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Abstract— Carriers find Network Function Virtualization (NFV) and multi-cloud computing a potent combination for deploying their 
network services. The resulting virtual network services (VNS) offer great flexibility and cost advantages to them. However, vesting such 
services with a level of performance and availability akin to traditional networks has proved to be a difficult problem for academics and 
practitioners alike. There are a number of reasons for this complexity. The challenging nature of management of fault and performance 
issues of NFV and multi-cloud based VNSs is an important reason. Rule-based techniques that are used in the traditional physical 
networks do not work well in the virtual environments. Fortunately, machine and deep learning techniques of Artificial Intelligence (AI) 
are proving to be effective in this scenario. The main objective of this tutorial is to understand how AI-based techniques can help in fault 
detection and localization to take such services closer to the performance and availability of the traditional networks. A case study, based 
on our work in this area, has been included for a better understanding of the concepts.  
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1. Introduction
Network Function Virtualization (NFV) is being regarded 

as one of the most important developments of the last decade 
for communication networks. The Gartner Hype Cycle 2018 
describes NFV and network performance as the key 
technologies, alongside the Internet of Things (IoT) and 5G 
[1]. NFV allows telecommunications carriers 1  to instantiate 
software-based network functions on commercial, off-the-shelf 
hardware. Using these virtual network functions (VNFs) as the 
building blocks for creating Virtual Network Services (VNSs), 
carriers can change the way the network services are provided. 
They are prepared to bear the pains of making this major 
change in order to reap the benefits of the reduced cost of 
deployment, agility in introducing new services, ease of 
scaling, independence from proprietary equipment and vendor 
lock-in [2]. The virtual resources (e.g., virtual machines and 
virtual networking) for building these services can be obtained 
from the in-house datacenter, carrier-cloud owned by carriers 
themselves or public clouds owned by Cloud Service Providers 

1 The term carrier refers to all communications service providers including 
Internet Service Providers (ISPs) 

(CSPs). Use of multiple clouds gives additional advantages 
like more competitive prices, larger resource pool, better points 
of presence and avoidance of single point of failure because of 
a cloud blackout [3] [4]. 

1.1 Challenges of VNS Deployments 
Despite many advantages, there are several challenges in 

providing large-scale deployments of NFV-based VNSs. It is 
important to identify these challenges so that they can be met 
and this promising technology does not disappear into 
oblivion. Some of the main challenges are listed here: 

a) Performance and availability of VNSs are nowhere close to
the traditional networks. The traditional networks have five
nines availability (99.999%), which translates to 5.25
minutes of downtime in a year. Cloud information
technology applications have been working more on three
nines (99.9%) availability, which go up to 8.76 hours of
downtime in a year.

b) Traditional networks are built to the stringent quality of
service (QoS) norms defined by Fault, Configuration,
Accounting, Performance and Security (FCAPS) standards
like ISO Common Management Information Protocol
(CMIP) and ITU Telecommunications Management
Network (TMN) M.3010 and M.3400 recommendations [5]
[6] [7] [8]. Such norms are still to be fully defined and met
for the VNS deployments.

c) In NFV-based VNSs, faults may occur for many more
reasons compared to traditional physical networks. The
cloud infrastructure consists of virtual resources such as
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virtual machines, virtual storage, and virtual network links. 
These virtual resources are created on shared physical 
resources like server hardware, system software or network 
links, using virtualization software (e.g., Hypervisors). One 
reason why virtual resources may fail is because of the 
failure of physical resources. Even if the physical resources 
are operational, the virtual resources may themselves fail 
[9]. Taking this argument a little further, even if both 
physical and virtual resources are healthy, the VNFs, like 
routers, instantiated on these virtual resources can develop 
algorithmic problems causing VNSs to malfunction or 
totally break down. The myriad levels of dysfunctions 
make handling of fault and performance (FP) issues in NFV 
over clouds more abstract and complex.  

d) Internet Engineering Task Force (IETF) has recently 
identified ensuring performance and guaranteeing the QoS 
as open research areas and technology gaps in NFV [10]. 
Without a robust mechanism for handling these issues, 
carriers would find it very difficult to meet the quality, 
reliability and availability norms. This calls for vigorous 
research efforts so that NFV deployments acquire carrier-
grade performance and availability [10] [11] [12]. ITU has 
included the fault management of the cloud-based NFV in 
their standardization agenda [13]. The National Science 
Foundation (NSF) is supporting research work in this 
important area, which can potentially change the way the 
telecommunication services are delivered [14].  

1.2 Objective and Goals of this Tutorial and the Related 
Case Study 

The primary objective of this tutorial is to take a deep and 
incisive look at the complexities of detection and localization 
of fault and performance issues in an NFV multi-cloud 
environment and to examine how machine and deep learning 
techniques can help to tackle them. We divide this objective 
into the following goals: 

a) Discuss the architecture, creation and management of 
VNSs with a real-life example.  

b) Elucidate clearly the fault and performance (FP) 
management problem and its complexities. 

c) Explain why the traditional methods do not perform well in 
the cloud-based NFV environments and how AI techniques 
like machine learning and deep learning can help. 

d) Describe the AI based FP management framework that we 
have evolved.  

e) Give these discussions a more concrete and practical 
footing, with a case study that describes in detail the use of 
a hybrid shallow and a deep learning model to detect and 
localize some important aspects of fault and performance 
issues.  

We believe that this tutorial would provide background and 
motivation for other researchers to contribute to this important 
area. 

1.3 Structure of the Tutorial 
The remaining paper has been organized as follows: 

Section 2 provides the background information about VNSs 
and their management. In Section 3, the fault and performance 
management problem, its complexities, markers with details of 
the proposed work are presented. Section 4 discusses different 
methods for fault and performance management. Applicability 
of AI-based approach to FP management is described in 
Section 5. The concepts discussed so far in the tutorial have 
been used to evolve a framework for VNS over multi-cloud is 
described in detail, which is discussed in Section 6. To 
demonstrate that such a frameworks provides a viable solution 
to the complex FP problem in the cloud and NVF environment, 
Section 7 presents the evaluation of the framework in the form 
of a case study. Section 8 gives a summary and possible 
research directions emanating from this work. A list of 
acronyms used in this paper has been included in the annexure. 

 

 Fig. 1. A carrier’s broadband service network 



2. Background - VNSs and their Management 

In this section, we explore the structure of a VNS, using 
NFV over a multi-cloud system, with the help of an example 
of a carrier network service. Additionally, we shall see the 
complexities and deficiencies in its management setup, which 
make a strong case for a predictive fault and performance 
management framework. Fig. 1 illustrates a carrier’s 
implementation of the broadband Internet service. The Access 
Network consists of various technologies through which home 
and business customers access the Internet and the related 
services. The Aggregation Network collects various streams of 
traffic and concentrates them on higher capacity links to the 
core network. The Border Network Gateway (BNG) is situated 
at the border of the core and provides Layer-2 and Layer-3 
connectivity, policy injection, QoS and accounting of user 
sessions and traffic flows. The Core Network contains core 
routers that transport traffic and connect to the Internet and 
other services like content delivery through the edge routers. 
The core also connects to the Internet Exchange Points (IXPs) 
for exchanging traffic with other local ISPs without using the 
expensive international bandwidth.  

2.1 Structure and Components of VNS 
The broadband services, like other carrier services, are 

currently provided through networks constructed from physical 
appliances like routers, aggregation switches and Digital 
Subscriber Line Access Multiplexers (DSLAMs) from various 
Original Equipment Manufacturers (OEMs). In discussing the 

virtualization of this network, we will take a top-down 
approach, starting from VNS and go down to the infrastructure 
level as shown in Fig. 2.  

1) Virtual Network Service (VNS) 
From the illustration of a complex network service in 

Fig. 1, we abstract a subset to represent a VNS that we can use 
as an example. Fig. 3 shows this VNS being composed of 
virtual network functions (VNFs) realized as VNF1 to VNF8. 

The figure also shows that the carrier has retained DSLAMs as 
Physical Network Function (PNF) from their legacy network, 
as these functions might not have reached their end-of-life. 
VNFs of a service may belong to different vendors, owned by 
different operators, managed by different platforms and even 
unaware of each other. In such a case, the service is a multi-
domain VNS [16].  

