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Abstract— Cloud computing has been widely adopted by 
application service providers (ASPs) and enterprises to reduce 
both capital expenditures (CAPEX) and operational expenditures 
(OPEX). Applications and services previously running on private 
data centers are now being migrated to private or public clouds. 
Since most of the ASPs and enterprises have globally distributed 
user bases, their services need to be distributed across multiple 
clouds, spread across the globe which can achieve better 
performance in terms of latency, scalability and load balancing. 
The shift has eventually led the research community to study 
multi-cloud environments. However, the widespread acceptance 
of such environments has been hampered by major security 
concerns. Firewalls and traditional rule-based security protection 
techniques are not sufficient to protect user-data in multi-cloud 
scenarios. Recently, advances in machine learning techniques 
have attracted the attention of the research community to build 
intrusion detection systems (IDS) that can detect anomalies in the 
network traffic. Most of the research works, however, do not 
differentiate among different types of attacks. This is, in fact, 
necessary for appropriate countermeasures and defense against 
attacks. In this paper, we investigate both detecting and 
categorizing anomalies rather than just detecting, which is a 
common trend in the contemporary research works. We have 
used a popular publicly available dataset to build and test 
learning models for both detection and categorization of different 
attacks. To be precise, we have used two supervised machine 
learning techniques, namely linear regression (LR) and random 
forest (RF). We show that even if detection is perfect, 
categorization can be less accurate due to similarities between 
attacks. Our results demonstrate more than 99% detection 
accuracy and categorization accuracy of 93.6%, with the inability 
to categorize some attacks. Further, we argue that such 
categorization can be applied to multi-cloud environments using 
the same machine learning techniques. 

Keywords— anomaly, categorization, random forest, 
supervised machine learning, UNSW dataset, multi-cloud. 

I.  INTRODUCTION 

Since its inception, cloud computing has attracted a lot of 
interest from both, industry and academia. It is widely adopted 
by organizations and enterprises as a cost effective and a 
scalable solution that reduces both capital expenditures 
(CAPEX) and operational expenditures (OPEX). Cloud 
computing allows application service providers (ASPs) to 
deploy their applications, store, and process the data without 
physically hosting servers [1]. Nowadays, clouds hosting 
services and data are geographically distributed to be closer in 
proximity to the end-users. Such a networking paradigm is 
called as a multi-cloud environment. Thus, in a multi-cloud 
environment, multiple cloud service providers (CSPs), ASPs, 
and network service providers (NSPs) collaborate to offer 
various services to their end-users. Such multi-cloud approach 

is getting popular within organizations, clients, and service 
providers [2]. Despite this fact, data security is a major concern 
for the end-users in multi-cloud environments. Protecting such 
environments against attacks and intrusions is a major concern 
in both research and industry [3]. 

Firewalls and other rule-based security approaches have 
been used extensively to provide protection against attacks in 
the data centers and contemporary networks. However, large 
distributed multi-cloud environments would require a 
significantly large number of complicated rules to be 
configured, which could be costly, time-consuming and error 
prone [4]. Furthermore, the current advances in the computing 
technology have aided attackers in the escalation of attacks as 
well, for example, the evolution of Denial of Service (DoS) 
attacks to Distributed DoS (DDoS) attacks which are rarely 
detected by traditional firewalls [5]. Thus, the use of firewalls 
alone is not sufficient to provide full system security in multi-
cloud scenarios. 

Recently, advances in machine learning techniques have 
proven their efficiency in many applications, including 
intrusion detection systems (IDS). Learning-based approaches 
may prove useful for security applications as such models 
could be trained to counter a large amount of evolving and 
complex data using comprehensive datasets. Such learning 
models can be incorporated with firewalls to improve their 
efficiency. A well trained model with comprehensive attack 
types would improve anomaly detection efficiency 
significantly with a reasonable cost and complexity [6]. A 
significant amount of research has been already made towards 
the development of IDS models in recent years. Several such 
examples are summarized in surveys such as [7] [8]. However, 
such works suffer from two burdens: categorization among 
different attack types and their applicability to multi-cloud 
environments. Most of the researchers in this domain have 
been tackling anomaly detection problem without paying much 
attention to categorizing the attacks. We argue that such 
categorization is critical to identify system vulnerabilities and 
impose appropriate countermeasures and defense against 
different types of attacks. 

