, we determine the bottleneck
and define its efficiency as the global efficiency and
ita knee as the maximally efficient operating point for
the system.

Global Efficiency = Efficiency of the Bottleneck
' Resource

Note that the global efficiency, as defined here, de-
pends upon the response time at the bottleneck re-
source and not on the user response time, which is a
sum of response time at m resources.



4.5 Multiple Resources, Multipie Users

In this case, there are n users and m resources. The
i** oser has a path p, consisting of a subset of re-
sources {ri;,iz,...,fim, }. Similarly, 7t resource
serves n, users {U;1,Ujz,..., U, }. The global effi-
ciency is still defined by the bottleneck resource which
is identified by the resource with the highest utilisa-
tion. The problem of finding the maximally efficient
and maximally fair allocation is now a constrained
optimisation problem as it has to take differing user
paths into account. We have developed an algorithm
[23] which gives the giobally optimal (fair and effi-
cient) allocation for any given set of resources, users,
and paths.

Once globally optimal allocation {Aj, A3,..., A7)
has been determined, it is easy to quantify fairness
of any other allocation {a,,a3,...,8n} by using the
same fairness function as in the single resource case
(equation 1) with z; = a,/A].

This fairness is called global fairness and the effi-
ciency of the bottleneck resources ir called the global
efficiency. An allocation which is 100% globally effi-
cient and 100% globally fair is said to be globally
optimal. It should be pointed out that by asso-
ciating efficiency with resource power (rather than
user power), we have been able to avoid the problems
encountered by other researchers {2,10] in using the
power metric.

Notice that we have a multi-criteria optimization
problem since we are trying to maximise efficiency
as well as fairness. One way to solve such problems is
to combine the multiple criteria into one, for instance
by taking & weighted sum or by taking a product. We
chose instead to put a strict priority on the two cri-
teris. Efficiency has s higher priority than fairness.
Given two alternatives, we prefer the more efficient
alternative. Given two alternatives with equal effi-
ciency, we choose the fairer alternative.

5 THE PROPOSED SCHEME

We have designed a scheme that allows a network to
operate at its knes. As shown in Figure 3, the scheme
uses one bit called the congestion avoidance bit
in the network layer header of the packet for feed-
back from the subnet to the users. A source clears
the congestion avoidance bit as the packet enters the
subnet. All routers in the subnet monitor their load
and if they detect that they are operating above the

User =t

Bite=0
" IF
f above-knee
THEN
Collect bits; Bite—1
Adjust —
Window;

Figure 3: The Binary Feedback Scheme.

knee, they set the congestion avoidance bit in the
packets belonging to users causing overload. Ronters
operating below the knee pass the bit as received.
When the packet is received at the destination the
network layer passes the bit to the destination trans-
port, which takes action based on the hits.

There are two versions of the binary feedhack scheme:

1. Destination-based
2. Source-based

In the first version, the destination examines the hits
received, determines a new flow-control window, and
pends this window to the source. In the second ver-
sion, the destination sends all bits back to the sonrce
along with the acknowledgments. In this case, we
need to reserve one bit in the headers of transport
layer acknowledgment packets where the destination
transport entity copies the bit received from the net-
work layer. The source transport entity examines the
stream of bits received, determines a new operating
window, and uses it as long as it does not vinlate the
window limit imposed by the the destination.

We have studied both versions. The NSP trans-
port protocol in DNA [6] uses the sonrce-based ap-
proach, while the ISO TP4 {9] implementation nses
the destination-based approach.

In the remainder of this report, we use the word user
to include both source and destination transport en-
tities. Thus, when we say that the user changes its
window, the change might be decided and affected by
the source or destination transport emtity.

The proposed congestion svoidance scheme coneiste
of two parts: a feedback mechanism in routers, and
a control mechanism for users. We call these the
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Figure 4: Components of the Binary Feedback
Scheme.

router policy and the user policy, respectively. Each
of these mechanisme can be further subdivided into
three components as shown in Figure 4. We ex-
plain these components below. For further details
see [16,22,23].