2) Service Function Chains (SFCs) 
An SFC consists of an ordered set of interconnected VNFs 

(and possibly PNFs), which perform pre-programmed 
operations on the traffic routed through them. A carrier may 
obtain resources from multiple cloud service providers to 
avoid problems like vendor lock-in (when the carrier is forced 
to buy resources from a particular cloud service provider) or a 
service failure because of a single cloud blackout. VNFs are 
instantiated on these cloud resources and linked using virtual 
networking resources to form one or more SFCs [17] [18].  

Fig. 4 shows an SFC with two paths, i.e., PNF1-VNF1-
VNF2-VNF3-VNF4-VNF6 for the Internet access and PNF1-
VNF1-VNF2-VNF3-VNF5-VNF8 for content services. As can 
be seen in this figure, there are multiple paths through meshed 
core routers through which traffic can be routed if the selected 
link fails or if there is congestion on the selected link. VNFs of 
an SFC are connected in the same manner as the physical 

 

Fig. 2. The virtualization hierarchy 

 

Fig. 3. Virtual broadband service  

 

Fig. 4. SFC created on multiple clouds 



appliances are connected in a traditional network [19]. Some 
VNFs are dimensioned with multiple instances to handle the 
volume of the expected traffic. 

3) Virtual Network Functions (VNFs) 
A VNF is the virtual counterpart of a network appliance or a 

middlebox implemented by running software over commercial 
off-the-shelf general purpose servers. The software to 
implement a network function may run over a general-purpose 
physical machine or over the virtual machine(s) created on 
physical machines using virtualization software. VNFs can 
also be instantiated on virtual resources obtained from one or 
more cloud service providers. Each VNF has a well-defined 
functional behavior and interfaces for interconnection with 
other VNFs or PNFs. Fig. 5 shows a VNF with its Element 
Management System (EMS) and interfaces to the rest of the 
network [19] [20]. 

Some examples of pre-programmed VNFs are given in 
Table 1. 

Even though the concept of VNF is just about 7 years old, 
there have been some major innovations proposed. For 
instance, a VNF could be implemented using a set of 
predefined and reusable microservices. Microservices are easy 
to replace in case of a fault. However, management of 
microservices-based VNS becomes complex. Similarly, the 
concept of cloud-native VNFs (or CNFs) is also being 
currently discussed [83]. CNFs are created on clouds using 
containers. They are purported to be lightweight and more 
agile compared to the traditional VNFs. However, these new 
concepts are beyond the scope of this tutorial. We refer the 
interested readers to [21] and other references on the subject.  

Protocols for routing of traffic, through an SFC, are being 
worked upon by the standards organizations. For example, two 
protocols - Segment Routing (SR) and the Network Service 
Header (NSH) - are under development in the IETF [84]. SR is 
a modified version of source routing. In SR the IPv6 header is 
extended to include the Segment Routing Header (SRH), 
which decides the path of the traffic packets. A segment is a 
path through a carrier network. The internals of the segment 
may not be exposed to the users. For example, it may be a 
Multi-Protocol Label Switching (MPLS) tunnel or may be a 
sequence of IP routers. Each segment has an ID and may 
contain information about the treatment of the traffic on that 
segment. A Software Defined Networking (SDN) controller 
may utilize the Path Computation Element Protocol (PCEP) to 
find the most appropriate segments and instruct the classifier to 
direct the traffic flow accordingly. NSH, on the other hand, can 
work with IPv4, IPv6, and Ethernet. NSH is an 8-byte header 
followed by a number of optional variable length context 

headers containing some metadata to be used by NSH-aware 
devices. Implementation of service function chains with NSH 
capabilities requires NSH-aware virtual switches and a central 
controller.  

4) Virtual Machines (VMs) and Network Function 
Virtualization Infrastructure (NFVI) 

Network Function Virtualization Infrastructure (NFVI) 
consists of all the hardware and software used to deploy 

 

Fig. 5. A VNF implementation 

 

Fig. 6. Network function virtualization infrastructure 

TABLE 1 
EXAMPLES OF COMMERCIALLY AVAILABLE VNFS 

VNF Function OEM 

ISRv Integrated Services 
Router 

Cisco Systems 

vSphere Distributed Switch VMware 

SRX Firewall Juniper Networks 

440Vx Load Balancer Barracuda 

SBC SWe Session Border 
Controller 

Ribbon 
Communications 

Vyatta vRouter Brocade 

Steelhead CX 555V WAN Accelerator Riverbed Technology 

SSR 800 Smart Service 
Router 

Ericsson 

Liquid Core Mobile core 
virtualization 

Nokia Siemens 
Networks 



VNFs. This infrastructure-hosting site is referred to as NFVI 
Point of Presence (PoP). The virtual compute and storage 
resources, in an NFVI-PoP, are interconnected to form a 
network of virtual resources that can host carrier services. 
Fig. 6 shows an example of a system with three VNFs, their 
EMSs, hosted on two NFVIs of two cloud service providers. 
External connectivity may be possible through the designated 
switching and routing devices [23].  

2.2 Management of VNSs from an FP Management 
Perspective 

Fig. 7 shows the management set-up of a VNS. An 
understanding of the functions of interacting platforms would 
help the reader appreciate the FM management framework as 
described in Section 6. As can be noticed, the figure shows 
three different management platforms interacting to make 
VNSs work. NFV Management and Orchestration (NFV-
MANO) and its subsystems use the virtual infrastructure 
provided by the Multi-cloud Management and Control 
Platform (MMCP) to create and manage VNFs, SFCs, and 
VNSs [24]. MANO has the responsibility of performance 
measurement, event reporting, correlation and assistance in 
fault management of the VNSs and their constituents. The 
MMCP creates virtual machines, virtual storage, and virtual 
networking links. It also manages the placement and migration 
of these virtual resources over the available clouds [20]. The 
Operation Support System (OSS) of the carrier, with its 
Network Management System (NMS), manages the deployment 
and operation of the VNSs. The OSS carries out the network 
management by providing support for the provisioning of 
services, management of fault and performance and 
maintaining an inventory of the resources used. 

In view of what has been said above, the fault management 
function becomes a shared responsibility. The relative 
distribution of responsibilities among various platforms and 

their interactions are yet to be fully defined. In order to 
understand the fault and performance management of VNSs, 
we need to discuss the sub-systems of MANO and their 
interactions in some more detail [22]. 

1) Virtual Infrastructure Manager (VIM) 
VIM manages all the virtual and physical resources in NFVI 

to enable higher layers of MANO to do their jobs of creating 
VNFs and SFCs. VIM manages the lifecycle of all the virtual 
resources in one NFVI domain (one infrastructure provider’s 
domain) and applies security policies on them. VIM collects 
information about the performance events and measurements 
from NFVI over the Nf-Vi reference point and forwards them 
to NFV Orchestrator (NFVO) through its northbound reference 
point (Or-Vi). In the cloud environment, VIM would interact 
with the cloud management platform for obtaining virtual 
resources. In a multi-cloud or a multi-carrier service, there may 
be multiple VIMs managing the resources.  

2) Virtual Network Function Manager (VNFM) 
The VNFM instantiates and configures VNFs with resources 

obtained through the VIM. During the lifetime of a network 
service, VNFM manages the complete lifecycle of the VNFs 
(scaling, descaling and eventually terminating when they are 
no longer required). It is entrusted with the important functions 
of FP management of VNFs. For this, VNFM interacts with 
the EMSs of the VNFs to obtain fault and performance 
markers. The EMS (not a part of the MANO) collects device 
statistics, logs notifications, alarms and events, and 
performance statistics [25]. As shown in Fig. 7, VNFM shares 
this information with the NFVO over the Or-Vi reference 
point. Since a VNS may have VNFs from multiple providers, it 
is important that NFVO can interact with them through the 
standard reference points. 

3) NFV Orchestrator (NFVO) 
NFVO is at the heart of the MANO architecture. It carries 

out two of its main functions: resource orchestration and 
service orchestration. Using its resource orchestration function, 
NFVO coordinates the acquisition and release of the NFVI 
resources by interfacing with the VIMs. NFVO instantiates the 
VNF Manager, which in turn manages VNFs as explained 
above. Service orchestration functionality deals with 
onboarding new network services using the information from 
descriptor files within various catalogs. For fault and 
performance issues, NFVO has to coordinate with the carrier’s 
OSS and multi-cloud management platform. 

