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Abstract—Crowdsourcing applications, such as Uber for ride-
sharing, enable distributed problem-solving. A subset of these
applications is intelligent crowd-forecasting applications, e.g.,
Virustotal, for malware detection. In crowd-forecasting applica-
tions, multiple agents respond with predictions about potential
future event outcome(s). These responses are then combined
to assess the events collaboratively and act accordingly. Unlike
conventional crowdsourcing applications that only communicate
information, crowd-forecasting applications need to additionally
process information to achieve a collaborative assessment. Hence,
they require knowledge-based systems instead of simple storage-
based ones for crowdsourcing applications. Most existing crowd-
forecasting systems are centralized, leading to the inherent single
point of failure and inefficient collaborative assessment. This pa-
per presents CrowdFAB, Crowdsourced Forecasting Applications
using Blockchains. We deploy a knowledge-based blockchain
paradigm that transforms blockchains from simple storage to
knowledge-based systems, thereby achieving crowd-forecasting
requirements without centralization. In addition, we formulate a
novel reputation scheme that assigns reputations to agents based
on their performance. We then use this scheme when making
assessments. We implement and analyze CrowdFAB in terms of
overhead and security features. Further, we evaluate CrowdFAB
for a collaborative malware detection use case, where multiple
detectors are involved for crowd forecasting. Results demonstrate
CrowdFAB’s superior accuracy and other metrics performance
compared to other works with the same settings.

Index Terms—Crowdsourcing, Blockchains, Malware detec-
tion, Security assessment.

I. INTRODUCTION

Modern problem-solving applications, including traffic anal-
ysis, ride-sharing, and job recruiting, are extremely compli-
cated. They require users to collaborate with possibly thou-
sands of others that could be at different levels of expertise.
Crowdsourcing has emerged over the last decade as a dis-
tributed and efficient problem-solving model to support these
applications [[1]]. Its traditional system consists of three main
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parties: requesters, agents, and a centralized server. A requester
submits a task or a set of tasks that are critical for them. Agents
(also referred to as workers in literature) compete to solve this
task and submit solutions through the system. The centralized
server regulates the communication, selects a “one-to-one
matching solution,” and grants the corresponding agent(s)
a reward. For example, Uber requires riders (requesters) to
request a ride, and several drivers (agents) can offer the ride
while Uber chooses one driver to be offered to the rider
[2]]. Other examples include Upwork [3] for hiring tasks and
Airbnb [4] for lodging reservations.

An emerging subset of crowdsourcing applications involves
forecasting and crowd intelligence, where agents input their
predictions as probabilistic responses to specific questions
or events. We call these applications as crowd-forecasting
applications, where requesters post questions and act upon
several responses that might involve risk or uncertainty. An
example is the Facebook forecasting application for predicting
events such as disease outbreaks and election results [5].
Security assessments in distributed networks are also examples
of crowd-forecasting applications. For example, the crowd can
solve tracking and detecting malicious applications or network
flows in mobile platforms. Thousands of distributed malware
detectors (agents) individually evaluate if an application is
malicious, and the system will reach a collaborative response
about the application [6]. PolySwarm [7] and Virustotal [§]]
are examples of crowd-forecasting security industries that have
emerged in recent years.

Unlike Uber and other crowdsourcing applications, crowd-
forecasting applications do not offer a one-to-one matching be-
tween requesters and agents. Instead, a collective summary or
decision, subsequently named knowledge summary, is reached
from multiple answers [9]. Thus, crowd-forecasting models do
not only communicate requests and responses but also process
responses to get the knowledge summary. This indicates
that crowd-forecasting models need knowledge-based systems
rather than storage systems needed in crowdsourcing.

Despite their popularity, crowdsourcing and crowd-
forecasting models have several weaknesses. Most of these
models require a centralized party as a communication channel
between requesters and agents [10]. This leads to many
challenges, including trust issues, a single point of failure,
and potential attack surfaces. Both requesters and agents need
to trust the party in performing correct functionalities, which
is problematic if the party misbehaves. The party can be a
single point of failure, i.e., if the party fails or is compromised,
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the whole system fails. The centralization also makes these
systems vulnerable to distributed denial-of-service attacks,
hijacking, and mischief attacks [[I1]]. Finally, the knowledge
summary in crowd-forecasting applications is vulnerable to
manipulation by the central server [12].

Blockchain, as a secure, shared, and distributed cutting-edge
technology, has the potential to resolve some of the above
challenges. It facilitates communication between requesters
and agents without needing for a central third party. This
resolves the centralization challenge and makes the system
less vulnerable to attacks. In addition, users in the system are
inherently pseudo-anonymous, enhancing the system’s privacy
to some extent. As a result, many earlier works focused on
building proper blockchain-based crowdsourcing systems. For
example, the works in [I11] and [13]-[[17] have proposed
blockchain-based crowdsourcing systems for applications such
as crowdsensing, mobile crowd applications, crowdfunding,
and image annotations. These works mainly resolved the
centralization challenge by eliminating the central authority
and replacing it with the blockchains’ distributed nature.

None of the earlier works have targeted crowd-forecasting
applications and mostly focus on the traditional one-to-one
solution for crowdsourcing applications. They use blockchains
to gather responses as a storage system. However, as dis-
cussed earlier, forecasting applications must process the stored
information (responses) and achieve the required “knowl-
edge summary.” In other words, to support blockchain-based
crowd-forecasting applications, there is a need to transfer
blockchains from simple storage to processing and knowledge-
based systems. Earlier works rarely discuss agents’ reputations
as an active part of the decision-making process and mostly
base the reputations of requesters’ evaluation that could be
malicious. Moreover, since these concepts do not apply to
forecasting applications, they have not been used for security
applications. These could be of particular interesting, given
the recent interest in crowd-supported security applications.

To that extent, this paper presents CrowdFAB, a novel
framework for Crowdsourced Forecasting Applications using
Blockchains. CrowdFAB fills the abovementioned gaps and
proposes a blockchain-based solution designed explicitly for
crowd-forecasting applications that securely and efficiently
produce the knowledge summary. We analyze CrowdFAB in
terms of security and overhead. We further use the framework
for security applications, specifically targeting a distributed
malware detection use case. We evaluate the performance in
terms of accuracy and other metrics. Results indicate the su-
perior performance of CrowdFAB compared to other existing
works in the literature. To summarize, the main contributions
of this paper can be outlined as follows:

1) We conceptualize CrowdFAB as a blockchain-based
paradigm for crowd-forecasting applications. Crowd-
FAB inherently resolves the centralization chal-
lenges. More importantly, CrowdFAB uses our ex-
tended blockchain paradigm, i.e., knowledge-based
blockchains, [18]], [19ﬂ which was proposed for col-

!Originally named as probabilistic blockchains. Note that probabilistic
blockchains and knowledge-based blockchains are the same. We changed the
name for clarity

laborative decision-making applications. The paradigm
transforms blockchains from storage to knowledge-
based systems, guaranteeing a secure and efficient
knowledge summary.

2) We extend our earlier proposed reputation scheme in
[20] to meet the security requirements and use the
CrowdFAB paradigm to provide agents’ reputations
based on their past performance. This is used to man-
age agents’ contributions to decision-making and elim-
inate/disregard malicious agents who try to manipulate
the knowledge summary.

3) We formulate the CrowdFAB framework that combines
knowledge-based blockchains with the proposed repu-
tation scheme. The framework is implemented on top
of the Quorum blockchain platform to evaluate its over-
head. We emphasize that the framework can be deployed
on any blockchain platform, given that it satisfies the
system assumptions and application requirements.

4) We analyze the proposed scheme’s security, proving
it is fraud resilient. This is achieved by two features:
resiliency against malicious agents who try to control
the knowledge summary and resiliency against malicious
nodes who try to downgrade good agents’ performance.

5) We validate our approach by building passive malware
detection as a crowd-forecasting security assessment use
case. Using machine learning (ML) models learned from
previously published datasets. We simulate multiple mal-
ware agents that can reflect real-world scenarios. We
then empirically evaluate the system in terms of several
performance metrics. Our results show that CrowdFAB
can enhance prediction performance compared to re-
cently published works in the same settings.

The rest of the paper is organized as follows. Section
provides a brief background on blockchains and knowledge-
based blockchains. Section presents the proposed Crowd-
FAB system, including its components, architecture, system
assumptions, threat models, and security goals. Section
details the CrowdFAB framework and its implementation.
Section |V| evaluates the proposed concepts in terms of perfor-
mance and security analysis. Section|[V]| presents and evaluates
our malware detection case study. Section reviews earlier
works related to CrowdFAB. Finally, Section summarizes
the main results and conclusions from the paper.