5.1 Router Policies

Routers in s connectionless network environment are
not informed about resource requirements of trans-
port entities and therefore they have no prior knowl-
edge of future traffic. They attempt to optimise their
operation by monitoring the current load and by ask-
ing the nsers (via the bit) to increase or decrease
the load. Thus, the routers have three distinct al-
gorithms:

1. To determine the instantaneous load level

2. To estimate average load over a appropriate
time interval

3. To determine the set of users who should be
asked to adjust their loads

We call these three algorithms congestion detection,
feedback filter, and feedback selections, respectively.
The operation of these components and the alterna-
tives considered are described next.

5.1.1 Congestion Detection

Before a router can feed back any information, it must
determine ite load level. It may be underutilized {be-
low the knee) or overutilized (above the knee}. This
can be determined, based on the utilization, hufler
availability, or queue lengths.

We found that the average queue length provides the
best mechanism to determine if we are ahove or helow
the knee. This alternative is Jeast pensitive to Lhe
arrival or service distributions and ir independent of
the memory available at the router. For hoth M/M 1
and D/D/1 queuer the knee ocenre when the average
queue length is one. For other arrival patterns such
as packet trasna [14], this ir approximately (though
not exactly) true. The routers, therefore, monitor
the queue lengths and ask urers to reduce the load if
the average queue length is more than one, and vice
versa.

6.1.2 Feedback Filter

After a router has determined its load level, it [eed-
back to users is useful if and only if the state last
long enough for the users to take action hased on it.
A state that changes very fast may lead to confusion
because by the time users hecome aware of i, the
state no longer holds and the feedback is mislead-
ing. Therefore, we need & low-pass filter function to
pass only those states that are expected to last long
enough for the user action to be meaningful.

This consideration rules out the uze of tnsiantancous
queue lengths Lo be used in congéstion detection. An
instantaneous queune length of 100 may not be a prob-
lem for s very fast router but may be a problem for
a slow router. We need to average the queue lengths
over a long interval. The key question it how long an
interval ix long enough.

We recommend averaging since the beginning of the
previous regeneration cycle. A regeneration cycle is
defined as the interval consisting of a busy period and
an idle period, as shown in Figure 5. The heginninc
of the busy period ir called a regeneration point
The word regeneration signifies the birth of a new
system, since the queuning system’s behavior after the
regeneration point does not depend upon that hefore
it. The average quene length is given by the area
under the curve divided by the time since the last
but one regeneration point. Note that the averaging
includes a part of the current, though incomplete,
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cycle. This is shown in Figure 5.

5.1.8 Feedback Selection

The twe components of router policy discussed so
far (congestion detection and feedback filter) ensure
that the router operates efficiently, that is, around
the knee. They both work based upon the total load
on the router, to decide if the total load is above the
knee or below the knee. The total number of users or
the fact that only a few of the users might be causing
the overload is not considered in those components.
Fairness considerations demand that only those users
who are sending more than their fair share should
be asked to reduce their load, and others should be
asked to increase if possible. This is done by the
feedback selection, an important component of our
scheme. Without the selection, the system may sta-
bilise at (operate around) an operating point that is
efficient but not fair. For example, two users sharing
the same path may keep operating at widely different
throughputs.

The feedback selection works by keeping a count of
the namber of packets sent by different users since
the beginning of the queue averaging interval. This is
equivalent to momitoring their throughputs. Based on
the total throughput, & fair share is determined and
users sending more than the fair share are asked to
reduce their load while the users sending less than the
fair share are asked to increase their load. Of course,
if the router is opersting below the knee, each one
is encouraged to increase regardless of their current
load. The fair share is estimated by assuming the
capacity to be at 90% of the total throughput since
the beginning of the last regeneration cycle.

The feedback selection as proposed here attempts to
achieve fairness among different network layer service
accesr point (NSAP) pairs because the packet cnunis
used in the algorithm correspond to these paire,

This completes the discussion on the router polictes
We now turn to the user policies,

5.2 Ubser Policies

Each user receives a stream of congestion avoidance
bite, called ssgnais, from the network. These signals
are not all identical (or else we would not need all of
them). Some signale ask the user to reduce the load.
while others ask it 1o increase the load. The nser pnl-
icy should be designed to compress this stream into a
single increase/decrease decizion at suitahle inervals.
The key questione that the user policy heips answer
are:

1. How can all signals received he cnmbined?
2. How often should the windew he changed”

3. How much should the change he?

We call these three algorithms signal filter, decizion
frequency, and increase/decrease algorithm, respec-
tively.