Multi-cloud environments are new and have not been 
studied in the literature from a security perspective using 
machine learning techniques. The reason could be non-
availability of the comprehensive training datasets that include 
samples of recent attacks in such environments. Datasets for 
security are rarely available, mostly due to privacy issues. 
Common publicly available datasets mostly include a single 
type of attack only [9]. Furthermore, research works that use 
datasets with multiple attacks mostly focus on anomaly 
detection rather than attack classification or categorization. 
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In this paper, we investigate the feasibility of applying 
machine learning techniques to distinguish between different 
attacks rather than just detecting anomalous traffic. In other 
words, we take anomaly detection systems a step further by 
enabling them to identify the specific types of attacks. We have 
considered a new and publicly available dataset given by 
UNSW [10, 11]. We use supervised learning to build anomaly 
detection models and demonstrate their detection efficiency. 
Later on, we build learning models to distinguish between 
different types of attacks, and we refer to that as attack 
categorization. To achieve categorization, we apply two 
strategies: a classical strategy and our own proposed strategy. 
We refer to the classical one as single-type attack 
categorization while we propose a step-wise attack 
categorization. We demonstrate more than 99% anomaly 
detection accuracy and 93.6% categorization accuracy. Such 
results have better categorization accuracy than single-type 
detection, however, similarities between some of UNSW 
attacks resulted in high misclassification error for those attacks. 
We argue that more distinguishable data are needed to classify 
those attacks accurately. 

The rest of the paper is organized as follows: Section II 
gives a brief background of state of the art, publicly available 
datasets, and our contributions. In Section III, we present the 
anomaly detection models with the feature selection algorithm 
and the supervised machine learning models. Section IV 
presents both single-type and step-wise attack categorization 
strategies along with results and comparisons. Finally, Section 
V concludes the paper. 

II. BACKGROUND 
In this section, we present state of the art in the domain of 

machine learning techniques for network and cloud security. In 
addition, we discuss the important datasets available for the 
training of the machine learning models. Furthermore, we 
highlight our contribution. 

A. Related Work 
A significant amount of work has been performed in the 

literature for IDS using machine learning techniques. For 
example, in [12, 13] the authors used support vector machines 
(SVM) to detect anomalies using KDD dataset [14]. In [15], 
the authors utilized artificial neural networks to build IDS 
models for anomaly detection using the same dataset. In [16], 
the author used cascaded classifiers to detect and classify 
anomalies in KDD dataset even if such anomalies were 
unequally distributed. Anomaly detection using decision trees 
and random forest (RF) has been proposed in [17] [18], 
respectively. Furthermore, hybrid approaches using two or 
more machine learning techniques have been proposed in [19]. 
Results demonstrate that the hybrid approaches achieve better 
performance than the single models. For more details of 
machine learning techniques in IDS, readers may refer to the 
surveys presented in [7], [8], and [20]. 

The authors in [21] used a four-layered classification 
approach to detect four types of attacks using KDD dataset. 
The results demonstrate a small misclassification error and 
small overall error. In addition, the authors proposed to reduce 
the number of features in the original dataset which resulted in 

reduced complexity and better accuracy. However, the authors 
did not report the misclassification errors resulting from a 
single type of attack being misclassified as other types. The 
work in [22] presented such details with the same dataset using 
supervised, unsupervised and outliers learning techniques. The 
results showed that some attacks were misclassified, and hence 
the overall accuracy was lower than the work presented in [21]. 