4) Catalogs and Repositories 
MANO has several catalogs and repositories containing 

descriptor files, which NFVO uses to carry out the 
orchestration functions [26]. For example, there is a catalog for 
service onboarding templates and another for requirements for 
creation and operation of the VNFs. There is an NFV 
repository for storing all instances of network services and yet 
another for the available and used NVFI resources.  

 

Fig. 7. Orchestration and management of VNS 



5) MANO Reference Points – Interaction with Other 
Functional Blocks. 

All exchanges among the sub-systems of MANO and 
between them and external entities, including those pertaining 
to fault and performance status, take place through the defined 

reference points. Table 2 contains a brief description of these 
reference points and what fault and performance related 
information they carry [27]. Interactions between MANO and 
MMCP have not been defined in the NFV specifications. This 
has to be taken into consideration in a VNS fault and 
performance management solution.  

2.3 Comparison of Competitive Network Service 
Orchestration Offerings 

It is evident from the discussion in Section 2.2 that the 
components of MANO are important parts of the FP 
management of VNSs. We present some of the well-known 
MANO platforms in this section and compare their features 
relating to the management of FP problems that threaten the 
availability and reliability of these services. The most 
important purpose of this comparison is to bring out the 
necessity for carrying out research work in the area of FP 
management in the NFV and multi-cloud environment. We 
include multi-cloud and multi-carrier domain support and 

interaction with the OSS, which are the important 
considerations for our discussions. Most MANO 
implementations are in initial releases and under active 
development. The idea, therefore, is to be representative and 
not comprehensive. 

Table 3 gives a comparison of the Network Service 
Orchestration platforms. The following criteria have been used 
for classification [28][29]. It may be noted that a blank cell 
indicates that sufficient information is not available to adjudge 
the product on the corresponding criterion. Orchestration of 
end-to-end service is important from the carrier’s point of 
view. In the absence of this feature, manual configuration and 
a large amount of scripting may be required to orchestrate 
complete services. Handling of multiple VNFM and VIM 
support allows management of SFCs across multiple carrier 
domains. Three important criteria are whether the orchestrator 
maintains the carrier-grade performance, whether it can 
coordinate with the OSS for fault and management functions 
and how sophisticated is the fault and performance 
management. We see that many of the platforms are yet to 
achieve the required level of sophistication of fault and 
performance management.  

3. Fault and Performance (FP) Problem Description 
FP issues may range from simple single point failures to 

complex faults with many devices involved. A fault may 
appear because of some hardware or algorithmic error in the 
system. If the error were due to a malfunction or a deviation of 
the system from the accepted normal performance, then a fault 
would result. Additionally, one faulty entity may affect other 
neighboring entities and faults may propagate. In such a case, 
the faulty or other connected devices may give out 
notifications. The variety of FP issues that can affect the 
carrier networks is large and difficult to detect, diagnose and 
localize [30] [31][32]. When we add to this the virtualization 
and the cloud computing layers, the number of ways faults can 
affect the virtualized network far exceeds that of their physical 
counterparts. In this setup, when faults traverse through the 
physical and virtual layers they change their presentation and 
produce a different set of markers in different layers, making it 
even more difficult to correlate an observed system disorder 
with the original fault [33]. 

Traditional failure detection mechanisms are ineffective or 
inapplicable in NFV environments. Traditional methods 
depend on probing or running tests on hardware, which are not 
accessible to the carriers who deploy services on virtual 
resources. Too much of probing or software testing may 
overload the VMs that have been optimized for the network 
function hosted on them. Attempts to apply other traditional 
methods, like rule-based approaches involving direct 
correlation of the markers with the faults, get mired in 
complexity and prove to be inadequate. New methods would 
be required to deal with faults in VMs or VNFs, which cause 

TABLE 2  
FAULT AND PERFORMANCE INFORMATION OVER NFV REFERENCE 

POINTS 
Reference 

Point 
Endpoints Functions 

OS-Nfvo OSS and 
NFVO 

1. Carries information related to VNS 
requirements from OSS to NFVO 

2. NFVO creates VNS and applies carrier 
policies 

3. Carries usage, accounting, fault and 
performance events for all VNS, VNF 
and NFVI resources. 

Or-Vnfm NFVO and 
VNFM 

1. VNF and NFVO exchange information 
related to the creation and management 
of VNFs. 

2. Forwards events related to VNF to the 
NFVO 

Vnfm-Vi VNFM and 
VIM 

1. Carries information about NFVI 
requests from VIM. 

Or-Vi NFVO and 
VIM 

1. Reserve NFVI resources for VNS 
2. Coordinating scaling and release 

Nf-Vi VIM and 
NFVI 

1. Creating/Obtaining virtual resources for 
creating VNS 

2. Failure event, measurement results, and 
configuration information to VIM 

Vn-Nf VNF and 
NFVI 

1. Physical and virtual resource 
information to VNFM for ensuring 
creation scaling and performance 
and portability of VNFs.  

Ve-Vnfm-
Vnf 

VNFM and 
VNF 

1. Event reporting by VNF to VNFM 
2. Communication from VNFM to VNF 

regarding configuration and events 
3. VNF aliveness check 

Ve-Vnfm-
em 

VNFM and 
EMS 

1. Same functions as Ve-Vnfm-Vnf for 
virtualization-aware EMS 



the VNSs to behave abnormally, even if the underlying 
hardware is fault-free. VMs are managed by cloud service 
providers and VNFs by the network service providers making 
it difficult for the traditional systems to deal with problems in 
virtualized services. Consider a situation where the virtual 
private networks (VPNs) of many customers do not work. In 
this situation, FP detection and localization would require 
investigation all the VMs, on which virtual core router is 
hosted, the VNF that is working as the core router, the virtual 
network interface controller (vNIC) with fast Ethernet or 
Gigabit Ethernet ports and even the physical machines. Many 
alarms and other markers would result, which have to be 
correlated.  

The fault detection mechanism should be able to separate 
out the error conditions that do not constitute a fault from the 
ones that do. The fault conditions have to be further classified 
into manifested or impending so that further action can be 
accordingly taken. As the name suggests, the manifested faults 

are those that have already occurred and have affected the 
system in some way. The impending problems may not have 
manifested as faults yet, but may soon materialize with varying 
degree of severity. We discuss in this section how faults are 
classified according to their criticality, see in detail the sharing 
of FP responsibilities among different platforms and enunciate 
the FP problem that this work solves.  

3.1 FP Issues and Their Criticality  
As far as the virtual entities, VNFs, and their 

interconnections, are concerned, faults would happen due to 
algorithmic causes in the system software or in the application 
software. Faults in the application software affect the network 
functions or the links while those in the system software affect 
the VMs on which the VNFs are implemented. In the multi-
domain scenario, besides the usual faults occurring in the 
carriers’ networks, there would be issues due to the 
interconnection of networks. For example, non-provision of a 

TABLE 3  
COMPARISON OF SOME COMPETITIVE NETWORK SERVICE ORCHESTRATION SOLUTIONS FROM FP PERSPECTIVE 

Platform ETSI Linux 
Foundation 

Open 
Networking 
Foundation 

Gigaspace Cisco Netcracker 
(NEC) 

Oracle 

Criteria 

NFVO solution 
nomenclature 

Open Source 
MANO (OSM) 

OPEN-
O/ONAP 

XOS/CORD + 
ONOS1 

Cloudify Network Service 
Orchestrator 

RT MANO 
Network 
Orchestration 

Network Service 
Orchestration 

Inception date Launched 
2016, 
Spearheaded 
by Carriers 

Launched 
2016 

Launched 
2015 

Launched 
2014 

 Launched 
2015 

Launched 
2015 

Current Release Rel 6, June 
2019 

Casablanca, 
April 2019 

Gambia 7.0, 
Nov 2018 

Rel 4.6, June 
2018 

Resease 4.7 June 
2018 

Rel 12 May 
2017 

Release 7.3.5 
April 2017 

Whether carrier-grade   Planned Field Trials Yes  Yes Yes 

Open Solution Yes Yes Use case of 
open source 
ONOS 

Yes, TOSCA 
based 

  Partly 

End-to-End service Planned For defined 
use cases 

For carrier use Yes, may 
require plug-
ins for 
underlay 

Yes Yes Yes 

Fault/Performance 
Management 
Sophisticaton2 

Level 1 Level 3 Level 1  Requires extension 
with Crosswork 
Network 
Automation 

Level 2  

Support for Multiple 
VNF /VIM 

Yes OpenStack 
VIM+ 
generic 
VNFM 

OpenStack 
VIM+ VNFM 
like functions 

Yes Yes Yes Yes 

Cloud platform 
neutral/Multiple 
Clouds 

Yes Planned Multi-access 
edge cloud 

Yes    

Integrates with 
BSS/OSS 

Yes  Yes Yes OSS  Yes
3

 

1 ONOS is under Linux Foundation. CORD is under Open Networking Foundation. 
2 Level 1: e.g., log-based correlation; Level 2: includes a detection mechanism and root cause analysis; Level 3: predictive detection/localization 
3 Proprietary APIs 



sufficient number of inter-carrier interconnections at the Points 
of Interconnect (POI) would lead to congestion and failure of 
calls from one network to the other.  