5.2.1 Signal Filter

The problem solved by this component is to examine
the stream of the last n bits, for instance, and to
decide whether the user shonld increase or decreass
its load (window). Mathematically,

d= f‘bhb:,kg.....&.,}

Here, d is the binary decision (0 = increase, 1 = de-
crease) and b, is the the " bit with b, being the most
recently received bit. The function f ir the signal fl-
ter function. The function that we finally chore re-
quires counting the number of 1# and O¢ in the stream
of the last n bits. Let

2, = number of ones in the stream = Z b,

8o = number of servs in the stream = n - 3,

Then, if 8y > pn then d = 1 elee d = 0. Here, pis
a parameter called cutoff probability. We found
that for exponentially distributed service times, the



optimal choice was p = 0.5, as expected. For de-
terministic service times, however, we found that the
choice of p does not matter. This is because in deter-
ministic cases, the router filtering results in the user
consistently receiving either ail 1s if the load at the
bottleneck is above the knee or all Os if the load is
below the knee. Based on this observation, we rec-
ommend using a cutoff probability of 50%.

In summary, the signal filtering simply consists of
comparing the counts of 15 and Os received in the bit
stream and deciding to go up or down as indicated
by the majority of the bite.

65.2.2 Decision Frequency

The decision frequency component of the user pol-
icy consiste of deciding how often te change the win-
dow. Changing it too often leads to unnecessary os-
cillations, whereas changing it infrequently leade to a
system that takes too long to adapt.

System contro] theory tells us that the optimal con-
trol frequency depends upon the feedback delay - the
time between applying a control {change window) and
getting feedback (bits) from the network correspond-
ing to this control.

In computer networks, it takes one round-irip delay
to affect the control, that is, for the new window to
take effect and another round-trip delay to get the
resulting change fed back from the network to the
users. This leads us to the recommendation that win-
dows should be adjusted once every two round-trip
delays {two window turns) and that only the feed-
back signals received in the past cycle should be used
in window adjustment, as shown in Figure 6.

5.2.3 Increase/Decrease Algorithms

The purpose of the increase/decrease algorithm is to
determine the amount by which the window should
be changed once a decision has been made to adjust
it.

In the most general cuse, the increase (or decrease)
amount would be & function of the complete past
history of controls (windows) and feedbacks (bits).
In the simplest case, the increase/decrease amount
would be a function only of the window used in the
last cycle and the resulting feedback. Actually, there
is little performance difference expected between the
simplest and the most general control approach, pro-
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Figure 68: Decision Frequency. After window w
is changed from wq to wy, the bits b received
during the second round-trip delay interval
indicate network feedback as a function of w;.
Those received during the first round-trip delay
are a function of both wg and wy.

vided that the simple scheme makes full use of the
new information available since the last activation of
the component. We therefore chose the simple ap-
proach. We have already partitinned the problem
s0 that the signal filter looks at the feedhack signals
and decides whether to increase or decrease. The in-
crease/decrense algorithm, therefore, needs to look at
the window in the last cycle and decide what the new
window should be. We limited our search among al-
ternatives to the first order linear functions for both
increase and decrease:

Inerease: Waey = OW4 + b
Decrease: Wnpw = Wit — d

Here, w.iq is the window in the Jast cycle and wyrw
is the window to be used in the next cycle; a, b, ¢,
and d are non-negative parameters. There are four
special cases of the increase/decrease algonthms:

a Multiplicative Increase, Additive Decrease (k=0,
c=1})

b Multiplicative Increase, Multiplicative Decrenss
(b=0,d=0)

¢ Additive Increase, Additive Decrease (a =1,¢c = 1)

d Additive Increase, Multiplicative Decrease (c = 1,
d = 0)



The choices of the alternatives and parameter values
are governed by the following goals:

1. Efficiency: The system bottleneck(s) should be
operating at the knee.

2. Fairnesa: The users sharing a common bottle-
neck should get the same throughput.

3. Minimum Convergence Time: Starting from
any state, the network should reach the opti-
mal (efficient as weil as fair) state as soon as
poesible.

4. Minimum Oscillation Sise: Once at the optimal
state, the user windows oscillate continuously
below and above this state. The parameters
should be chosen such that the osciilation sise
is minimal.