KDD dataset has been widely used to build anomaly 
detection and classification models using machine learning 
techniques. KDD dataset includes four types of attacks which 
have completely different traffic behaviors. An approach for 
classification of attacks using KDD is presented in [21] and it 
demonstrated a relatively low misclassification error. However, 
such models may not perform well with current multi-cloud 
scenarios with evolving and closely related different types of 
attacks. In addition KDD dataset is becoming old and may not 
reflect the contemporary real-time traffic patterns and network 
attacks [23] [24]. Moreover, if a new attack is introduced, it 
would mostly go undetected and may result in a high error rate 
as reported in [22]. 

In addition to KDD, CAIDA [9], UNSW [10, 11], ISOT 
[25], CDX [26], and ISCX [22], are among other datasets that 
are publicly available in the literature for the researchers. ISOT 
and CAIDA cover only single-type of attack, that is botnet and 
DDoS attacks, respectively. ISCX and CDX datasets do not 
represent real world traffic as claimed by [27]. Hence, these 
datasets might not be suitable for classification of different 
types of attacks using machine learning models. On the 
contrary, the UNSW dataset, released in 2015, includes nine 
different types of attacks which are common in the 
contemporary multi-cloud environments and hence more 
suitable to be used in the contemporary anomaly detection 
schemes. Therefore, we distinguish our work from the 
classification work done in [21] and [22] by including nine 
attack types, which are highly co-related and are common in 
the contemporary multi-cloud environments. 

B. Contribution to the Analysis of the UNSW Dataset 
We urge the readers to refer to [10] for a detailed 

description of the UNSW dataset. Key points are summarized 
below. To build the UNSW dataset, packets were generated 
using IXIA PerfectStorm tool for the realistic modern normal 
activities and the synthetic contemporary attack behaviors in 
the network traffic. Then, tcpdump files were collected and 
used to extract 49 features. Those features were extracted using 
Argus and Bro network monitoring tools. The collected data 
were divided into training and testing sets to be used for 
learning and prediction of attack behaviors, respectively. 
Statistics about the nine types of UNSW attacks along with 
normal data are summarized in Table I. 

Compared to the KDD dataset, limited research has been 
conducted on the UNSW [10, 11] dataset. In [10, 11] the 
authors present accuracy, recall, and precision using UNSW 
and compare it to KDD performance. We distinguish our work 
from [10] and [11] in the following manner: 

• In this work, we have considered eight attacks instead 
of total nine attacks included in the original UNSW 
dataset. We have excluded Fuzzer attack from the 



dataset as it is not commonly found in the multi-cloud 
environments [10]. Such attacks generate random 
packets to stop or suspend a service [10]. However, 
redundancy and geographical distribution are 
important features of services implemented in the 
multi-cloud environments [28]. Hence, it is hard to 
achieve the goals of Fuzzer attack in multi-cloud 
environments and easy to recover from it using the 
redundant service instances. 

• In addition, we use a feature selection scheme to 
reduce the number of features while building the 
machine learning model. This has resulted in better 
performance in term of anomaly detection and 
prediction accuracy of anomalous traffic (presented in 
Section III-B). Also, we compare the RF technique 
against the linear regression (LR) technique to 
demonstrate a better performance by the RF. 

• The work presented in [10] and [11] focus only on 
anomaly detection and overall accuracy of the machine 
learning models. However, our focus extends that to 
include feature selection and categorization of different 
types of attacks and categorization accuracy as well. 