Some events that cause alarms may not always be errors. 
For example, degradation in service can happen with some 
devices underperforming or because of being 
underprovisioned. Since, in such cases, the devices may still 
not be faulty, there may be no alarm or just a minor alarm. The 
degradation of a service can be detected through notifications, 
counters or meters set up to count events at the virtual function 
or the service level. Many of these markers would be routine 
warnings. At the same time, some alarms may be automatically 
taken care of by the network’s resilience features, i.e., by using 
the redundant units instead of the one not performing properly. 
Some of these alarms may be coded to indicate the severity of 
the events. The confusion does not end here. There could also 
be problems with the management platforms themselves – 
multi-cloud platform, MANO, or the OSS/BSS. In this tutorial, 
we confine ourselves to the faults of VNFs or of SFCs that 
affect the performance of VNSs. 

ITU recommendation X.733 classifies the alarm events into 
the following four severity classes: Critical, Major, Minor, and 
Warning [6]. Critical alarms are caused when service to one or 
more users is totally stopped. If the service is highly degraded, 
but not stopped, then a major alarm may result indicating a 
condition that is preventing the service to be given as 
contracted. A minor event does not indicate present 
degradation, but if the condition is not corrected, it may cause 
a major fault to develop. A warning may be the most benign, 
but usually indicates an impending fault or performance issue 

which could eventually turn into a major fault. In addition to 
detection and localization functionalities, the predictive 
capabilities of the fault and performance monitoring system 
should be able to indicate what faults will develop and with 
what severity levels. Impending faults are, thus, an important 
source of concern. It would be very helpful to the carriers if 
they can identify which performance deviations or impending 
faults may potentially result in an FP problem that would 
require personnel and material to resolve. 

3.2 Shared FP Responsibilities 
The fault and performance related responsibilities are jointly 

exercised by the MANO, the MMCP, and the OSS. Their 
interrelationship in the context of VNSs was illustrated in 
Fig. 7. Table 4 summarizes the fault and performance related 
responsibilities of these management systems. As can be seen 
from the description, the functions of many systems overlap. 
For example, OSS and NFVO may both obtain information 
from the EMSs for knowing the status of VNFs. Similarly, the 
marker collection functions of VNFM and EMS overlap. The 
precise distribution of FP related functionalities would, 
therefore, have to be done in the implementations. 
Standardized reference points among the management systems 
would help with interoperability of management functions of 
different carrier networks. Some of the reference points have, 
either not been defined, or not completely defined. These 
issues make the fault detection and localization problems more 
difficult to handle as complete information is not available 
with any system. The framework that we have developed and 
described in this paper uses information from various 

TABLE 4 
SHARED FP RESPONSIBILITIES OF DIFFERENT MANAGEMENT ENTITIES 

Management 
Block 

Fault and Performance Functions 

1. MANO  
1.1 NFVO NFVO orchestrates services and monitors parameters required to meet SLAs. It manages the lifecycle of VNSs and 

uses available resources or requests additional resources to maintain the required performance. For handling FP 
issues, it gets VNF level alarms from VNFM and NFVI level alarms from VIM. It interacts with OSS to share 
measurement results and notifications regarding network services. Its functions overlap carrier OSS function. 

1.2 VNFM VNFM interacts with VNF instances to obtain VNF related FP information like software inter-module 
communication failure. It also collects VNF-instance related NFVI information. It sends intelligence to NFVO for 
fault detection and localization. VNFM functionality overlaps with EMS functionality as both collect network 
function information.  

1.3 VIM VIM collects alarms related to physical and virtual resources contained in NFVI. It forwards FP alarms to VNFM 
and NFVO for broader correlation and root cause analysis. The fault information may include VM crashes, virtual 
port malfunction, storage failure, resource unavailability, etc. 

2. MMCP MMCP keeps an inventory of and monitors all virtual compute, storage and networking resources from different 
CSPs. It logs analytics for VM related faults. It adjusts resources to changing workloads and maintains the required 
performance level. The division of FP responsibilities among MMCP, OSS, and MANO is still to be finalized. 

3. OSS OSS monitors network services and resources and detects anomalous conditions. It interacts with EMSs to obtain 
the status of network elements. In the virtual network service environment, it may directly or through NFVO get 
information about VNFs. It correlates alarms from various sources to localize faults and performance conditions. 
Its functions spread from VNS down up to the VNF level.  

4. EMS Each network function/device is monitored and managed by an EMS. They collect operational status and alarms 
from VNSs and forward them to the OSS and VNFM.  



management platforms to improve FP management. 

3.3 FP Problem Statement 
The FP problem of the carrier networks can be defined as 

follows: 
1) Detection of any condition that has already led to or could 
lead to degraded performance or failure:  

The reasons could be manifested faults, hidden faults or 
inconspicuous deviations. The goal of FP issue detection is to 
sense and notify impending or actual fault and performance 
issues. 
2) Identification and localization of manifested and impending 
faults: 

The goal of FP issue localization is to determine the root 
cause of the problem by identifying the resources that are 
malfunctioning or the severity with which they may 
malfunction in the future.  

4. Discussion of works related to FP Management 
During their operation, carrier networks produce large 

volumes of high dimensional data in the form of markers like 
alarms, notifications, observed behavior, warnings, counter 
values and measurement of performance indicators. These are 
discussed in some more detail in Section 6.1. The markers 
used by carriers are predominantly at the service and network 
function level. Any FP management system should take into 
account all the relevant markers to carry out the required 
functions. Traditionally handling FP issues as part of FCAPS 
has been considered a difficult problem as abnormal behavior 
has to be interpreted from large amounts of high dimensional 
and noisy data [34]. While the FP management has been well 
studied in traditional networks, work on this problem in 
virtualized network services in multi-cloud environment is 
scant. To be reasonably exhaustive, we examine the recent 
related work on FP management in four different categories: 1) 
Surveys highlighting the need for FP management 2) NFVI 
level diagnostics with or without active probing 3) Causality 
inference based diagnostics, and 4) statistical methods 
including those based on AI techniques. We’ll discuss each of 
these briefly here and take up a more detailed study of the 
selected method in the next section. 

1) Surveys highlighting the need for FP management in 
virtual environment. 

The survey in [85] discusses research, development efforts 
and open challenges (among other issues like standardization) 
relating to Network Service Orchestration. The authors 
mention fault tolerance and performance among important 
orchestration functions.  More specifically, in the next 
generation mobile networks the concept of network slicing can 
be used for fault and performance management. The authors 
also state that fault and performance is essential part of the 
effort of 3GPP directed towards standardization of the 
management of 5G networks.  

 In their related work in [86], the authors discuss fault 
management in the Software-Defined Networking (SDN) 
environment. Effect of various faults on network performance 
can be controlled by techniques such as system state 
monitoring, fault detection, localization and resolution, and 
fault tolerance mechanisms. The authors are of the opinion that 
most works handle fault from a partial perspective leading to 
incomplete and flawed solutions. According to their 
assessment, the design of suitable fault management solutions 
is indispensable for achieving good reliability of the network. 
There are many ways faults can arise in SDN. Most of these 
faults can be categorized as logic and coding errors. Software 
based data agents may contain functional defects that can 
cause network failures. Also frequent are malfunctions due to 
inconsistent rule installation because of hardware faults that 
may flip bits or because of attacks or misconfigurations. Many 
network troubleshooting tools like ‘tracroute’ and ‘tcpdump’ 
have proven to be inefficient for SDN environment. The 
authors discuss techniques like data agent testing, probe testing 
and interactive debugging as possible methods.  