II. BACKGROUND

This section provides a brief background on blockchains and
knowledge-based blockchains, which are needed to understand
the rest of the paper.

A. Blockchain Technology

A blockchain is a distributed ledger that consists of two
main components: a chained database and a distributed net-
work of nodes. The database is a set of time-ordered trans-
actions that are signed and recorded. Several transactions are
verified and bundled together to form a block, and agreement
is achieved using predefined techniques known as consensus
algorithms [21]. Examples of consensus algorithms include
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Fig. 1: Illustration of Traditional Blockchains process

Proof of Work (PoW) used in Bitcoin and Proof of Stake (PoS)
used in Ethereum. Each block has a header that includes a
hash value of its predecessor. Thus, all transactions are linked
together in a chained database.

The database is maintained by many globally distributed
nodes that form the blockchain network. Although all nodes
can access blocks and transactions, the transactions cannot be
altered or denied once committed to the chain. This novel
architecture yields many appealing characteristics, including
distributed management, decentralized consensus, immutabil-
ity, and non-repudiation guarantees [22].

As shown in Fig. |1} one can divide the nodes’ roles in a
blockchain system into two categories: users and blockchain
nodes (minersE] and validators). Users are clients that submit
transactions as fundamental interactions in the system. They
do not necessarily hold the chained database and interact
with the system using predefined application programming
interfaces (API). Miners validate transactions and form blocks
that will eventually be validated by other blockchain nodes
in the system. We refer to these other blockchain nodes as
validators.

B. Knowledge-based Blockchains

In crowd-forecasting applications, many agents make as-
sessments or predictions for requests. For example, in dis-
tributed and collaborative malware analysis, multiple malware
inspectors use human intelligence, machine learning, or prede-
fined rules to evaluate whether the submitted software, mobile
update, or file is malicious. These evaluations or inspections
can be stored in blockchain transactions. Moreover, they can
be processed when forming the blocks, and a collaborative
knowledge summary about the request can be made [[18]], [[19].

Thus, three requirements that should be in any blockchain-
based crowd-forecasting application. First, transactions for
these applications should be of two types: requests and re-
sponses. Request transactions include the event to be assessed;
response transactions include the agents’ individual assess-
ments. Second, responses may include probabilistic values or
vectors with the risk or uncertainty involved in the assessment.
The probabilities reflect how certain an agent is about its
decision. Third, processing these assessments to produce the
knowledge summary should be done within the blockchain
process. To do so, we need to enhance blockchains from

2 We use the term “miner” for any node that does transaction validation
and block generation function. All blockchains have this function, but some
do not use this name for nodes responsible for this function, e.g., in some
private blockchains.
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simple storage to knowledge-based systems. This is done
by processing the included transactions (i.e., generating the
knowledge summary) within the blockchain block generation
process.

Conventional blockchains (e.g., the technology used for
Bitcoin) would not meet the three requirements. This is
because transactions in platforms like traditional Bitcoin are
of one type and cannot be extended without enhancing the
blockchain. Also, they cannot store probabilistic values since
all monetary transactions are deterministic. Further, they can-
not process these transactions within the blockchain system as
the system is designed only to be data storage (ledger).

With smart contracts, one can theoretically make such a
transfer and meet all requirements. However, this cannot be
done in practice with current smart contracts’ implementations
due to several limitations. First, existing smart contract lan-
guages (e.g., Solidity) do not support floating points as a vari-
able type in their implementations. Thus, probabilistic values
cannot be stored unless converted to real values integers, which
is undesirable. More importantly, smart contracts processing is
very much limited by gas usage and maximum gas limits. Even
simple computational operations, such as sorting operations,
would result in gas costs that exceed the maximum gas limit,
resulting in the failure of smart contracts. This is especially the
case as the number of decisions/responses gets large, which is
expected for crowd-forecasting applications. Thus, achieving
the knowledge summary is impractical using the currently
available smart contracts languages or platforms.

Our earlier work has proposed knowledge-based
blockchains to resolve this challenge and transform
blockchains from storage to processing and knowledge-
based engines. Knowledge-based blockchains extend the
traditional blockchains in the following ways, see Fig.
[18]. Note that this generalized framework highlights how
the technology can be extended. The details, e.g., what the
request/response transactions contain and how the knowledge
summary is generated and validated, are application specifics
that will come later in the paper.

1) The users can broadcast the two types of transactions:
request transactions and response transactions. Request
transactions are conventional transactions that include
user requests. Response transactions include forecasts
and specific probabilities that reflect the risk involved in
that forecast. Thus, response transactions are extended
conventional transactions that need additional variables
to reflect these probabilities.

2) The miners validate the transactions by verifying signa-
tures as in the traditional blockchains. More importantly,



they combine several related responses into a knowledge
summary and include this summary in the block. For
example, a knowledge summary can be the mode of
several response transactions that state if a specific
file has malware. This mode, along with the modes of
responses for other files, is the knowledge summary and
is stored in the block header. Hence, the knowledge
summary is generated within the blockchain process
(as the system makes the “knowledge” required for
forecasting applications out of stored forecasts) and can
be accessed by other nodes in the system.

3) Validator or blockchain nodes validate the blocks and
construct the chain. While doing so, they verify that the
generated knowledge summary correctly summarizes the
included response transactions.

In knowledge-based blockchains, the role of users has been
replaced by two new roles: Requesters and Agents. This is
done to distinguish requests from responses. However, in terms
of nodes’ involvement in a blockchain system, requesters and
agents are both users. Any node with a valid public key can
be a requester or an agent in permissionless (or non-restricted
access) blockchains, while the roles can be prespecified in
permissioned (or restricted access) blockchains. For the rest
of this paper, we refer to various nodes as: requesters, agents,
and blockchain nodes (miners and validators). Note that these
are roles, and a node can serve multiple roles.

III. CROWDFAB SYSTEM MODEL

This section discusses the CrowdFAB system model, ar-
chitecture, assumptions, and security goals. To simplify the
discussion, we focus on malware detection in files as an
example application and use it to describe the framework,
which can be applied to numerous other applications. Table I
presents some notations used throughout this paper. Variables
in bold are vectors/matrices. Non-bold variables are scalars. To
be consistent, subscript i will be used for requests, subscript
J will be used for agents, subscript k will be used for miners,
and subscript [ will be used for validators.

A. CrowdFAB System Components and Architecture

In a CrowdFAB-based malware detection system, requesters
are individuals posting requests for file inspection. Without
loss of generality, we use only one requester Q in the context
of this paper. Each request consists of several file features
F;={F1;, Fa, .., Fy;} that can be used by the agents to
identify if the file is malicious or not. These features will
be included in a request transaction 7;. Similar to tradi-
tional blockchain transactions, these transactions include the
requester’s signature, timestamp, and feature data.

Agents, identified by N={N;, Na, ..,N,,}, inspect T;
submitted by the requester Q. n; here refers to the number
of agents that respond to the i*" request, T;. For malware
detection, these agents are the security experts who can inspect
a file for malware possibility based on predetermined rules,
ML models, or any other inspection strategy. Agent j submits
his/her response transaction D;; consisting of probability P;;
that this file is malware along with other conventional variables

TABLE I: Symbolic notation for the Malware Example

Notation Explanation

Q A requester

T={T,, Ts, ..., | Setof t sequential request transactions

T:} submitted by the requester. i request
here consists of inspecting file;. In a
general application, a request would be
a question posted by a requester. Each
request has an ID that is denoted by
ReqlD,;.

F;={Fy; Fy, ..., | Set of f features for file;. Agents can

Fri} use these features to determine their
responses

N;={N1,Na, ..., | Setof n; agents that respond to the i*"

Np, } request

D;={D;1,D;s, n; Responses submitted by n,; agents

vors Din,} responding to the i request

P,={P;1,P;s, ..., | Each response D;; includes a proba-

P} bility P;; that the file is malware

C; Knowledge summary of responses for
filei

R; Reputation of agent;

V={Vi, Vs, ..., | Set of v validator nodes

Vo }

M={M,, Mos, | Set of m miners

cees M}

G The summary function specified by the
requester to summarize responses

such as signatures and timestamps. Thus, each T; results in a
response transaction set D;={D;1, Do, ..., D;y,} along with
a set of probabilities P;={P;1, P2, ..., Py, }. We allow all
willing agents to participate in the request. Based on their
performances, each agent gets a reputation R; that determines
the ”goodness” of its predictions. Note we can have an array
of reputations R, one for each topic or expertise. For example,
an agent can be an expert, i.e., has a high reputation in
financial forecasting, but not good, i.e., has a low reputation
in weather forecasting. However, to simplify this work, we are
considering one reputation per agent, i.e., R;. An agent may
respond to all submitted requests, only some requests, or not
at all.