TABLE I. UNSW DATASET STATISTICS 
Traffic Type Training Training % Testing Testing% 
Normal 56000 31.90% 37000 44.90% 
Generic 40000 22.80% 18871 22.90% 
Exploits 33393 19.00% 11132 13.50% 
Fuzzers 18184 10.37% 6062 7.30% 
DoS 12264 7.00% 4089 50.00% 
Analysis 2000 1.14% 677 0.82% 
Reconnaissance 10491 5.98% 3496 4.24% 
Shellcode 1133 0.64% 378 0.46% 
Backdoor 1743 0.99% 583 0.70% 
Worm 130 0.07% 45 0.05% 
 

III. FEATURE SELECTION AND ANOMALY DETECTION 
In this section, we present a feature selection scheme and 

then measure the performance of RF and LR learning 
algorithms with the new set of features as far as anomaly 
detection is considered. 

A. Feature Selection Scheme 
The original UNSW dataset included 49 features extracted 

from all the collected traces of the network traffic. We argue 
that having all these 49 features may lead to both complexity 
and overfitting of the machine learning models [29] [30]. 
Complexity may arise because learning models have to go 
through all the features which may consume a significant 
amount of time. Overfitting could be a result of fitting the 
model too tight to the learning dataset which may lead to 
higher overall error rate with the testing dataset and real-time 
analysis. Hence, we propose to reduce the number of features 
to reduce model complexity while enhancing accuracy. 

We have used best-first feature selection technique [31] to 
reduce the number of features. In this technique, the user 
defines a criterion to finalize the optimal number of features. 
Such criterion could be: maximizing overall accuracy, 

minimizing the false negative or false positive rate, or 
minimizing the classification error for a particular attack type. 
In the first iteration, the algorithm chooses the best feature 
among all that achieves the selected criterion. This feature is 
saved to a set of optimal features which is initially empty. In 
the next iteration, each of the other features is used along with 
the optimal subset to build the learning models. The feature 
with which the model performs the best is added to the subset. 
The algorithm keeps appending the best feature to the subset in 
each iteration. It stops when the next iteration does not produce 
an improved result compared to the current subset or the 
complete set. Thus, it is guaranteed that the selected subset 
gives the least error in prediction and hence may be considered 
as an optimal subset of features. 

We conducted an experiment to demonstrate the 
enhancement in the performance of learning models with the 
reduced number of features. The selection criterion was the 
minimum testing error using both the LR and RF learning 
models. Fig. 1 shows the result of the experiment where the x-
axis is the number of features, and the y-axis is the relative 
time that learning process took. Relative time is the time 
required to build the model with the current number of features 
divided by the maximum time taken with all features. We 
observe that the relative time can be reduced to half if the 
number of features is reduced to 20. 

 
Figure 1. Number of feature versus relative time. 

 
 

 

Figure 2. Number of feature versus percent error rate. 
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Fig. 2 shows the error rate with different numbers of 
features. It shows that one can reach an optimal performance 
with only 18 features using the LR model and 11 features using 
the RF model. As can be seen from the figure, increasing 
number of feature enhance the accuracy until it reaches an 
optimal performance. Then, the performance starts detroiting 
due to overfitting the model. 

B. Anomaly Detection using Machine Learning Models 
After selecting the optimal set of features, we used 

supervised machine learning techniques to build the anomaly 
detection models. We specifically used LR [32] and RF [33] 
due to their simple learning models and better performance 
with the UNSW dataset. Both algorithms have been widely 
adopted in machine learning, especially for the development of 
the IDS [7]. SVM is another widely used algorithm. However, 
we did not include it in our study due to its higher complexity 
and lower performance than RF with the UNSW dataset. 

With the experimental results obtained, we observe that the 
anomaly detection error rate is as low as 1% with RF scheme 
and 11 features. With LR, the minimum error rate that could be 
obtained is 4.5% with 18 optimal features. However, the 
overall error rate is not enough to determine the performance of 
any scheme, especially in the case of cloud security. False 
alarm rate (FAR) and un-detection rate (UND) are equally 
important as measures for the performance of machine learning 
models in the security domain. Hence, we measure FAR and 
UND as well to check the performance of RF and LR models. 
FAR is the percentage of the normal traffic which has been 
misclassified as anomalous by the model (Eq. 1). UND is 
opposite of the FAR and is the percentage of the traffic which 
represents an anomaly but misclassified as normal by the 
model (Eq. 2). The overall error is given by Eq. 3 while the 
accuracy is given by Eq. 4. In this paper, we aim to minimize 
the overall error rather than just UND or FAR. 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