2) NFVI level diagnostics 
We have seen previously that in VNSs, NFVI relates to the 

totality of hardware resources and the virtual compute, storage 
and networking resources created over these. The hardware 
component of the NFVI is in the domain of the CSP and 
generally inaccessible to the carriers. The methods in this 
category would rely on VM level alarms and metrics such as 
compute load or memory leak. These techniques thus rely on 
the monitoring and diagnostic techniques for cloud computing 
resources used for IT applications. An explicit or implicit 
assumption would usually be that the higher level alarms and 
other markers, e.g., those at network function and network 
service level, would usually have corresponding host level 
alarms which can be correlated to detect and possibly localize 
network function and service level manifested and impending 
issues. A correlation between telemetry information from the 
CSP and the higher level alarms in the domain of the carrier 
would have to be built up for diagnosing faults in the VNSs. 
Correlation of metrics with anomalies at the virtual layer has 
been applied by authors in [35]. The applicability of these 
techniques in a large distributed network needs to be studied.  

3) Causal inference based methods 
These methods are also normally applied on VM level 

alarms like high CPU load and insufficient memory 
availability. The expectation here is that determining the causal 
relationship among them would help to get to the root cause of 
FP issues at the network function and service levels. The 
process involves looking for anomalous behavior based on VM 
level alarms, correlate alarms in pairs or clusters, determine 
causality, i.e., the effect of one alarm on the others and attempt 
to build causality templates that could be used for future 
alarms. The complex architecture and dynamics of NFV pose 
significant challenges from the point of view of causality 



inference. For instance, in [36], the authors carry out analysis 
of uncorrelated alarms in order to recover the pairwise causal 
relationship between them. To take care of the fact that higher-
level faults (e.g., VNF or VNS levels) do not only depend on 
the pairwise relationship among VM level alarms, the authors 
propose clustering to infer multi-way causality templates. The 
patent documentation at [37] goes a step further and uses alarm 
data from different layers (e.g., NFVI and VNF). It takes into 
account the temporal proximity and the order of the alarm 
types in the clusters to make causality templates.  

4) Statistical and AI-based methods 
The large volume of operational data generated in an 

operational telecommunications network could emanate from 
within one layer or across multiple layers and possibly contain 
many different types related and unrelated markers. In such a 
complex environment, it would be difficult to analyze the 
available data to produce information that can be used to 
manage FP issues. This situation, thus, creates a perfect set up 
for removing humans from the loop and resorting to machine 
intelligence. In this category, there are methods based on 
machine learning and deep learning that could be used for the 
detection and localization of FP issues.  

There has been extensive work on performance modeling 
systems for distributed Internet applications of the pre-NFV 
era, notably TIPME (2000) [38], Pinpoint (2002) [39] and 
Magpie (2003) [40]. TIPME helps in identifying and 
eliminating causes of long response times. Pinpoint uses data 
mining to correlate the behavior of each active user request 
with the past failures and successes to determine failed 
components. Magpie works on individual user requests and 
compares the observed behavior, with saved normal models, to 
identify anomalous requests and malfunctioning components. 
Recently, the ‘mPlane’ consortium of European telecom 
companies and academic institutions, has worked on 
developing a measurement plane for Internet and CDN (2013-
2016). The core of the project is ‘mpAD-Reasoner,’ which 
uses machine learning to detect anomalies involving multiple 
flows or users. It compares the current distribution with stored 
average distributions [18]. In [88] the authors provide concepts 
related to into cross stratum optimization to meet the QoS 
requirement. The work in [89] extends the idea to multi-
dimensional resource optimization optimal networks in 5G 
domain. The work, though does not directly focus on fault 
detection and localization nevertheless provides insight multi-
stratum resources optimization (MSRO) in NFV in the cloud 
environment. 

It has been shown that learning methods give a way to 
relatively easily learn structure in the data and draw inferences 
[41]. Shallow machine learning algorithms, characterized by a 
single convolution stage, are suitable for cases where a large 
amount of labeled training data, including normal and fault 
cases, are available. They can derive intelligence from data and 

do not depend on experts to build complex interacting rules to 
derive patterns or models. Even dependencies, which cannot 
otherwise be explicitly modeled, can be learned. These 
advantages make them attractive for handling FP problems. In 
FP applications, machine learning methods can not only be 
trained with historical fault and performance data but can also 
be made to improve themselves as they operate and encounter 
new situations. This makes the machine learning systems, 
adaptive and intelligent and when they have been adequately 
trained, as they can generalize well from the training 
environment to the real-life situations. Use of different 
algorithms has been reported for detection and localization. 
We shall see more about this method in the next section. 

5. AI-Based Handling of FP Issues 
Researchers’ interest in AI-based machine intelligence for 

the identification of FP issues dates back to the era of expert 
systems [42] [43] [44] [45]. During the intervening decades, 
the carrier networks have undergone changes in technology 
and form, but the interest in intelligent fault handling has 
persisted. We look at AI as a way to empower machines to 
mimic and outperform human intelligence. Machine learning is 
a subset of AI, chiefly consisting of statistical techniques that 
allow machines to exhibit behavior that improves with 
learning. Deep learning is a way to implement machine 
learning using neural networks with more than one level of 
non-linearity. When using neural networks for difficult tasks, 
complex relationship among variables modeled with several 
levels of non-linearity improves the generalization process [46] 
[47] [48].  

VNSs are a new development and their deployment over 
multi-cloud is still to be explored fully. Many of the AI 
methods developed for intrusion detection have been explored, 
with varying degrees of success, for managing the FP issues. 
Some researchers have applied AI methods directly to the fault 
detection and, to a lesser extent, to fault localization. A very 
important reason for exploring AI for the problem of FP 
management for cloud-based NFV is the intractability 
introduced by the known gaps in the NFV specifications. 
Interaction among multiple domains, especially between the 
legacy OSS and the MANO and the legacy OSS and the 
MMCP [19]. ETSI supported proof of concepts (POC) have 
also resulted in highlighting the gaps in the NFV framework 
and carved out research work for the future. The present NFV 
framework, rather simplistically, assumes that VNFM will be 
primarily responsible for fault management actions. In real 
implementations, there will be multiple layers of cooperating 
fault managers. The OSS tackles customer fault reporting and 
management, which interacts with the EMS and NFV-MANO 
for the element level and VNFM level inputs, respectively. 
Besides, state change events for fault management actions 
have not been defined which are required for avoiding 
conflicting multi-layer actions and also an escalation from 



lower to higher layers. In this situation the learning methods of 
AI make the best use of the features learned from the available 
markers and can assist in FP management. 

The authors in [49] use Artificial Neural Networks (ANN) 
for one and two alarms simulated scenarios. They show that in 
a simulated environment ANN provides better performance in 
comparison with the other implemented methods. The 
researchers in [50] propose a system for fault analysis and 
prediction in the telecommunications access network for the 
Rijeka area of Croatia. The Authors in [51] have used temporal 
decision trees for fault prediction in telecommunications 
networks. As per findings in [52], fuzzy cluster means can be 
used to classify network faults. The current research indicates 
the possibility of advancing the state-of-the-art in FP 
management through deep learning structures. 

In [53], the authors use the Random Forest machine learning 
method to detect performance degradations in the VNFs. 
However, these researchers have chosen to rely on virtual 
resource layer level features data like CPU consumption, disk 
I/O, and free memory based on their suitability to computing 
systems. Evaluation has been carried out in a centralized IMS 
system. Application of the proposed method to a highly 
distributed multi-domain network has not been reported. 

The authors in [54] have worked on the premise that 
underlying all the VNF failures are the NFVI level failures like 
disk I/O or memory usage. They propose Self Organizing Map 
(SOM), a type of unsupervised learning neural network, for 
clustering the statistical data and analyzing them to detect the 
faults. In [55], the author mentions that machine learning 
algorithms are expected to detect invisible failures and 
anomalies. However, more work is required to validate them. 