Blockchain nodes, including miners and validators denoted
by M={M;, M, ..., M,,}, and V={V, V5, ..., V,}, gener-
ate/validate blocks. Compared to traditional blockchains, these
nodes here have an additional task of creating/validating a
knowledge summary of all responses received.

CrowdFAB architecture consists of two layers: the
blockchain layer and the crowd-forecasting layer, as illustrated
in Fig. |3] The crowd-forecasting layer consists of the crowd
entities, i.e., requesters and agents. These entities connect
to the underlying blockchain infrastructure by a ”Blockchain
API,” which can be a web interface, hardware, or software.

The blockchain layer consists of the application sublayer,
the consensus sublayer, and the distributed storage sublayer
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[23]. The application sublayer includes the blockchain inter-
face with its specific functionalities, including transactions,
smart contracts, underlying rules, and chain codes. The con-
sensus sublayer consists of the blockchain nodes that agree
on one consistent state of the blockchain database. These
two sublayers, i.e., the consensus sublayer and the applica-
tion sublayer, perform the logical operations of CrowdFAB,
including collecting requests and responses and achieving the
knowledge summary. The distributed storage sublayer is the
shared layer that includes the database system stored on the
nodes that maintain the blockchain database. All sublayers
are connected to maintain the blockchain functionalities and
provide a secure and efficient underlying infrastructure for the
crowd-forecasting layer.

B. System Assumptions

CrowdFAB has a few system assumptions for the applica-
tions that can use the proposed concepts. These assumptions
include passive processing and delay constraints, no monetary
rewards, enough storage and processing powers, and that most
participants are efficient.

Passive processing and delay constraints: Due to the
distributed nature of the blockchains, meeting real-time re-
quirements and processing is still a significant challenge
in blockchain-based solutions. Real-time crowdsourcing is
a considerable research challenge to date [24]. Thus, we
assume non-real-time and passive crowd-forecasting security
applications in the context of this paper. As will be discussed,
malware detection could passively analyze files to find encoun-
tered breaches or malicious activities.

Majority efficient participants: CrowdFAB also assumes
that the majority of agents and blockchain nodes are honest.
Dishonest members are a minority. This assumption allows
for boosting the reputations of honest agents and makes the
decision-making task more efficient. Dishonest or incompetent
agents have their reputations reduced. Note that we do not
require that the agents make correct responses all the time but
that the majority of them make correct responses every time.

No monetary rewards: We also assume no monetary
rewards and limit the rewards in terms of reputation and pop-
ularity in the system. We argue that reputations and popularity
benefits are as critical as monetary rewards in decision-making
systems. Further, most existing crowd-forecasting systems are

free of charge, especially those targeting security applications
and malware detection such as Virustotal [8]].

Enough storage and processing powers: Finally, we as-
sume that blockchain nodes have enough storage/processing
power to perform blockchain operations and hold the chain
when needed. In addition, they should have enough storage
for agents’ reputations and computational power to calculate
the summary. This assumption applies to all nodes in the
blockchain layer, while nodes in the crowd-forecasting layer
do not necessarily need these capabilities.

For the security of the CrowdFAB, we assume that the un-
derlying blockchain uses elegant cryptographic techniques for
transactions and block signatures. In other words, we assume
the blockchain is secure against crypto-breaking attacks that
try to change the signature or transaction data while keeping
valid signatures. Elliptical curve cryptography (ECC) is used
in most blockchain platforms, which is difficult to break [25].
We also assume that nodes’ private keys are securely stored
and resilient against hardware attacks.

For the privacy of agents and requesters participating in the
system, we only require pseudo-anonymity as provided by the
underlying blockchain. Providing fully private and encrypted
data is not an objective of this paper.

C. Threat Assumptions

We consider malicious agents who try to maximize their
reputations by manipulating the knowledge summary to match
their response. This can be done either individually or col-
laboratively with other agents. Individually, they can provide
one response that manipulates the knowledge summary if an
inefficient summary function is used. For example, suppose
the summary function used to summarize responses and gen-
erate knowledge summary is the “max” function (taking the
maximum value of P; as knowledge summary). In that case, a
malicious agent j can give a high P;; as a response resulting
in the knowledge summary being his/her P;;. In addition, they
can send many response transactions for the same request to
dominate the summary with their responses. Multiple agents
may also collaborate to match their responses that falsify the
summary.

Underlying blockchain roles that include miners and val-
idators are also considered in our threat assumptions. We
consider malicious miners/validators who maximize profits by
colluding with other requesters or agents to break the system’s
operations. They can also individually try to force a non-
desirable summary by proposing or validating/adding falsified
blocks. Note that here we only care about the threats related
to crowd forecasting. Other malicious threats are platform de-
pendent, some of which have been discussed in [26]. However,
we do assume correct operations in the case of leader-based
consensus algorithms. These operations do not include the
generation of a correct knowledge summary, as this is to be
validated by other blockchain nodes. However, they include
bundling all submitted transactions and not discriminating
agent responses by not bundling their transactions. In other
words, we do assume otherwise honest miners/validators who
are curious to manipulate the knowledgeable summary by
generating a falsified one.



It should be noted that we do exclude some threats from the
system. First, a malicious agent may maximize its reputation
by delaying its response. In this case, the agent can calculate
the summary after many responses have been made and use it
as its submitted response. These agents are generally called
curious agents. Privacy-preserving protocols such as multi-
party computations can help to resolve this issue. However,
we will not consider this threat due to our earlier privacy
assumptions and the non-harmful nature of curious agents.

Further, we do not consider Sybil attacks in our threat as-
sumptions. Attackers can join the network with many accounts
and submit false responses in such attacks. This can lead to
a falsified knowledge summary as these “fake” agents will
dominate the submitted responses and manipulate the sum-
mary to their desire [27]. Such an attack can be avoided using
identity authentication or monetary bids for each response
made. Identity authentication validates the agents’ legibility
before they can join the system. This leads to permissioned
blockchains assumption as each agent will join only by
permission that validates its legibility. Monetary bids can be
used for permissionless blockchains, which can follow already
available blockchain bidding solutions [28]. To generalize
CrowdFAB regardless of the underlying blockchain, we do
not address this attack and consider it a future direction.

D. Security Goals

Our CrowdFAB framework should be resilient against sum-
mary manipulations and reputation manipulation. Formally, we
define two security properties followed by an overall security
goal as follows:

Definition 1. Knowledge summary manipulation re-
siliency. The system is resilient against knowledge summary
manipulations if it can prevent the occurrence of the following
conditions:

1) An agent controls the knowledge summary by sending

one or multiple false responses

2) Several agents collaboratively agree on one false re-

sponse that dominates, and thus controls, the knowledge
summary

3) Miners/validators manage to force a random falsified

knowledge summary that favors an agent.

Definition 2. Reward manipulation resiliency: CrowdFAB
system rewards agents by increasing their reputations, thus,
popularity in the system. The system is reputation manipula-
tion resilient if its miners and validators do not decrease
agents’ reputations, therefore, they do not deny individual
responses.

Definition 3. Full fraud-resiliency: A full fraud-resilient
system is a system that is both summary manipulation resilient
and reputation manipulation resilient

For this paper, we target full fraud resiliency as a security
goal for CrowdFAB. The discussion on how CrowdFAB meets
this goal and other security properties will be in Section

IV. PROPOSED CROWDFAB FRAMEWORK AND ITS
IMPLEMENTATION

This section starts with a CrowdFAB overview, summary
functions, and reputation scheme. Then, we detail the Crowd-

Requesters Agents
Request Response
submission e submissions
Validators ~ Miners
Block validation ; Block generation
and commitment (with summary)
7 Trust boundary

Fig. 4: CrowdFAB data flow

FAB framework and its functions. We also highlight the
implementation of Quorum-based CrowdFAB, which serves
as proof of the framework’s feasibility and is later used for
overhead analysis.