These considerations lead us to the following recom-
mendation for increase/decrease algorithms [16,4]:

Additive Increase: wpep = Whew +1

Multiplicative Decrease: wpew = 0.875w54

If the network is operating below the knee, all users go
up equally, but, if the network is congested, the mul-
tiplicative decrease makes users with higher windows
go down more than those with lower windows, making
the allocation more fair. Note that 0.875 =1 - 273,
Thus, the multiplication can be performed without

foating point hardware, by simple logical shift in-
structions.

The computations should be rounded to the nearest
integer. Truncation, instead of rounding, results in
lower fairness.

This completes our discussion of the proposed binary
feedback scheme. The key router and user policy al-
gorithms are summarised in the appendix.

86 FEATURES OF THE SCHEME

The design of the binary feedback scheme was based
on s number of goals that we had determined be-
forehand. Below, we show how the binary feedback
scheme meets these goals.

1. No control during normal operation: The
scheme does not cause any extra overhead dur-
ing normal {underloaded} conditions.

10

10.

. No new packets during overioad: The scheme

does not require generation of new imessages
{e.g., source quench} during overload condi-
tions.

. Distributed control: The scheme is distributed

and works without any central observer.

. Dynamism: Network configurations and traf-

fic vary continuously. Nodes and links come
up and down and the load placed on the net-
work by users varies widely. The optimal oper-
ating point is therefore a continuonsly maving
target. The proposed scheme dynamically arl-
justs its operation to the current optimal point.
The users continuously monitor the network by
changing the load slightly helow and slightly
above the optimal point and verify the current
state by observing the feedback.

. Minimum oscillation: The increase amount of 1

and decrease factor of 0.875 have been chosen
to minimise the amplitude of oscillations in the
window sizes.

. Convergence: If the network configuration and

workload remain stable, the scheme brings the
network to a stable operating point.

. Robustness: The scheme works nnder a noisy

(random) environment. We have tested it for
widely varying service-time distributions.

. Low parameter sensitivity: While comparing

various alternatives, we studied their sensitivity
with respect to parameter values. If the perfor-
mance of an alternative was found to be very
sensitive to the setting of a parameter value,
the alternative was discarded.

. Information entropy: Information entropy re-

lates to the use of feedback information. We
want to get the maximum information across
with the minimum amount of feedback. Given
one bit of feedback, information theory tells ue
that the maximum information would be com-
municated if the bit was set 50% of the time.

Dimensionless parameters: A parameter that
has dimensions {length, mass, time) is generally
a fanction of network speed or configuration. A
dimensionless parameter has wider applicabil-
ity. Thus, for example, in choosing the increaze
algorithm we preferred increasing the window
by an abeolute amount of k packets rather than
by a rate of ¢ packets/second. The optimal

I



value of the latter depends upon the link band-
width. All parameters of the proposed scheme
are dimensionless, making it applicable to net-
works with widely varying bandwidths.

11. Configuration independence: We have tested
the scheme for many different configurations
of widely varying lengths and epeeds including
those with and without satellite linke.

Most of the discussion in this and associated reports
centers around window-based flow-control mecha-
nisms. However, we must point out that this is not
a requirement. The congestion avoidance algorithms
and concepts can be easily modified for other forms of
flow control such as rate-based flow control, in which
the sources must send at a rate jower than a maxi-
mum rate (in packets/second or bytes/second) speci-
fied by the destination. In this case, the users would
adjust rates based on the signals received from the
network.

7 COMPARISON WITH SIMILAR
SCHEMES

It must be pointed out that the binary feedback
scheme proposed here is different from most other
schemes in that it is the first attempt to achieve
congestion avoidance rather than congestion control.
Similar congestion control schemes exist in literature.
For example, the congestion control scheme used in
SNA [1] also uses bits in the network layer headers to
feed back congestion information from the network
to the source. It uses two bits called the change unn.
dow indicator (CWI) and the reset vindow indicator
(RWI). The first bit indicates moderate congestion,
while the second one indicates severe congestion. The
CWI bit is set by a router when it finds that more
than a percentage, such as 75%, of its buffers have
been used. After all buffers are used up, the router
starts setting RWI bits in the packets going in the
reverse direction. Om receipt of 8 CWI, the source
decreases the window by 1. On the receipt of a RWI,
the source resets the window to A, where A is the
number of hope. If both bits are clear, the window is
increased by one until a maximum of 3A is reached.