Machine learning can be used for root cause analysis and 
failure localization in optical networks [87]. The authors of 
this work discuss fault management including detection of 
degradation and localization of faults. According to them, 
restoration procedure can be initiated in cases where traffic has 
been affected by a fault. However, early detection of 
degradation allows remedial action to be taken to prevent 
network downtime. The paper does not delve into specific 
techniques for detection and localization and none of the 
techniques have been evaluated. 

We now discuss in more detail the architecture and design 
of an AI-based FP management framework for NFV 
deployment in the multi-cloud scenario. 

6. Description of the Proposed FP Management 
Framework 

FP management in the cloud-based VNS has to be a 
collaborative process among the elements constituting the 
VNS and the management systems involved in creating and 
managing the service. VNSs impose new requirements on the 

FP management system. Some of these requirements include 
mining of large volumes of high dimensional, multi-source and 
multi-layered data. This is, in some parts, imposed by the 
necessity of making up for the gaps in the ‘NFV on clouds’ 
specifications in relation to the FP management and prediction 
of impending problems. The proposed framework takes care of 
these requirements. 

The data generated by an operational system is large and 
high dimensional. In such a case, it would be very difficult to 
capture the intricate relationships among the features (e.g., the 
location of the fault, resources involved, markers produced, 
etc.) and the corresponding labels (faulty, non-faulty, 
impending fault, manifested, fault-severity, etc.) through 
traditional methods. It is being increasingly realized by 
researchers and echoed by standards bodies as well that a 
predictive approach to fault detection and localization, based 
on methods that learn the structure of and relationship among 
features from the data itself are more likely to succeed [9][41] 
[56] [57].  

As a case study, we will also discuss the work that we have 
carried out, to tackle the problem described above, using deep 
learning and shallow learning methods [15] [58]. It has been 
found that a hybrid framework consisting of a combination of 
shallow and deep learning models could be used for detection 
and localization of FP issues as well as predicting severity 
levels of impending faults with a high level of accuracy. 

6.1 Markers and Metrics for Fault Detection and 
Localization 

We have introduced markers before as indicators produced 
by an operational network and measurements taken by the 
operations staff. There are a large number of markers that are 
directly or indirectly related to the occurrence of an FP issue. 
These markers become important features in our datasets. 
Events, that produce these markers, relate to communication, 
QoS, processing, equipment, and environment. Of course, not 
only each FP issue would usually have multiple markers, but 
also many of the markers would appear in more than one type 
of issue. Also, at any given time the markers produced may be 
a result of more than one FP issue. Thus, there is a complex 
relationship between the markers and the FP issues. This 
would usually mean that when using machine learning for fault 
detection and localization, feature engineering, i.e., selection of 
appropriate markers would be required to get better results. 
However, deep-learning models, are able to extract relevant 
features automatically, without human intervention. Some of 
the markers related to mobile, fixed and broadband networks 
are given in Table 5. 

TABLE 5 
LIST OF MARKERS FOR DIFFERENT CARRIER SERVICES 

Broadband Mobile Network Fixed Network 
Intermittent connection Handoff alarm Earth on a limb 
Low data rate BTS power alarm No dial tone 



NPOT Packet loss 
counter Loop resistance 

Repeated training Backhaul 
congestion Line card port faulty 

LAN lamp off RX noise floor Permanent ground 
alarm 

Line noisy Frequency error Distribution cable fault 
Port mismatch Antenna tilt DP fault 

No ping C/I ratio Insulation 
measurement 

ADSL lamp flashes Signal strength MDF fuse blown 
No line sync Radio link failure Handset fault 
Browsing issues Cell site failure Dis on one limb 
Micro-Filter Faulty Interference level No incoming calls 
No Communication CQ indicator Drop wire fault 

Dropouts Virtual eNB 
capacity Ringtone fault 

No authentication Hypervisor alarm Message fault 

vRouter failure Registration 
failure Delayed dial tone 

BTS: Base Transceiver Station, C/I: Carrier to Interference, CSSR: Call 
Set-up Success Rate, MDF: Main Distribution Frame, MU: Multi-User, 
eNB: eNodeB, NPOT: No Power in Optical Network Terminal, XCOA: 
Contact with AC, CQ Indicator: Channel Quality Indicator 

The metrics used by carriers to measure the health of the 
network provide important information about the FP problems 
at the macro level. Use of these as features in the dataset would 
help learning algorithms to narrow down the scope of 
localization effort. According to ITU Recommendation 
regarding the QoS criteria and parameters, a number of basic 
aspects have to be considered while identifying measurable 
metrics of service availability [59]. ETSI documents on service 
availability [56] and on service quality [60] mention metrics 
that need to be collected and analyzed. The ETSI group 
specification on service quality metrics [61] recognizes that it 
is important to have an objective and quantitative metrics to 
assist in identifying problems when they arise and provide 
good service to the consumers. Examples of metrics, and their 
realistic values (where applicable), from an actual network 
[62] are given in Table 6. We will see how these markers and 
metrics are used in our framework in later sections.  

TABLE 6 
METRIC FOR NETWORK AVAILABILITY AND RESILIENCY 
Metric Typical 

Value 
Metric Typical 

Value 
Broadband 
Network  POI congestion <0 .5% 

Packet loss < 1% Assistance 
response > 95% 

Customer PoP to 
Internet exchange 
latency 

<120ms Mobile Network  

Peak international 
bandwidth 
utilization 

< 90% BTS total 
downtime ≤ 2% 

Connection data rate 
availability > 80% Traffic Channel 

Congestion (TCH)  ≤ 2% 
Average throughput 
for packet data > 90% Call Drop Rate 

(CDR)  ≤ 2% 

Latency (audio)  <150ms Call Set up Success 
Rate (CSSR)  ≥95% 

Fixed Network  Paging channel 
congestion ≤ 1% 

 Fault incidences  < 5% Signal strength in 
vehicle ≥ 85dbms 

Call completion rate > 55%   
PoP: Point of Presence, BTS: Base Transceiver Station, POI: Point of 
Interconnection 

6.2 Potentially Applicable AI Techniques 
There are quite a few AI techniques, involving machine 

learning and deep learning that are potentially applicable to the 
problem of detection and localization of FP anomalies. 
Following the practice of applied machine learning 
researchers, we designate models with a single layer of non-
linearity, e.g., Support Vector Machine (SVM) and neural 
network (NN) with one hidden layer, as shallow structures or 
shallow machine learning architectures and the models with 
more than one layer of non-linearity, e.g., stacked 
autoencoders are referred to as deep structures or deep learning 
architectures [63] [64] [65]. It is common for shallow models 
with a linear hypothesis to have O(n) prediction time 
complexity and the training time complexity of O(l2+n3) where 
l denotes the size and n is the number of features in the dataset 
used. However, with such models, approximation errors are 
large for the high dimensional and large volume of data that 
are usually associated with the FP problem. Thus, if the data is 
not linearly separable then kernels could be used to map data 
into a higher dimension where it shows linear properties. This 
implies that linear models like SVM could be applied to the 
new space. This kernel trick reduces the approximation errors 
at the cost of higher complexity of the training time which is 
O(l3 + l2n) and prediction speed of O(ln). Of the prevalent 
shallow machine learning architectures, supervised methods 
(where each training example consists of the feature vector as 
well as a label) such as SVM and Random Forest (RF) are 
considered useful for diagnostic applications [66]. Another 
supervised learning technique, Bayesian Network (BN), has 
been applied to FP management in the industrial settings. Our 
preliminary exploration of these methods with small datasets 
has shown that SVM and Alternating Decision Tree (ADT) 
produce comparable and encouraging results for the detection 
problem. We will discuss the evaluation results in the next 
section. 

In deep learning, increasingly improved features are learned 
as the hidden layers are traversed. Learning of complex 
features and structure in the data can be broken down into 
simpler tasks performed at many levels. This way, deep 
learning can achieve low generalization errors, even for 
functions otherwise difficult to represent [67]. Lately, better 
results than SVM have been achieved with deep neural 
networks in a number of important applications [68] [69]. A 
key advantage of deep learning over shallow learning is the 
automatic extraction of high-level features. Each algorithm that 
we have used is briefly described here. For more details, 
readers may consult the references mentioned. 