A. CrowdFAB Overview and Data Flow

The proposed data flow for CrowdFAB can be formulated
as shown in Fig. f] Requesters, agents, and blockchain nodes
do not necessarily trust and possibly compete with each other.
Thus, as shown in the figure, a trust boundary that defines the
trust zone between nodes exists. Members of each zone have
to ensure that members of other zones are not manipulating
the results. The numbers in Fig. [ indicate the four steps in
CrowdFAB. Its main functionalities lie in Steps 3 and 4, as
these two steps build the underlying infrastructure for crowd-
forecasting applications. In the following, we detail these four
steps of the data flow process.

1) Requests submissions: In the first step, a requester Q
submits the request in a request transaction 7;. This
request can be submitted by revoking a smart contract
that does the same thing. The request is broadcast to
all nodes in the blockchain and will be visible to all
agents in the system. In addition, it will be added to the
request set 7. A request may include a deadline that the
knowledge summary should meet. If a deadline exists,
no further response will be processed after this deadline.

2) Responses submissions: Upon receiving T; or seeing it in
the pool of requests, an interested agent N;, will evaluate
the request. Such an evaluation can be done using an
ML model built on the agent’s own data, based on a
prespecified rule-based model, or any decision-making
technique that the agent chooses to use. The output of
this evaluation is a decision along with a probability.
After evaluation, the agent broadcasts a response trans-
action D;; that includes its response (decision) along
with a probability P;;. Alternatively, the response can
be submitted by revoking a smart contract that does
the same thing. Different agents would assess the same
request and return their response transactions, forming
a response transaction set D;.

3) Block and summary generation: A miner, M}, forms
blocks from the submitted response transactions in this
step. Specifically, the miner gets D; (i.e., D; for each
T;) and calculates the knowledge summary C; as will



be discussed later in Section This results in a
newly formed block that includes response transactions
along with the knowledge summary C; in the headers.
For example, if the mean was used as the knowledge
summary, the formed blocks can include the mean of
the set of probabilities P for all request transactions 7'
included in the block.

4) Block validation and commitment: The formed block is
broadcast and validated by validators V as discussed
earlier. If the block and its knowledge summary are
valid, it will be added to the chain, making the summary
visible to all nodes. More details about this process is
discussed in Section [V-D}

B. Summary Function and its Examples

As discussed, each agent’s response is broadcast as a
response transaction in CrowdFAB. Each request 7; will have
a vector of response transactions D; . As specified by the
requester, a summary function, G, will be used by blockchain
nodes to summarize D, for a particular request. In Table I,
we referred to this knowledge summary earlier as C;.

Ci= G(D;).

To secure this summary against manipulation attacks, G should
not be easy to manipulate such that one (or a minority of)
agent(s) cannot change the knowledge summary significantly.
Examples of a lousy G would be the “minimum” or the
“maximum” function of all assessments.

More details about the G function and its examples can be
found in [18]. The functions used in this work include the
mean, the median, and the mode. The mean summarizes the
probability vector P; constructed from all responses to the it"
request by taking their mean. The median summarizes these
probabilities by their median value. The mode is the value at
which the probability mass function of P; takes its maximum
value. These functions are chosen in our examples to show
that even simple functions can result in better decisions
than sophisticated individual agents. The functions will be
used along with their weighted version, where the weights
are agents’ reputations calculated by the reputation scheme
presented next.

C. Reputation Scheme

CrowdFAB builds its reputation scheme on agents’ past
performance. Each agent is assigned a reputation that defines
how well it has performed so far. Agents whose responses
are close to the knowledge summary are considered good and
popular or trusted by the system. Thus, these agents get high
reputations and are assumed to have a higher chance of making
correct predictions in the near future.

Our earlier work put forward seven requirements that should
be met in any reputation scheme designed for decision-making
[20]. Details on these requirements can be found in that paper;
however, we briefly summarize some of them here. The agent’s
reputation is always between O and 1, where 1 is the most
reputable and 0 is the least reputable. Each agent starts with a

reputation of 0.5, indicating that it is 50% trusted. Further, a
mistake made long in the past should not be treated the same
as a recent mistake. The increase and decrease in reputation
should be configurable, allowing different applications to have
different values. However, as a penalty, the rise in reputation
after a mistake should be slower than a standard increase.
Finally, the decrease after a single incorrect response should
be inversely proportional to how long the agent’s performance
has been excellent. This provides fairness to the good long-
lasting agents.

In addition to the previously mentioned considerations,
security applications have one additional requirement. Namely,
not all errors are equally damaging. Missing a malicious file by
classifying it as benign (false negative) is much more harmful
than classifying a benign file as malicious (false positive).
Therefore, a false negative (FN) prediction should penalize an
agent’s reputation more than a false positive (FP) prediction.

Based on the above requirements, our proposed reputation
function is derived from an extended version of the exponential
weighted average function. This function’s formulation and
properties were discussed in earlier works [20]]. Other func-
tions for reputation could follow the reputation scheme in [29]
and [30] with some modifications to meet the requirements.

The ;! agent’s reputation at time ¢ is denoted by Rj.
However, for simplicity, we omit the subscript j and write
it as R; here. It is updated as follows:

0, p= 0, n = 0
R, = 1 ﬂpllloooc;; (1-75)(2R;—1 — 1), FP is made
2 71)11100007;7, +(1—79)(2Rt—1 — 1), FN is made
o tgen + (1 —a)(2Ri—1 — 1) otherwise

where «, 3, and ~ are configurable parameters for the in-
crease in reputation when a correct response is made, decrease
where an FP error is made, and decrease when an FN error
is made, respectively. p and n are the numbers of correct
and incorrect predictions, where the generated summary or
even the ground truth is compared to the agent’s decision. An
agent response is set to 1 (malware class) if the response’s
probability is greater than 0.5; otherwise, 0.

Note that we are dealing with 1’s and 0’s rather than the
probability or closeness of the prediction. An alternative ap-
proach can compare the probability in the knowledge summary
to the individual agent’s probability and use fractional values
for p and n. This can also be extended to consider different
formulations for p and n, where these variables represent
probabilities along with how far an agent’s decision is from
the ground truth (in case the application is forecasts numbers
instead of binary 1’s and 0’s).

Unlike traditional crowdsourcing schemes that rely on third
parties, CrowdFAB, and other blockchain-based crowdsourc-
ing applications, should implement the reputation within the
blockchain system. In CrowdFAB, R; is used by blockchain
nodes when summarizing responses and validating the sum-
mary. It can also be visible to requesters if they want to verify
the summary and agents who can use it to enhance their future
performance. Therefore, R should either be recorded in the



blockchain or more likely, kept on an off-chain decentralized
database with a pointer to it and a hash-like change protec-
tion mechanism stored in the blockchain. In either case, the
database contains p, n, and R; for each agent. In this work,
reputations are stored off-chain in a decentralized database
(maintained by nodes), and a hash-like change protection
mechanism is stored in the blockchain. They can be updated
by blockchain nodes each time a knowledge summary is
committed.

D. CrowdFAB Framework

CrowdFAB framework implements the data flow presented
in Fig. 4 Steps 1 and 2 are request and response transac-
tions collection, which can be done using the knowledge-
based blockchains paradigm [18]. Thus, our focus here for
CrowdFAB is on Steps 3 and 4. The framework consists of
five functions discussed below, with a pseudo-code provided
in Algorithm [I]

Algorithm 1 CrowdFAB Framework

Input: D; (all response transactions, i.e., D; for each T;),
T(Request transactions)
Output: a New valid block is added to the chain
1: function COLLECTREQID( D,)
> Get the requests that have some responses
for i in D; do
ID.append (i.Reql D)
return ID
: function GETPREVIOUSSUMMARY (ReqID)
Blocks < Get last 50 blocks in chain
for B in Blocks do
ID.append (B.Header.Cast.Reql D)
> Cast.ReqID is stored in the block header
> Cast is C; for all i
9: for :d in ReqID do
10: if id in ID then
11: Summaries.append (id,
Cast.Summary)

S A S

12 return Summaries
13: function GETREPUTATION(D,)
14: for d in D; do

15: Repagent <+ Get R; for d.ID
16: R.append(Repagent)
return R
17: function CALCULATESUMMARY(D);)
18: R < GETREPUTATION (D;)
19: ReqgIDs < COLLECTREQID (D;)
20: PS <GETPREVIOUSSUMMARY (ReqIDs)
21: for i in D; do
22: if ©.ReqID in PS then
23: C; < PS(d.ReqID)+ G(R,D)
24: else
25: C; + G(R,D)
26: C.append(C})
27: return C