The key difference between SNA’s scheme (and all
prior work in congestion control} and our binary feed-
back scheme is the definition of the goal. SNA’s goal
is to ensure that packeta find buffers when they ar-
rive at the routers. Our scheme, on the other hand,
is not so much concerned with the buffers. Rather it
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tries to maximise the throughput while alsn minimmz-
ing the delay. The routers start setting the hits as
soon as the average queue length is more than one
The number of buffers available at the router has ne
effect on our scheme.

The key test to decide whether a particular scheme is
a congestion control or o congestion avoidance scheme
is to consider a network with all nodes having infi-
nite memory (infinite buffers). A congestion control
scheme will generaily remain inactive in such a net-
work, allowing the users to use large windows causing
high response time. A congestion avoidance scheme,
on the other hand, is useful even in a network with
infinite memory. It tries to adjust queving in the net-
work so that a high throughput and a low response
time is achieved.

8 PERFORMANCE

The binary feedback scheme was designed nszing a
simulation model that allowed us to compare varions
alternatives and study them in detail. Most of the
choices discussed earlier in this report have heen jus-
tified using analytical arguments. However, we have
verified all arguments using simulation as well. The
mode] allows us to simunlate any numher of nsers go-
ing through various paths in the network. It is an
extension of the model described in {12|. The model
simulates portions of network and transport layers.
The transport layer is modeled in detail. The routers
are modeled as single server queves. The model's
key limitation currently is that the acknowledgments
returning from a destination to a zonrce are not ex-
plicitly simulated. Instead, the source is informed of
the packet delivery as soon as the packet is accepted
by the destination.

In this section, we present a few cases to illustrate the
performance of the binary feedback scheme. Other
simulation results including those for random ser-
vice times and highly congested networke are given
in [22,23].

8.1 Case I (Single User)

This case consists of a single user using a path con-
sisting of four routers, as shown in Figare 7a.

The service times at the routers are 2, 5, 3, and 4 units
of time, respectively. In our simulation the user’s
speed is one packet per unit of time. In other words



all times are expressed as multiples of time required
1o send one packet. The third router is a satellite link
having a fixed delay of 62.5 units of time. The second
router is the bottleneck, and its power as a function
of the window sise is shown in Figure 7b. This graph
is obtained by running the simulation without the
binary feedback scheme at a fixed window and ob-
serving the user thronghput and response times. It is
seen from this figure that the knee occurs at a window
of 15.5.

Figure 7¢ shows a plot of a user’s window with the
binary feedback scheme. The time is shown along
the horisontal axis. Notice that the user starts with
a window of 1 and sends packet 1 and 2; both packets
troverse the subnet with the congestion bit clear. The
user, therefore, increases the window to 2. Packets 3
and 4 are sent. After their scknowledgment, packets
5 and 6 are sent. The congestion bite in packets 5 and
6 are examined. They are clear and so the window is
increased to 3. This continues until the window is 16.
At this point, the bottleneck starts operating above
the knee and starts setting congestion bits in packets.
The user, upon receiving these packets, reduces the
window to 16(0.875) or 13. The cycle then repeats
and the window keeps oscillating between 13 and 16.

This case illustrates the fact that the network oper-
ates efficiently.

8.2 Case II (Two Users)

To illustrate the fairness aspects of the scheme, con-
sider the same configuration as in Case 1, except that
we have now added another user that enters the sub-
net at router 1 and exits after router 2 (see Figure 8a).
Also, the second user starts after the first one has sent
200 packets. The optimal operating point for this case
can be-determined by running the simulation without
the congestion avoidance scheme for various combina-
tions of window sises for the two users and finding the
window values that are efficient and fair. The router
2 is the bottleneck. At the knee its throughput is
1/5 pachkets per umit time, divided equally between
the two users. The optimal window in this case is
w, = 10 for user 1 and wy = § for user 2. The plots
of the two user's windows are shown in Figure 8b.
Notice that with only one user the system stabilises
at the window of 15 and keeps oscillating around it
until the second user joins the network. At this point,
the first user receives decrease signals from the bot-
tleneck router while the second user receives increase
signals. The windows eventually stabilise when they
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reach their optimal values. Figure 8¢ shows a plot
of throughputs of the two users. The throughput of
the first user drope whiie that of the second increases
until they both share the bottleneck approximately

equally.