× 100%   (1) 

𝑈𝑈𝑈𝑈𝑈𝑈 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛+𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

× 100%      (2)  

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

× 100%   (3)  

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

× 100% (4)  

Here, a false positive is the number of normal packets 
which are misidentified as anomalous packets. Similarly, true 
negative is the number of correctly identified normal packets; 
false negative is the number of anomalous packets detected as 
normal and true positive is the number of correctly detected 
anomalous packets. 

As shown in Fig. 3, RF outperforms LR in all metrics. RF 
demonstrated an overall error of 0.9% with 0.4% UND and 
1.9% FAR. On the contrary, with LR, UND is 3.5%, which is 
worse than that of RF. With the results presented in Fig. 3, we 
can safely conclude that RF performs better than LR and hence 
we will be using RF for any further analysis. It should be noted 
that LR generated optimal results with 18 features, while, RF 
generates optimal results with only 11 features. 

IV. CATEGORIZATION OF UNSW ATTACKS 

We argue that besides determining overall anomaly 
detection accuracy, it is also important to distinguish different 
attack types individually for optimal countermeasure and 
defense against attacks. In this section, we first present the 
classical single-type attack technique used to perform attack 
categorization. We show the problem with such technique and 
then propose our own step-wise attack categorization 
algorithm. Furthermore, we present the results of both 
algorithms and argue the need for further work to reach optimal 
categorization results. 

A. Single-type Attack Categorization  
A single-type attack model is trained with only that attack 

data mixed with normal traffic. For example, the DoS attack 
model would consider DoS attack along with normal traffic. 
Table II presents the results of such models without 
considering other attacks. It is observed that UND errors are 
less than 5% for Generic, DoS, Exploits, and Reconnaissance 
attacks using the RF learning model. This is a considerably low 
error rate. On the contrary, the performance is degraded for 
other types of attacks due to the low number of training 
samples for these attacks. 

TABLE II: RANDOM FOREST ERROR 
PERCENTAGE FOR SINGLE-TYPE 

ATTACK DETECTION 
Type of Attack Overall FAR UND 

Generic 0.22% 0.091% 0.39% 

Exploits 1.30% 1.40% 0.90% 

DoS 0.05% 0.20% 4.20% 

Reconnaissance 2.00% 0.70% 4.9% 

Analysis 0.71% 0.56% 7.83% 

Backdoor 0.11% 0.05% 3.70% 

Shellcode 0.80% 0.60% 11.00% 
Worm 0.03% 0.00% 20.00% 

 

 
Figure 3. Anomaly detection results  
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One way of categorizing anomalies, which has been used 
with KDD in [21], is to use single-type attack models to 
separate each attack type individually. In such a way, an 
anomalous packet is checked against each of the single-type 
attack detection models till the packet is identified for a 
particular attack type. However, the performance of such 
model deteriorates as attack traffic behaviors evolve and  
become more correlated. Since the models are trained to 
distinguish between a particular attack type against the normal 
traffic, they result in a significant amount of misclassification 
errors, resulting in failure of single-type attack categorization 
model. 

To illustrate the misclassification problem with single-type 
attack detection scheme using the UNSW dataset, we consider 
“Exploit” attack and apply its packets to different single-type 
attack detection models. Ideally, only “Exploit attack model” is 
expected to detect Exploit attacks while other models are not, 
as they are not trained to do so. However, when Exploit attack 
packets are provided to other attack detection models, such 
packets are observed to be detected as anomalous with DoS 
and Generic models, as shown in Table III. The 
misclassification error in Table III is the percentage of Exploit 
attack packets detected by the given non-Exploit attack 
detection models as anomalous packets. Results showcased in 
Table III demonstrates a high misclassification error with 
single-type attack detection models proposed in the literature. 
The misclassification error made in all types of attacks in the 
dataset is observed to be 20%, which is considerably high. 
Hence we propose a novel algorithm in the next subsection to 
enhance such misclassification error. 