28: function UPDATEREPUTATION(newSummary,D;)

29: for d in D; do
30: if d.vote==newSummary (d.ReqlI D) then

31: p<+p+1 b increase the agent’s p value in
the off-chain database

32: else

33: n < n+1 > increase the agent’s n value in
the off-chain database

34: R; + Calculate R; from Section [V-B

35: function CONSTRUCTBLOCK(D;, T)

36: NewSummary <~ CALCULATESUMMARY (D;)

37: UPDATEREPUTATION (newSummary, D;)

38: newBlock.Header.Cast < NewSummary

39: Conventional Block construction process

40: function VALIDATEBLOCK(newBlock)

41: ValidSummary < CALCULATESUMMARY (

42: newBlock.D;)

43: UPDATEREPUTATION (ValidSummary,

44 newBlock.D;)

45: if ValidSummary! = newBlock.Header.Cast
then

46: return False

47: else

48: Conventional validation process

CalculateSummary: A function that takes all response
transactions D; (i.e., D; for each T;) in a block and returns their
knowledge summary. It first gets the reputations of agents in
these response transactions using the GetReputation function
discussed next. Following that, it extracts all requests (i’s)
included in D; by calling the CollectReqID function and gets
the prior summary of these requests if present. To do so, the
CalculateSummary function calls the GetPreviousSummary
function to check if the request has been summarized in the
last 50 blocks, where 50 is an implementation choice that can
be adjusted. Finally, the CalculateSummary function generates
a new summary using the prespecified summary function, the
latest transactions, and the prior summary if it exists.

UpdateReputation: This function is responsible for updat-
ing the reputations of participating agents after the summary
has been made. It takes the summary and D;. For each agent,
it compares the generated summary to the agent’s response
and calculates the reputation based on Section The
reputations are then updated in the off-chain database along
with p and n, if applicable.

GetReputation: A simple function that takes the list of re-
sponse transactions and returns updated reputations. Calculate-
Summary uses this function to calculate the next summary that
involves agents’ updated reputation as weights, as discussed
later in the case study.

ConstructBlock: A function run by miners (Step 3 in Fig.
[@) to form the block from the available transactions. It takes
available request and response transactions and returns a valid
block with a valid summary. It first summarizes the response
transactions using the CalculateSummary function. Then, it
updates agents’ reputations using the UpdateReputation func-
tion. The new summary, referred to as Cast in algorithm [I]



(ConstructBlock and ValidateBlock functions), is added to the
new block header. It then follows the conventional blockchain
process, bundling all transactions together to generate a new
block.

ValidateBlock: A function used by validators to validate the
newly generated block, Step 4 in Fig. 4] It takes the new block
and returns whether it is valid. It calls CalculateSummary
to calculate the summary of transactions included in the
new block. Then, it compares the generated summary to the
summary in the block header. If the summary is incorrect,
it returns false. Otherwise, it follows the normal blockchain
process for validation.

Note that ConstructBlock and ValidateBlock functions are
blockchain specific, while any centralized crowd-forecasting
can do the others. The focus of Algorithm [I] and its above
description is how to do the crowd-forecasting process (i.e.,
get reputations and calculate summaries) within the blockchain
rather than how the blockchain will collect individual re-
sponses or requests. Responses and requests can be made
by simply sending response/request transactions or triggering
smart contract functions that add requests/responses to T/D;.

E. CrowdFAB Framework Implementation

As discussed earlier, we extended the traditional Quorum
blockchain to a Quorum-based CrowdFAB. The detailed dis-
cussion of Quorum is out of this paper’s scope and can be
found in [31]. This implementation aims to determine the
feasibility of CrowdFAB and the overhead it introduces over
traditional Quorum.

In our implementation, we use a mean and standard devi-
ation tuple as the summary along with the ReqID. The Con-
sturctBlock and ValidateBlock functions extend the conven-
tional block generation and validation processes, respectively.
Meanwhile, CalculateSummary and its associated functions
have been added as additional functions used by miners and
validators. The UpdateReputation and GetReputation functions
are implemented to check agent reputations, as discussed in
the next section.

V. PERFORMANCE AND SECURITY ANALYSIS

In this section, we first analyze the overhead of Quorum-
based CrowdFAB in terms of transaction delay and throughput.
We then present an analysis of the proposed reputation scheme.
Finally, we discuss CrowdFAB security features proving that
the framework is fully fraud-resilient.

A. Analysis of Quorum-Based CrowdFAB

The first analysis measures the overhead of Quorum-based
CrowdFAB compared to the conventional Quorum. This is
done in terms of throughput and transaction delay (standard
transaction in Quorum and response transaction in Crowd-
FAB). In other words, we measure how many transactions can
be made per second, and how fast a transaction can be seen
in the blocks.

To measure the performance, we used Blockbench as a
blockchain evaluation platform to evaluate Quorum with mul-
tiple settings [32]. The chosen consensus algorithm for these

analyses is Raft [33], the default consensus algorithm for
Quorum. The block generation time, or the time between two
blocks, is set to the default 50 milliseconds.

As a leader-based consensus algorithm, Raft, assumes an
honest leader or miner who performs correct operations to
generate the block. Thus, there is a general assumption to
trust the leader. As discussed earlier, in the specific case
of leader-based consensus algorithms, we assume that the
miner is honest in including all transactions but curious about
manipulating the summary. It should be noted that this is not
a general assumption or requirement for CrowdFAB.

Our setup includes 16 nodes divided as follows: eight
blockchain nodes, including one miner, one requester, and
seven agents. We have used 16 CloudLab virtual machines
[34] as blockchain nodes connected in a peer-to-peer fashion.
We use the ”smallbank” workload [32] to simulate dummy
transactions (standard and response transactions). We vary the
transaction rate, i.e., transactions sent per second, and measure
the delay and throughput as discussed next. Each experiment
has been repeated 35 times to estimate the variability and
consistency of the results.

All the measurements are done at the requester node. The
throughput is measured by summing the number of transac-
tions available in blocks received in one second. The delay
is measured by assuming that the first response transaction
(subsequently first knowledge summary) is made in one block
after the request has been made. That is, request transactions
made in one block will be followed by response transactions
in the next block. We measure the delay between the request
and the first response received at the requester node.

The results from the above experimental designs are pre-
sented in Fig. [5] Comparing Quorum-based CrowdFAB to the
conventional Quorum performance, as can be seen from Fig.
[5a] the throughputs are very close at lower transaction rates
with an overhead of less than 1%. The throughputs in both
cases increase steadily until they reach a limit of 512, or 29,
transactions per second (tps). This limit is generally referred
to as the knee point, where the system reaches its capacity,
and a constant throughput is noticed afterward [|35[]. As can be
seen, after the knee point, CrowdFAB throughput is about 500-
700 tps, while it is higher in the conventional Quorum. Thus,
CrowdFAB overhead shows up after that knee performance,
resulting in a 20% decrease in throughput. This decrease is
reasonable given the amount of processing in generating the
knowledge summary with a large number of transactions.

As shown in Fig. [5b] the delays behave similarly before
the knee point, where they average about 1 second with an
overhead of about 1%. After the knee, transaction delays
increase rapidly for both Quorum and CrowdFAB. This is
reasonable as the delay should be constant and minimal
before the knee and increase exponentially after the knee [35]].
CrowdFAB shows about a 30% increase in delay, jumping
from about 30 seconds to 50 seconds at a 2!? transaction
rate. Again, such overhead is reasonable due to the amount
of processing required in summarizing transactions.

Overall, these results show that CrowdFAB has a throughput
overhead of less than 20% and a delay overhead of less
than 30%. This overhead is reasonable, given the processing
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introduced by CrowdFAB. Nevertheless, it can be seen that the
delay in generating the summary does not exceed one minute,
or 60 seconds, which is typical for crowdsourcing applications
[24]. Hence, the overhead that CrowdFAB introduces is min-
imal compared to its gains in crowd-forecasting applications.

B. Agents Reputation Analysis

Next, we analyze the proposed reputation scheme and its
associated functions to show different competent and incom-
petent agents’ behavior. As discussed before, «, 3, and ~y are
configurable parameters that need to be analyzed. « is the
increase in reputation when a correct response is made, (3 is
the decrease where an FP error is made, and -y is the decrease
when an FN error is made.