Another feature of the scheme, which can be seen
from this case, is that the scheme adapts as the num-
ber of users in the network changes. The users need
not start st the same point (window of 1) to reach
the fair operating point.

9 SUMMARY

The key contributions of our congestion avoidance re-
search are the following:

1. We have introduced the new term congeation
avoidance. It has been distinguished from other
similar terms of flow control and congestion
control. It has been shown that the preven-
tive mechanism, congestion avoidance, helps
the network use its resources in an optimal man-
ner.

2. We defined the concept of global optimality in a
distributed system with multiple resources and
multiple users. The optimality is defined by ef-
ficiency and fairness. Both concepts have been
developed so that they can be independently
quantified and can apply to any number of re-
sources and users.

3. Other researchers attempting to define global
optimality have had difficulty extending the
concept of power to distributed resources. By
defining efficiency for each resource and relating
fairness to users, we have been able to separate
the ¢wo concepts.

4. We have developed a simple scheme that allows
a network to reach the optimal operating point
sutomatically. This scheme makes use of a sin-
gle bit in the network Jayer header. This bit is
shared by all resources.

5. We divided the problem of congestion avoidance
into six components which can be studied sepa-.
rately. This allowed us to compare a number of
alternatives for each component and select the
best.

6. We have simulated the binary feedback scheme
and tested its performance in many different
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configurations and conditions. The scheme has
been found to operate optimally in all cases
tested.
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Appendix A: Algorithms

The

SIMULA procedures used in the simulation

model are included here to clearly explain various
algorithms used in the scheme. The data structures
used by the quene servers in the routers are presented
followed by five procedures which are used as follows:

1.

Arrival: This procedure ia executed on each
packet arrival. It computes the ares under the
queue length curve. Also, at the begining of
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a new cycle, the tables are initialized. SIM-
ULA variable 'time’ gives the currently simn-
lated time.

2. Departure: This procedure is exeented on the
packet departure. It decreases the guene size
and updates the value of aren under the quene
length curve. A hash function is used to find
the table entry where counts for packets sent
by this user are kept.

3. Fair_Share: This procedure it used Lo decide the
maximum number of packets any user shonid
be allowed to send. The routers set the con-
gestion avoidance bits in packets belonging to
users sending more than this amount.

4. Increase: This procedure is used by a transport
entity to increase its window if less than 50% of
the bits received are set.

5. Decrease: This procedure is used by a transport
entity to decrease its window if more than or
equal to 50% of the bits are set. The SIMULA
function Entier(x} returns the highest integer
less than or equal to x.

The first two procedures are parts of the feedback fil-
ter algorithm discussed earlier under router policies.
The third procedure constitutes the feedbark selector
algorithm. The last two procedures make up the tn-
crease/decrease algorithms of the user policies.



1The following data structure is maintained by each queue server or router.

The size of the table 'dim_tables’' to be used ie left to the implementors;

REAL ARRAY plckoti_lons[OLdim_tlblcl]:|le10 far keeping packet counts;
t0th location is used for total count.

REAL ARRAY prov_plckctn_sent[O:din_tableul: {Counts for previcus cycle:

REAL avg_q.length; |Average queue length at this server:
REAL area; tArea under Q length ve time curve;
REAL prev_area; tArea in the previous cycle;
INTEGER q.length; |Gueue length includes one in service;
REAL q_change_time: 'Last time the queue changed:
REAL prev_cycle_begin_time; ITime st which pravious cycle began;
REAL cyele_begin_time; 1Time at which this cycle began;
PROCEDURE arrival; 1To be executed on packef arrival;
BEGIN
INTEGER 1 1Temporary index variable;
lrol:-nroa+q_1cngth-(tino-q_chnngo-tino);Icouputc Area under the curve;
q-lon;th:-q_longth+1; 'Increment pumber in the queue;
q_change_time:=tinme; 1Time of change in Queue length;
IF(q_length=1) THEN IBegining of a new cycle:
BEGIN 1End the previous cycle;

prov_cyclo_bcgin_tino:-cycle_bogin_tine:
cycle_begin_time:=time;
prev_area:=ares;