1) Support Vector Machine (SVM): Geographically 
dispersed elements of the network may generate similar or 



different markers at different locations, for example, at the 
carrier’s OSS location or the NFV provider’s MANO location. 
The information contained in these markers is non-unique 
across the domain of faults and performance issues. The SVM 
classifier can analyze the data and learn inherent patterns, 
which are otherwise not evident to the human senses. It works 
by finding optimal hyperplanes that separate different classes 
in a given labeled dataset. Once trained, it can classify unseen 
data. References at [70] [71] give a more detailed description 
of SVM. As we have use SVM in our framework, we mention 
some more details of parameter C, ϒ and ϵ that require careful 
selection to minimize prediction errors. As the exact solution is 
impractical, precision ϵ is used to indicate the error insensitive 
tube around the decision boundary in which the errors are 
ignored. The aim is to minimize ||ω||2 which is equivalent to 
maximization of the margin between the classes. The constant 
C determines the tradeoff between the flatness of function 
learned and the amount of error allowed above ϵ. A low C 
makes the decision surface smooth; a high C aims at 
classifying all training examples correctly by giving the model 
freedom to select more samples as support vectors. We choose 
how significantly the misclassifications should be treated and 
how large the insensitive loss region should be, by selecting 
suitable values for the parameters C and ϵ. The data X is 
projected to a higher dimension using function ϕ(X). Poor 
generalization and computational complexity that may result 
from projecting data to higher dimensions can be avoided by 
the use of a kernel function that maps the input feature space of 
dimension d to a higher dimensional space in which the 
relationship becomes linear. In our studies, we have found that 
the performance of the Radial Basis Function (RBF) kernel 
performs better than others. The RBF kernel has the form 
given below. Here, xi and xj are two sample feature vectors, 
and ϒ is the parameter that sets the spread of the kernel.  

 K(xi, xj)=exp(-ϒ||xi-xj||) 
In all cases where SVM had been used, these parameters had 

been arrived at by a grid search. 
 2) Alternating Decision Trees (ADT): This method 

combines Decision Trees with Boosting. The ADT is different 
from normal decision trees as it has predictor and test nodes 
alternately, while the normal decision tree has just test nodes 
with each branch representing an outcome of the test. Another 
difference is that while each leaf can only be split once into 
two, in ADT each part can be split multiple times. This 
increases the accuracy of classification/regression. The 
splitting criterion could be impurity based like information 
gain or Gini index or based on a statistical test like chi-square. 
Boosting, on the other hand, brings in performance-enhancing 
capabilities. However, it adds more test and predictor nodes. 
The complexity is quadratic in boosting iterations, but can be 
reduced by using a suitable heuristic [72]. 

3) Random Forest: Among supervised learning algorithms 
of its class, the Random Forest (RF) is a classifier that is likely 

to give more accurate results. It proves to be efficient and 
robust in many use cases with large databases. It can help in 
feature selection by estimating the relative importance of the 
predictor variables. This is done by selecting an impurity 
measure like entropy and measuring the contribution of each 
feature. Another very useful feature is that it does not need 
separate test data or any cross-validation. The Out-of-bag error 
(OOB-error) gives an unbiased estimate of test or classification 
error [73]. 

4) Deep Learning using Stacked Sparse Autoencoder: An 
autoencoder is a neural network, which has an input layer, an 
output layer, and one or more hidden layers. It learns the 
feature of a dataset in an unsupervised manner (i.e., the 
training examples are just feature vectors with no labels). Such 
a model reconstructs the input values at the output with 
accuracy depending on how well the features are represented 
by the hidden layer(s). A sparse autoencoder (SAE) contains a 
hidden layer with a smaller number of neurons than the inputs. 
Thus, the high dimensional inputs are mapped to a lower 
dimension forcing them to learn the best representations of the 
given features. Extraction of features takes place according to 
their relative importance. More than one sparse autoencoders 
can be put in tandem to construct a stacked sparse autoencoder 
(SSAE). Training of the stacked autoencoder is done in a 
layerwise greedy manner. The first layer is trained with the 
input data x to obtain weights ω and bias b for the hidden units 
such that the output k(f(x)) is as close to the input as possible, 
i.e., minimizes the loss function Ø(x, k(f(x)) [74]. The L2 
norm (mean square error) is often used as the loss function. 
The primary feature activations of the first hidden layer are 
then used as input to the second hidden layer and so on. Since 
the L2 norm may not reduce the error to zero, a sparsity 
penalty term is added to constrain the neurons to be mostly 
close to zero. The training criterion can be written as 
Ø(x, k(f(x))) + Ω(h), where Ω(h) is the sparsity penalty. 

If we consider an SSAE with n layers then the weight and 
bias parameters for the mth autoencoder can be written as 
ω(m, 1), ω(m, 2), b(m, 1), b(m, 2). The encoding step in the feed-
forward direction for each layer k of the stacked autoencoder is 
given by:  

h(k) = f(x(k)) (1)  
x(k+1) = ω(k,1)h(k) + b(k,1)  (2) 
The decoding stack of each autoencoder is run in the reverse 

order 
h(n+m) = f(x(n+m)) (3) 
x(n+m+1) = ω(n-m, 2)h(n+m) + b(n-m, 2) (4) 

Then, as the layer-wise training proceeds, each successive 
layer learns increasingly more and more useful features with 
the innermost layer h(n) giving a representation of the input in 
terms of the most compressed and useful features for the input 
of higher dimension. With appropriate settings of the 
parameters, the compressed layer reconstructs the original 



input with good accuracy. Good reconstruction performance 
helps in achieving good prediction. For prediction of fault 
classes or severity of impending faults, a layer of Softmax 
classifier replaces the decoder layers with h(n) forming the 

input to this layer. Softmax regression can be used for multi-
class classification as it gives probabilities of output being 
close to the target value in the range 0 to 1 with the sum of 
probabilities being 1. 

Table 7 summarizes the machine learning and deep learning 
techniques useful for NFV-Cloud FP problems. 

6.3 Framework for FP Detection and Localization 
We propose learning models that have predictive and 

deductive properties to meet the FP requirements of virtual 
network services. All the markers available from the 
management platforms, i.e., the runtime monitoring and 
measurements, alarms, notifications and warnings, 
configuration changes, and environmental factors are used 
along with machine learning models trained with historical 
data to draw inferences about the manifested performance and 
fault issues. Additionally, the capability of deep learning to 
map the intricate relationship among the features has been used 
to predict the impending faults. The framework shown in 
Fig. 8 consists of three main sub-systems: Data pre-processing, 
Detection and Localization. Data pre-processing involves 
collation and normalization of the dataset to remove biases. 
The pre-processing policy may also involve the reduction of 
features based on some criterion like correlation with the 
labels. In the training mode, the available dataset is split into 
training and test datasets, which are used to train and test all 
the models. During operation, the marker data is run through 
the framework to detect and localize problems. 

 The first part of the FP problem, i.e., detection is essentially 
a two-stage binary classification problem that first classifies 
the outcome as ‘normal performance’ or ‘abnormal 
performance’ or alternatively as ‘fault’ or ‘no fault’ classes. 
Then for the ‘fault’ or ‘abnormal performance’ cases, it 
decides whether the problem is manifested, i.e., it has already 
occurred somewhere in the network in some form, or 
impending, i.e., it might happen in the near future. We shall 
see in the next section why a two-stage model is better in this 
case. It is important for the detection models to have good 
accuracy as manpower and material resources are committed 
for rectification of detected faults. This is particularly 
important, as the presence of alarms does not always indicate a 

TABLE 7  
MACHINE/DEEP LEARNING ALGORITHMS FOR THE FP PROBLEM 

Algorithm Advantages Watch out for 
Support 
Vector 
Machine 

• Works well for the detection 
problem.  

• Works with linearly 
separable as well as non-
linear feature space (with 
RBF kernel).  

• Select kernel 
function and fine-
tuning of 
parameters. 

• Select the cross-
validation method 
carefully.  

• Long training time 
with the big dataset.  

Random 
Forest 

• Works well for the detection 
problem and localization of 
manifested faults. 

• Works for binary as well as 
multi-class classification.  

• Less prone to overfitting.  
• Handles non-linearity.  
• Handles categorical features.  
• Handles high dimensional 

spaces and a large number 
of examples. 

• Fine tuning of 
parameters like the 
number of features 
in any tree, number 
of trees in the 
ensemble and leaf 
size.  