Fig. [6a] shows the reputation increase with multiple values
of o when no mistake is made. As can be seen, with o« = 0.1, a
rapid increase is observed. An agent can reach a reputation of
1 only after 40 correct responses. With o < 0.1, for example,
a= 0.05 or o= 0.02, a moderate increase is observed, and an
agent can reach a reputation of 1 only after 80 or more correct
responses. Thus, choosing a value for « that is less than 0.1
is recommended. The chosen « for this paper is a= 0.05.

Fig. [6b] illustrates the increase/decrease in the reputation
when o = 0.05, different values of 3 are chosen, and two FP
mistakes are made at indexes 10 and 11. As can be seen, the
reputation decreased rapidly (from around 0.7 to 0.2) when
[ = 0.5. As discussed before, such a decrease is not desirable
for security applications when an FP mistake is made. The
figure also shows that with § = 0.1, the recovery after an
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FP mistake becomes difficult, which is undesirable. Thus, it
is recommended to use a beta value of 0.1 < 5 < 0.5. The
chosen S for this work is 5 = 0.3.

Similarly, Fig. shows the reputation increase/decrease
when a = 0.05, different values of v are chosen, and two FN
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mistakes are made at indexes 10 and 11. As can be seen, with
v > 0.5, a rapid decrease is observed in all cases. Thus, using
a value of ~ greater than 0.5 is recommended. The chosen
for this work is v = 0.7.

Fig. [/ shows the reputation increase/decrease when «
0.05,8 = 0.3,y = 0.7, one FP is made at index 10 (first
decrease), and one FN is made at index 20 (second decrease).
As can be seen, the second decrease when an FN is made is
more than double the first decrease when an FP is made, which
is desirable for our security applications. That said, «, 3, and
~ are configurable parameters that can be set differently for
applications based on the different requirements.

Fig.[/| also compares the proposed reputation scheme to the
Beta reputation scheme [36], as one of the traditional and most
widely adopted reputation formulations used in reputation
systems. In terms of formulation, the Beta reputation scheme
provides an agent reputation as fellows:

_ptl
(p+n+2)

where p is the number of correct responses, and n is the
number of incorrect responses, no matter if they are FN
or FP. As can be seen, the traditional beta reputation does
not meet the previously stated reputation requirements as
it has a rapid increase in reputation, and the decrease is
asymmetric when FN and FP mistakes are made. Also, the
decrease is minimal when any mistake is made. Thus, our
proposed reputation scheme is more representative and better
suit security applications than the traditional Beta reputation
scheme. It should be noted that one can extend the Beta
scheme to meet the reputation requirements, which would be
outside the scope of this paper.

R, 6]

C. Security Analysis of CrowdFAB

CrowdFAB design fulfills our earlier security goals and
provides other security properties. We discuss these properties
in this subsection.

Knowledge summary manipulation resiliency: According
to Definition 1, the knowledge summary can be manipulated
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if agents can individually or collaboratively send falsified
transactions or collaborate with miners or validators to force
a random falsified summary. Property 1 will analyze how
CrowdFAB is resilient against summary manipulation, assum-
ing an honest majority of agents.

Property 1. CrowdFAB is resilient against summary manip-
ulation attack

Proof. To prove this resiliency, we show that each of the
four conditions discussed in Definition 1 cannot be met unless
the majority of the crowd, and the blockchain network is
compromised.

Using a proper summary function that satisfies the hard-to-
manipulate requirement, an agent cannot control the summary
by sending one or a few falsified transactions. We have also
assumed no Sybil attacks, so an agent cannot generate these
falsified responses from multiple accounts, i.e., fake agents.
Let’s assume there are n good agents that respond correctly to
a request. These responses were denoted earlier by N;. To flip
the summary, a malicious agent must submit at least » falsified
responses, assuming that the mode is the most straightforward
summary function. In other words, to control the summary, a
malicious agent needs to control the crowd by falsifying most
responses. As n gets large, achieving such an attack becomes
impractical unless this malicious agent can compromise most
other agents’ responses. Further, with the use of reputation
schemes, as discussed before, the system will make it almost
impossible to launch the attack for an extended time. Thus,
one malicious agent cannot flip the knowledge summary.

The same reasoning applies to collaborative attack launches,
where multiple malicious agents would send falsified re-
sponses. Again, as n gets large, the number of malicious agents
required for the attack to succeed becomes large unless these
attacks can compromise the majority of the agents’ responses.
Also, with proper reputation management, such attacks can be
avoided.

Another way to manipulate the summary is by targeting the
underlying blockchain security, i.e., by controlling miners or
validators. Miners can generate wrong summaries; validators
can invalidate a correct summary or validate an incorrect sum-
mary. These can be done by CalculateSummary in Algorithm
1, which is called by both miners (ConstructBlock function)
and validators (ValidateBlock function). Since the summary
is a part of the validation process, a wrong summary would
result in an invalid block by the process of ValidateBlock
in Algorithm 1. Therefore, the generated block would be
dropped, and the summary will not be committed to the chain.

With the immutability feature of blockchains, changing the
summary after it has been committed is also impossible unless
the majority of blockchain nodes are compromised. Thus,
CrowdFAB is resilient against summary manipulation attacks.

Reward manipulation resiliency: According to Definition
2, reputations can be manipulated if miners and validators can
unreasonably decrease agents’ reputations. Next, we discuss
how CrowdFAB is resilient against such manipulation.

Property 2. CrowdFAB is resilient against reputation ma-
nipulation attacks.

Proof. Reputation manipulation can happen if miners and
validators collaborate to decrease or increase the reputation.



We have discussed in Section that reputations are stored
off-chain in a decentralized database, and a hash-like change
protection mechanism is stored in the blockchain. They can be
updated by blockchain nodes each time a knowledge summary
is committed. Thus, reputation manipulation can happen either
by changing the already stored reputations or when updating
the reputations.

Since blocks are signed, the hash and blockchains’ nature
protects the change of already stored reputations, resulting in
non-repudiation guarantees. In this case, reputation manipula-
tion cannot happen unless a node manages to manipulate the
hash stored in the blockchain, i.e., changing the blockchain
data. With public blockchains, this can happen by a “chain
fork™ that occurs if a valid but modified chain is longer than the
healthy chain [37]. With the honest majority assumption, the
success probability of a malicious fork is critically low [11]].
For Quorum CrowdFAB implementation, one may change the
hash if the miner is corrupt. This invalidates our assumptions,
so CrowdFAB is resilient against changing the already stored
reputations.

Falsified reputation updates lead to invalid blocks by the
process of the CrowdFAB framework discussed in Section
IV-D| As shown in Algorithm 1, UpdateReputation is called
by blockchain nodes when calculating the summary (Calcu-
lateSummary function). False reputations by miners result in
an incorrect knowledge summary and an invalid block, as
discussed in Property 1 and shown by ValidateBlock in Al-
gorithm 1. Therefore, CrowdFAB is protected against falsified
reputation updates.

By proving that reputations cannot be changed while stored
or updated, we can say that CrowdFAB is resilient against
reputation manipulation attacks.

Full fraud-resiliency: By proving that the system is sum-
mary and reward manipulation resilient, we can say that the
system 1is fully fraud-resilient, according to Definition 3.

Security against free-riding attacks. A free-riding attack
occurs when an agent attempts to increase its reputation
without proper responses, i.e., making random predictions.
Using our reputation function, incorrect responses result in
a substantial decrease in reputation. Further, the slow increase
will prevent the agent from affecting the knowledge summary
unless they make many good responses in the future, as seen
in Fig. [0] Thus, CrowdFAB is resilient against free-riding
attacks. Note that an agent can predict this summary from
the responses made so far, increasing its reputation without
having a proper model. However, this requires the agent to
collect responses and predict the summary. Since this action
has a minimal effect on the knowledge summary, we do not
consider it an attack.

No single point of failure: With the decentralized nature
of blockchain-based systems, CrowdFAB guarantees no single
point of failure. Many nodes hold the blockchain database,
making requests and responses available to query at any time.
On the assumption that there are m (m >2) blockchain nodes in
CrowdFAB and more than m/2 are honest, there exists at least
one node that can be accessed for CrowdFAB services. Note
that reputations are stored in a distributed database maintained
by different nodes; thus, accessing and changing reputations
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by one node is not possible.

No trusted third party is required: This again comes from
the inherent design of blockchain systems. They work without
requiring a trusted third party.