area:=0;
FOR i:=0 BTEP 1 UNTIL dim_tables DO
BEGIN
prov-plckotu-aont[t]:-plcketl_lcntlil;1lc-tlbtr all counts;
packets_sent (1] :=0; 1Clear packet counts;
END; lof FOR;
END; tof IF(Q.length=1);
END of axrival;
PROCEDURE departure; iTo be executed on packet depazture;
BEGIN
BOOLEAN bit; |The congestion avoidance bit in the packet;
INTEQER user; 1Index in the packet count table:
lrnn:-n:c|¢q_lon;tht(ti--q_ch:ngo_tino);ICeIpntc area under the curve;
q.length:=q_length-1; |Deczoment the number in the queue;
q.change_time:=time; {Rememsber time of queue length change;

lvg.q_lon.th:-(nr-n+prcv_aron)/(t1-.-pr¢v_cyclo_bogin_tino):!Co-putc avg Q length;
ulor:-hnah(lou:co_lddrcll.doct_nddroln.din_tlblol):!Find index into the table;

p.ckl‘l-l.lt[ﬂl!t]:'pltk.tl_llnt[ﬂl.t]*l:lInchl.nt the count;
p-ck-tl_'lnt[ol:-pnckntl_lont[0]+1;|Incrt-cnt total count also;

IF (avg_q.length>2) 1Are ve heavily congested?;

THEN bit:=TRUE 1Yes, set bit for all users;

ELSE IF (avg_q_length<i) THEN !No, do nothing if we are underloaded;
ELSE IF pnckotn_lont[ulcr]+prev_p-ckot-_|ont[nsc:]>tlir_lhnr.

THEN bit:=TRUE; 11f the user semt too sany packets, sat bit;

END of departure;
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REAL PROCEDURE fair_share; !Computes the max number of packets a user can send:

BEGIN
REAL capacity; !Knee capacity of the server,
REAL old_fair_share: IMax allocation {used previoualy);
INTEGER sum_allocation; !Total capacity allocated;
INTEGER old_sum_allocation; !Capacity allocated (previcusly);
INTEGER {; !Index variable;
REAL demand; 'Demand of the ith user;
INTEGER num_not_allecated; f{Number of users yet to be allocated;

capacity := 0.9« (packets_sent[0] +prev_packets_sent[0]);

{Apsume capacity=90% of packets sent;

num_not_allocated := dim_tables;!Initialize number of users to be allocated;

suz_allocation := O; 1Total allocation so far;

0ld_sum_allocation := -~1; 'Allocation in the previous iteration;

fair_share := -1; !Users below this allocation are good,;

WHILE (sum_allocation>old_sum_allocation) DO

BEGIN !Beginning of a new iteration;
old_fair_share := fair_share;

old_sum_allocation := sum_allocation:
fair_share := {capacity-sum_allocation)/num_not_sllocated;!New estimate;

FPOR 1 := 1 BTEP 1 UNTIL dim_tables DO
BEQIN
demand:=packets_sent[i] +prev_packets_sent([i];!Demand in the last two cycles;
IF (demand<=fair_share AND demand>old_fair_share)}
THEN BEGIN
nus_not_sllocated := num_not_allocated-1;!0ne more user satisfied;
sun_allocation := sum_allocation+demand;
END; fof IF:
BND; fof FOR;
END; fof WHILE;
END of fair_share;
PROCEDURE increase(w,w_max,w_used); !Used to increase the window;
NANE w,w_used; 1These parameters are called by name;
REAL w; 1Computed window (real valued);
INTEGER w_max; IMax window allowed by the destination:
INTEGER w_used; !¥indow valued used (integer valued);
BEGIN
wimw+]l; 1Go up by 1:
IF(w>(w_used+t)) THEN w:=v_used+1;!No more than 1 above the last used;
IF woe_saax THEN w:~w_max; 'Also, never beyond the destination limit;
v_used:=Entier(w+0.E) 'Round-off;
END of increass;
PROCEDURE decrease(w,w_used); 1Used to decrense the window;
NAE vw,v_used; 1These parameters are called by name,
REAL w; {Computed window (real valued);
INTEGER v_used; 1Windov value used (integer valued);
BEGIN
w:=0 87Bew; iMultiplicative decrease;
IF{w<1)THEN w:=1; 1Do not reduce below one;
wv_used:=Entier(w+0.6); 1Round~-off;

END of decrease;
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