TABLE III: EXPLOITS MISCLASSIFICATION  
WITH SINGLE-TYPE ATTACK MODELS 

Attack Model Miscalculation Error  

Generic 51.24% 

DoS 89.95% 

Reconnaissance 33.19% 
Analysis 0.00% 

Backdoor 15.00% 
Shellcode 4.00% 

Worm 2.00% 

B. Step-wise Attack Categorization  

In our proposed algorithm, rather than distinguishing each 
attack from normal traffic, we train our models to distinguish a 
particular attack from other attacks traffic. First, a binary 
classification as normal packets against anomalous packets is 
performed using the RF learning model. Anomalous traffic is 
analyzed in further stages for different attacks categorization. 
In the second stage, traffic is further classified into two classes, 
which are Generic attacks and the rest of other attacks traffic. 
Note that at this stage, normal traffic is removed from the 
training set. Traffic with the Generic attack is detected and 
segregated while the rest of the traffic is forwarded to the third 

stage of classification. At the third stage, DoS, Exploits, 
Analysis and Backdoor attacks, referred to as Cat. 1 attacks, are 
identified as one class while the rest of the traffic is forwarded 
to the fourth stage. Cat.1 attacks were identified as one due to 
their features similarities and needed for further analysis as will 
be discussed next. In the fourth stage, Reconnaissance attack is 
identified while remaining traffic is sent to the next stage for 
final classification between Shellcode and Worm attacks. Note 
that at each stage classification is performed using the RF 
binary classification model, where the particular attack traffic 
is marked as 1 while the rest of the traffic is marked as 0, as 
shown in Fig.4. In this work, the order of stages was chosen 
based on the number of samples per attack type. Other options 
of ordering may be based on attack severity or classification 
error for a particular attack type. 

As can be seen DoS, Exploits, Analysis and Backdoor were 
merged to represent Cat. 1 attacks. Those attacks show high 
similarities between each other and hence they were separated 
to be further analyzed. We first notice that some of their 
features are fixed which may highly affect the accuracy. Hence, 
those features were removed, and only 24 features out of the 43 
were considered. This enhanced the accuracy a bit, however, as 
will be seen later, FAR error is still very high for such models. 
For example, non-Exploits attacks were all detected as Exploits 
and hence misclassified. This can be due to biasing or high 
features similarities. We highlight this problem in the later 
analysis and argue the need for further distinguishable features 
or data to classify those attacks correctly. 

C.  Results and Analysis 
In this subsection, we present the results of the 

categorization algorithm proposed in the previous subsection. 
In addition, we compare the results to single-type attack 
categorization. As indicated in the previous section, Stage 1 
distinguishes anomalous packets from normal traffic and 
resulted in 99% accuracy. We segregate the anomalous traffic 
and forward it to Stage 2 which checks whether the attack is a 
Generic attack. We can reach around 2% UND error while only 
0.06% of other attacks were misclassified in this model. 
Misclassification error here resulted from other attacks being 

 
Figure 4. Proposed categorization algorithm 



classified as Generic while they are not. This is considerably 
good result as both errors are significantly low. 

In the third stage, while classifying the traffic between 
combined attacks and the rest, we observe much lower 
accuracy. Around 20% of the Reconnaissance, Shellcode and 
Backdoor attacks were categorized as Cat. 1 attacks (combined 
attacks) in this stage. Cat.1 error is considerably low, as low as 
3%. However, Exploits versus non-Exploits model results in 
the high misclassification as almost all DoS, Analysis and 
Backdoor traffics were classified as Exploits. This can be due 
to high biasing as Exploits had a much higher number of 
samples than others, demonstrated in Table I. More 
importantly, it can be due to high similarities between attack 
behaviors which make them indistinguishable unless more 
distinguishable features or data were added to the dataset. 