VI. CASE STUDY: PASSIVE MALWARE DETECTION

This section empirically applies the proposed CrowdFAB
framework to a passive malware detection case study. We con-
sider a case where several malware detection agents analyze
whether a particular mobile app is malicious. First, we put
forward an application scenario for the case study. We then
discuss the dataset used, the experimental setup, the evaluation
metrics, and the results from these evaluations.

A. Collaborative Malware Detection Application

The growth of malware over the last decade has posed
serious security threats, especially to mobile networking and
applications. Collaborative malware detection approaches have
been discussed extensively in both academia and industry
[38]. A famous collaborative malware detection example is
Virustotal, a website where a file is uploaded as a request
and analyzed by many antivirus products and online scan
engines [8]. However, this approach poses a centralization
challenge and requires the requester to trust the website to host
the services involved. By utilizing CrowdFAB, requesters can
submit requests to analyze files or software. Multiple malware
detection agents can analyze the request to provide elegant
analyses with proper security guarantees. We emphasize that
we consider passive malware analysis. This should be distin-
guished from a real-time malware detection application where
the scan is performed online by a central agent or computer.

B. Malware Datasets and Experimental Setup

To empirically evaluate this case study, we have used a
previously published Malware dataset named Drebin [39],
[40]. We used a portion of the dataset comprising 215 features
with 5560 malware apps and 9475 benign apps [41]]. This is
divided into training and test sets, where the assumption is
that the test set will be the requests while the training set is
data held at different agents and used to build their models.

To simulate a large number of agents with many experience
levels, we have used the training data with two different strate-
gies, i.e., horizontal and vertical partitions. In the horizontal
partition, agents can only access a subset of the training dataset
to train their models. This reflects the experience level since an
”old” agent would have seen more data than a “new” agent.
Using this reflects real-world scenarios since no agent can
have full or ’perfect” data to train on, and just-starting agents
are assumed to have minimal training data. For this strategy,
agents are randomly given 33%, 66%, and 99% of the training
dataset.

The vertical partition allows agents to access only a subset
of the features to train individual models. This partition
simulates different complexities of agents’ models as more
features will result in a higher complexity, i.e., expensive or
higher-cost models. Thus, some low resources agents train



on only a few features that might not be sufficient. Others,
with many resources, would choose to build complex models
with a significant number of features. However, it should be
noted that we do not mean here that having all features would
result in better agents. Instead, this is just a reflection of
the agents’ model complexity. To simulate this, the number
of features agents use is randomized between 1 and 200,
whereas the original dataset has 215 features. Generally, an
agent with above 100 features performs relatively well for the
used dataset, but this comes with a cost of complexity.

Using the above strategies, we simulate 1000 individual
agents that train their models based on the provided training
set and features. At this stage, we have unified the learning
algorithm to the random forest, given that the agents’ per-
formance can be randomized with the horizontal and vertical
partitions. Random forest performs relatively well in malware
detection applications and has a lower computation cost than
more sophisticated learning algorithms [42]]. After the training,
the test set is used as a set of requests for agents to analyze
whether a particular application is malicious. We assume that
all agents participate in all requests.

Note that simulating the crowd agents using ML algorithms
is reasonable considering the current popularity of ML algo-
rithms in decision-making applications, especially malware de-
tection applications. Even the most popular malware detectors,
such as Norton 360 [[43] and MacAfee [44], use ML to make
their decisions internally. Thus, by using ML algorithms, we
are reflecting on a single real-world agent (crowd participant)
that uses ML learned from its data to predict malware. Using
ML alone is insufficient, and the crowd is still needed to make
proper and secure responses. This will be proven by comparing
our work to two recent works that use ML algorithms [45]] and
[46]. One may argue that using the new federated learning
(FL) ML paradigm resolves the above issues and would be
preferred over the crowd. However, as will be seen, crowd
forecasting still performs better compared to recent works that
use sophisticated FL algorithms [47] and [48].

After the agents make their predictions in response transac-
tions, CrowdFAB summarizes these responses using six differ-
ent summary functions, as discussed in Section These
functions are mean, median, and mode in their weightless
and weighted forms. As discussed, the mean summarizes the
probability vector P; constructed from all responses to the it
request by taking their mean. The median summarizes these
probabilities by their median value. The mode is the value at
which the probability mass function of Pi takes its maximum
value. The weights here are agents’ reputations calculated
by the reputation scheme presented in Section and then
normalized. For example, a weighted mean is a weighted
average of the response probabilities, where an agent’s weight
is its normalized reputation.

To show the superior performance of CrowdFAB, we will be
using four earlier works that have used the same dataset with
different ML/FL algorithms [45]-[48]]. We will also compare
CrowdFAB performance to the average performance of the
involved agents and an optimal model. An optimal model
trains on the whole dataset and is used to show CrowdFAB’s
superior performance. Note that this optimal model, expected
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to perform best, is rarely achievable in real-world settings as
none of the agents can access to all training data.

C. Metrics for Evaluation

To evaluate the ML models and CrowdFAB, we have
used three metrics: accuracy, F; score, and Safety score
[49]]. Accuracy is the most commonly used ML evaluation
metric which measures the percentage of correctly classified
samples. F; score is the harmonic mean between precision and
recall, where the precision is the fraction of positive samples
(malware) classified as positives, and the recall is the ability
of a model to detect all positive samples. The safety score
is our extended accuracy metric that gives weights for each
prediction category, i.e., true positive (TP), true negative (TN),
false positive (FP), or false negative (FN), based on their
associated costs [49]]. Mathematically, these metrics are:

Accuracy = TP+ TN
YT FPYFNLTP+TN
precicion — TP
recision = TP+FP
TP
Recall = ———
= TPYEN

Precision x Recall

F =2 X
1 seore Precision + Recall

wrpT P+ wrnyTN
wppF P +wpnFN + wrpTP + wrnyTN

For a malware application, TP is a malware sample that has
been correctly detected. TN is a correctly classified benign
sample. FP is a benign sample that has been categorized as a
malware sample. FN is a malware sample that is classified as
a benign sample.

The weight in the Safety score is application-dependent.
For our case study, FNs have high costs as malware samples
are missed. Thus, they should have high weights. FPs are
less critical, but they cost more than TP and TN, and their
weights should be lower than FN. Similarly, TP should have
weights higher than TN. Given these considerations, we set
Safety score weights for our application as follows:

Safety score =

wrpy =9, wpp = L,wrp = 0.2, wry = 0.1

D. Results and Analysis

The results of the experimental setup are presented in Table
To analyze the results, we first look at a simple summary
function without reputations (mean, median, and mode). As
can be seen, using CrowdFAB summary functions enhances
the average prediction performance of individual agents. The
mean, which performs the worst for this use case, improves
the performance over the average performing individual agent
by 20% in terms of Safety score and performs slightly better
in terms of accuracy and F; score. The mode, which performs
the best for this use case, enhances the performance by 7% in
accuracy, 8% in F; score, and more than 20% in Safety score.



TABLE II: Performance of CrowdFAB malware detection with

different summary functions

Algorithm Accuracy | F; score Safety
score
Earlier Works Performance using ML/FL
ML [45] 97.7 97.12 -
ML [46] 97.24 97 -
FL [47] - 97.64 -
FL [48] 98.25 97.63 -
Best Agent Performance
Best model (train | 98.60 98.10 70.07
on all data)
CrowdFAB Performance
Average of | 91.89 92.2 54.56
agents
Mean 95.88 94.85 73.32
Median 97.92 96.47 76.97
Mode 98.67 98.25 74.6
RMean* 97.29 96.51 78.03
RMedian* 97.92 97.27 79.69
RMode* 98.67 98.25 72.47

*Summary function with the use of reputation. e.g., RMean
is a weighted mean where weights are agents’ reputations

Compared to earlier works, the mode and median have
similar performance, while the mean has a lower performance.
The accuracy has been slightly enhanced using the mode,
while the F; score has a slightly lower performance using the
median. The mode overperforms the earlier works in all cases.
Note that we are not showing Safety score analysis for earlier
works since this is a recently proposed metric not been used
in both earlier works. Compared to the optimal model, the
mode and the median have comparable performance in terms
of accuracy and F; score and better performance in terms of
Safety score. Note that the Safety score is considered the most
meaningful metrics for security applications.