At the fourth stage, the algorithm distinguishes between 
Reconnaissance attacks against the rest of the traffic. We 
observe around 0.3% UND error while around 0.5% and 13% 
misclassification errors were observed for Shellcode and Worm 
attacks at this stage. In the last stage, we distinguish between 
remaining two attacks, that is, Worm and Shellcode. Shellcode 
shows 0.3% UND error and 13% Worm attack falsely detected 
due to the low number of samples. Thus, the categorization 
error made by the proposed algorithm for all attacks is around 
6.4%, which is a considerable enhancement compared to 
single-type of attack categorization. Worm and Shellcode have 
extremely low number of samples compared to others, as was 
shown in Table I. Thus, it is expected that their accuracy is 
lower than others due to the difficulty in correctly classifying 
them with such samples. Our algortihms showed a superior 
enhancement on their accuracy compared to single type 
categorizartion. However 70-80% accuracy is still low and can 
be enhanced further with the use of imbalance dataset 
classification as discussed in [34]. Table IV summarizes 
detection accuracy results (in percentage) of our proposed 
algorithm and compare it with single-type attack model. 

TABLE IV: PERCENTAGE ACCURACY OF 
SINGLE-TYPE ATTACK CATEGROZATION 

VERSUS STEP-WISE CATEGORIZATION 

Type of Attack Single-Type 
Attack Accuracy 

Step-Wise 
Attack Accuracy 

Normal 99.50% 99.50% 
Generic 99.00% 97.00% 
Exploits 36.27% 99.50% 
DoS 20.00% 20.00% 
Analysis 2.00% 2.00% 
Backdoor 3.00% 5.00% 
Reconnaissance 40.00% 86.00% 
Shellcode 20.00% 80.00% 
Worm 11.00% 70.00% 
Overall 80.00% 93.35% 

Even though we observe an improvement in the overall 
categorization accuracy with the proposed scheme, it suffers 
from the following limitations. First, DoS, Analysis, and 
Backdoor had a low accuracy due to misclassification as 
Exploits in Exploits vs. Non-Exploit model. Thus, further 
research is needed to distinguish between these attacks by 

adding more distinguishable features or data or applying more 
sophisticated machine learning approach. Second, 
Reconnaissance, Shellcode, and Worm attacks accuracy need 
further enhancement by adding more training data or features 
to distinguish them from Cat.1 attacks. As was shown in Table 
I, the dataset samples are imbalanced and thus the use of 
machine learning techniques that handles such problem can 
enhance the accuracy in our approach. Finally, learning models 
that are built in this paper can be used to detect similar 
anomalous traffic in multi-cloud environments. However, such 
models need be constantly updated for new traffic patterns, 
modifications in the attack types and newly evolving attacks. 

V. CONCLUSION 

In this paper, we demonstrated the feasibility of supervised 
machine learning techniques for anomaly detection and 
categorization of attacks. The UNSW dataset was chosen as it 
is the latest and the most comprehensive publicly available 
dataset. Results demonstrate that random forest (RF) technique 
along with feature selection scheme can achieve 99% accuracy 
with anomaly detection. However, we show that even if the 
detection accuracy is high, categorization accuracy is 
comparatively lower due to similar attack traffic behaviors. We 
used two algorithms for categorization, traditional and our own 
step-wise categorization algorithm. Results showed a better 
performance than traditional approaches. However, three of our 
attacks were not categorized due to feature similarities and 
unbalanced data. We highlight the need for more data or 
feature to distinguish those attacks. Finally, we argue that such 
models can be applied to multi-cloud environments with slight 
changes in the learned models. 
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