More importantly, it can be seen that summary functions
with the proposed reputation management outperform, or
at least perform similarly to, the same summary functions
without reputation management. The mean and the median
have better performance, where the enhancement is about 3%
for all metrics. This also shows that a weighted mode summary
function, or a weighted majority vote [50f], has a similar
performance to the classic mode, as can be seen from Mode
and RMode results. Compared to earlier works and the optimal
model, all summary functions with reputation management
have good performance in terms of accuracy and F; score and
even outperform the optimal model in terms of Safety score.

E. Discussion

The results presented in the previous subsection show that
the mode, or the majority vote, performed the best with this
dataset. However, it should be emphasized again that the
summary function is application-dependent. The best function
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would change from one application to another. That said,
our objective from these analyses was not to show the best
summary function. Instead, we aimed to show that any sum-
mary function overperforms the average agent performance
in the system and performs better than earlier works. This
indicates that using a crowd-forecasting system, i.e., using
the crowd’s wisdom, can enhance the prediction performance
over a singular almost-perfect model. Further, the strengths
of CrowdFAB are not in prediction performance but in its
security and decentralization approach. We expect any predic-
tion enhancement that CrowdFAB makes to be minimal and
restricted by the best agent in the system.

VII. RELATED WORK

This section discusses some of the earlier works that are
most closely related to CrowdFAB.

A. Crowdsourcing Security Applications

Many earlier works addressed security assessment solutions
using traditional crowdcasting models. For example, Yang et
al. leveraged crowdcasting for malicious user node detection
in large-scale social networks [51]]. Raff et al. proposed a
crowdcasting approach for malware detection from log files
[6]]. Similarly, Christoforidis et al. discussed a crowdsourcing
approach to protect against novel malware [52]. Burgura
et al. proposed Crowdraid, an Android malware detection
applications that utilizes crowdsourcing for collected malicious
applications from several experts [53]. The works in [54],
[55] discussed a crowdsourcing approach for network intrusion
detection.

As discussed earlier, all these works use centralized mod-
els, which impose several centralization challenges. With
knowledge-based blockchains and a proper reputation scheme,
CrowdFAB advances these works, overcomes the centraliza-
tion challenges, and provides a proper solution.

B. Blockchain-based Crowdsourcing

With blockchains’ appealing characteristics, it is no surprise
that the technology has been used for crowdsourcing appli-
cations. CrowdBC was the first attempt to build a concrete
blockchain-based framework for crowdsourcing applications.
It utilized smart contracts to perform traditional crowdsourcing
processes and was implemented on the Ethereum platform
[11]. ZebraLancer advanced these works by providing privacy
and strong anonymity using Zero-Knowledge proofs [56].
In addition, the works in [13]], [17]], [57]-[63] used other
privacy-preserving mechanisms to provide privacy guarantees
for crowdsourcing applications.

Other works focused on proposing blockchain-based frame-
works for a specific crowdsourcing application or problem.
For example, recent work in [|64] proposed and implemented a
blockchain-based framework for crowdsourcing in 5G-enabled
smart cities. Another recent work in [[17]] built a blockchain-
based mobile crowdsourcing framework with a privacy pro-
tection mechanism. Fu et al. in [[65] proposed BFCRI, a
blockchain-based framework for crowdsourcing with the ad-
dition of reputations and incentives. BFCRI utilizes agents’



reputations to select capable workers when matching agents to
work and uses contracts as an incentive mechanism to attract
more workers. Finally, Lai and Zhao focused on providing
an accountable and trusty blockchain-based crowdsourcing
framework using a verification scheme and a reputation-based
trust model [66].

All these works targeted crowdsourcing applications that
provide a one-to-one matching solution. CrowdFAB advances
these works by targeting forecasting applications.

C. Reputation Schemes in Blockchain-based Crowdsourcing

Reputation schemes are employed across various domains
and applications, including blockchain-based crowdsourcing
systems. Reputation serves as a metric to measure the reli-
ability of participating entities. It is utilized not only as a
measure of trustworthiness but also as an incentive mechanism
to motivate engagement in such systems.

In the context of CrowdBC, the pioneering blockchain-
based crowdsourcing framework, reputation is based on past
direct interactions between agents and users [11f]. The rep-
utation of an agent is determined based on miners’ confir-
mation of the correctness of its submitted results. Agents
can only participate in crowdsourcing tasks if their reputation
surpasses a predefined threshold, which is typically set as the
average weight of all workers’ reputations. Several extensions
have been proposed to enhance the reputation scheme in
CrowdBC [63]], [65]], and [67]-[69]]. The reputation models
proposed in some of these works, such as those in [63]] and
[69], incorporate additional factors to refine the reputation
calculation. For instance, the reputation model introduced by
[63] adds an importance factor assigned by a Certification
Authority to assess their reputation. Others, like the reputation
model presented in [69]], consider feedback similarity factors
to distinguish honest agents from malicious ones.

It is worth noting that many of these reputation schemes rely
partially on indirect reputation ratings, which may introduce
some level of unreliability [70]. Additionally, none of the
previous works differentiate between different types of errors
made by agents, which is crucial in security applications,
as discussed earlier. The proposed reputation scheme in this
paper addresses these limitations and fulfills the need for
Blockchain-based crowd-forecasting security applications.

D. Blockchain-based Crowd-Forecasting

Prediction markets are a notable application of Blockchain-
based Crowd-Forecasting. Existing prediction markets are
based on smart contracts between the event creator and the
participants based on deadlines to report the final outcomes.
Augur is a well-known crowd-forecasting prediction market
using Ethereum Blockchain proposed by Peterson et al. [71].
The creators/users of Augur can create and trade in prediction
markets where participants can place bets on the outcome
of future events, such as forecasting wind power [72]. The
final outcome is based on a decentralized oracle that relies on
multiple sources to securely transfer real-world results from
off-chain to on-chain. Other examples of crowd-forecasting
systems are Gnosis [73] and [74].
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CrowdFAB differs from these works in providing on-the-
go summaries without waiting for the deadline to pass. It
also summarizes responses within the blockchain process, thus
achieving a distributed and secured “knowledge summary.”
Further, using CrowdFAB for security applications is novel
and has many potentials to resolve the challenges with crowd-
sourcing security solutions.

E. Blockchain-based Security Assessment

There have been some attempts to explore blockchains in
risk assessment security applications. For example, the authors
of [[75]-[77] discussed how blockchains could be used to build
intelligent intrusion detection systems. The Telecooperation
group focused on blockchain-based intrusion detection, where
nodes exchange alerts concerning their role in the system [75].
The works in [[78]] and [[79]] proposed blockchains for malware
detection in general cloud malware and portable executable
(PE) files. In addition, Gu et al. addressed the problem of
detecting and eliminating malicious codes in malware files
using blockchains [80].

These works use blockchains as a distributed database. The
discussions are theoretical without practical consideration of
how the alerts or final decisions should be made. CrowdFAB
can advance these works by making on-the-go collaborative
assessments as responses appear in the chain. In addition, the
use of proper reputation management can provide a novel
incentive mechanism to favor competent agents and detect
incompetent agents and misbehaving blockchain nodes.

VIII. CONCLUSIONS

Despite extensive adaptations of crowd-forecasting models,
they suffer several challenges, including centralization, po-
tential attack surfaces, and inefficient summarization. In this
paper, we presented the design of CrowdFAB, a novel frame-
work for Crowd-Forecasting Applications using Blockchains.
CrowdFAB uses knowledge-based blockchains as a novel
paradigm that transform blockchains from storage systems
to knowledge and processing systems. Further, it builds a
reputation scheme that assigns reputations to agents based on
their past performance. This allows requests to be submitted to
a crowd of agents who provide their responses without needing
a trusted third party. An efficient and secure summarization can
be done in a fully decentralized manner.

The framework applies to any risk management or forecast-
ing application, and we specifically targeted security assess-
ment in this paper. We implemented the CrowdFAB framework
on top of the Quorum blockchain platform to show the
feasibility and efficiency of the proposed approach. Finally,
we empirically evaluated the proposed scheme for passive
malware detection in a mobile application use case. Our results
demonstrated the sustainable performance of the proposed
method compared to single-agent detections. This, combined
with the added security and decentralization features, shows
the superiority of CrowdFAB compared to existing approaches.

We expect CrowdFAB, and generally blockchain-based
crowd forecasting, to grow as an alternative to traditional
crowd-forecasting models. Future works would investigate



CrowdFAB for other non-security applications, including fi-
nancial predictions and recommendation systems. In addition,
the analysis of CrowdFAB for public blockchains is to be done
and compared to Quorum-based CrowdFAB.
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