• Watch out for 
classification time 
and complexity of 
the model. 

ADT  • Works well for the detection 
problem.  

• It has the speed of a decision 
tree and is robust to noise 
and missing values.  

• It can be used for mixed 
categorical and numerical 
data.  

• It helps in finding 
significant features.  

• Must be used 
carefully to avoid 
overfitting. 

• Keep control of 
parameters like 
depth and number of 
features to split on. 

Autoencoder
/Stacked 
sparse 
autoencoder 

• Useful for localization of 
impending problems.  

• It gives better control over 
quality. 

• With the appropriate 
number of layers and 
neurons, it performs better 
than the shallow algorithms 

• Sensitive to number 
and size of layers.  

• Careful fine-tuning 
of sparsity and 
regularization 
parameters is 
required. 

SoftMax • Used as the last stage of 
stacked autoencoder in the 
localization problem.  

• Trained in a supervised 
manner.  

• It can do binary as well as 
multi-class classification. 

•  It can be used for prediction 
of faults, severity, etc.  

• Watch for bias due 
to the distribution of 
data.  

• If sufficient labeled 
data are available 
fine-tuning by 
backpropagation 
may improve 
results. 

 

Fig. 8. The FP management framework 

 

Fig. 9 The detection subsystem 



fault.  

The second part of the FP problem is the localization of the 
detected faults. Localization of manifested faults is taken up on 
priority while for the impending faults it is elective, 
nevertheless important. For the manifested faults, the model 

uses a multi-layered localization strategy using machine-
learning classification models. At Localization Layer 1, the 
broad category of the manifested fault is determined, e.g., 
network performance problem. At Localization Layer 2, the 
system makes a finer identification of the problem to assist in 
the identification of the root cause of the problem, i.e., 
malfunctioning resources or resources suffering from 
performance degradation. In the case of the network 
performance class of problems at Layer 1, the model at 
Layer 2 may narrow down the classification to a high bit error 
rate as the cause (Table 8). For the impending faults, a deep 
learning strategy uses the markers to predict the severity and 
location of faults. 

The massive amount of observations generated by the 
operational system can also be used for trend analysis to 
indicate abnormal behavior and degenerating devices. 

6.4  The FP Detection Subsystem 

 The detection sub-system of the FP management framework 
is shown again in Fig. 9. In the two-stage implementation for 
detections, both levels use the shallow machine-learning 
models. As mentioned before, these models are trained on 
historical data consisting of FP events, resulting markers 
including the severity levels and the fault clearance description 
that the maintenance staff has entered after rectifying the fault. 
The cases, where no action is required or the fault is transient 
and corrects itself, are labeled as ‘no-fault.’ In the case of an 
actual fault, the nature of the fault and its actual clearance is 
indicated. The trained model can then take markers resulting 
from new events as inputs to decide at Level I whether the 
conglomeration of markers constitutes a fault. If it does, then 
the model at Level II uses the available information to decide 
whether the fault is impending or manifested. The use of 

markers from many management platforms may introduce 

redundancies, as a good amount of similar information may be 
available from OSS and MANO. However, making use of 
redundant data makes up for the gaps in communication 
among various management platforms. 

 However, the occurrence of multiple faults, the overlap of 
markers among faults and conflicting markers may render the 
task of detection difficult. If our detection sub-system is 
effective and can correctly segregate the conditions, then 
localization has better chances of succeeding. A two-level 
model for detection helps in filtering out a large number of 
‘no-fault’ cases at level 1 so that level 2 is largely applied to 
the ‘fault cases.’ This makes classification better and faster. 

 Algorithm 1 describes the process succinctly. X is the 
vector of predictor variables. Hyper-parameters {pd} and {pd'} 
pertain to detection models at the two layers, {ps} and {pn} are 
for models at the Localization Layers 1 and 2 and {pi} are for 
deep learning model for impending faults. 

 The procedure detect_level1 at line 1 takes the feature 
vector of a new event and populates the hyper-parameters (line 
3). The trained machine learning model is used to predict 
labels. If it is ‘fault’ condition then detect_level2 is invoked 
(line 8) which uses another trained model to classify the fault as 
‘manifested’ or ‘impending’. Thereafter, the appropriate 
localization module is called (line 13 or line 15) to handle the 
manfiested fault localization or the impending fault 
localization. Use of X' and X" indicates the possibility of 
curating the feature vector used with the corresponding model. 
This algorithm also outputs the detection report, which includes 
fault cases as well as the type of faults. 

6.5 The FP Localization Subsystem 
The 'Manifested Fault' are those that have made themselves 

evident and many of them could be major or critical, 
threatening to seriously cripple the network service from which 
they originate. These faults cannot be allowed to persist and 
need to be handled on urgent basis. Since many faults may 

TABLE 8 
COARSE (LAYER1) AND FINE (LAYER 2) CATEGORIZATION OF FAULTS 

Layer 1 Fault Layer 2 Fault Markers 
Network 
Performance 

Traffic and Beacon Channel plan Bad receive 
quality, Call drop 
at the cell 
boundary, Link 
degradation 

Handoff parameters setting 
Bit error rate 
High paging discard rate 

Security Denial of Service attack Client 
Authentication 
failure, Call 
initiation failure 

Home Subscriber Server Failure 

Virtual 
Resource 

VM Fault Network function 
failure alarm 

Hypervisor fault 

Algorithm 1: Detection Levels 1 & 2 
 1: procedure detect_level1 (X) 
 2: #fault/no-fault classification 
 3: {pd}  values of hyper-parameters for the chosen model 
 4: use trained model for detect_level1 with X, {pd}) 
 5: if ‘fault’ is true 
 6:   call detect_level2 (X') 
 7: produce detection report 
 8: procedure detect_level2 (X') 
 9: # classify as manifested/impending and call localization 
10: {pd'}  values of hyper-parameters for the chosen model 
11: use trained model for detect_level2 with X,Y, {pd'} 
12: if manifested is true 
13:  call manifested_localization (X") #defined in Algorithm2 
14: elseif impending is true 
15:  call impending_localization (X") #defined in Algorithm2 



propagate and show up elsewhere in the network, the 
localization process has to cut across layers and domains to 
identify the faulty devices, links, or software correctly. The 
‘Manifested’ faults are localized by a multi-class, two-layered 
model shown in Fig. 10. In cases of impending faults, the 
localization functionality requires prediction of the severity of 
the developing faults. A deep learning model consisting of 
stacked autoencoders has been used for this part. The stacked 
autoencoder was introduced in Section 6.2. 

 Algorithm 2 explains the localization function. X, Y and the 
set of hyper-parameters {p} have the same meaning as before 
(sparsity parameters have been explained in Subsection 7.4). 
Details of the models and strategies for the manifested and the 
impending fault classes are explained below. 

 The procedure manifested_localization (line 1) uses 
procedure localize_layer1 (line 4) to determine the broad 
category of manifested fault. Depending on the category 
determined, it calls the localize_layer2 with corresponding 
parameters. For each category at Layer 1, the Layer 2 may have 
a specifically trained model. For Impending fault localization 
the procedure impending_localization (line 17) calls the deep 
learning model with the required parameters. Let us discuss a 
little more about the manifested and impending faults. 

6.5.1 Manifested Faults 

 During operation, all the FP issues classified as 
‘Manifested’ pass through the two layers. At Layer-1, the 
model works as a multi-class classification model that classifies 
the faults into one of the several broad categories of FP issues. 
Table 8 gives examples of three such categories, ‘Network 
Performance,’ ‘Security’ and ‘Virtual Resource.’ The model at 
Layer-2 is also a multi-class classification algorithm that 
localizes the FP issue at a finer granularity (e.g., a device, 
interface, or link) within the broad category predicted at 
Layer 1. The localization sub-system produces localization 
reports that can be used by the maintenance staff to carry out 
the rectification work. For the multi-class classification with 
SVM, we chose to work with simple models like One vs. One 
(OvO) and One vs. All (OvA) [24]. We eventually selected 
OvA since it provided more accuracy and was comparable to 
OvO in training and actual operations. In the OvA approach, for 
the ith classifier fi, the examples can be classified with 
f(x) = arg maxi fi(x), i.e., choose the class that classifies the 
example with the maximum margin 

6.5.2 Impending Faults 

In traditional systems, in the absence of predictive 
analysis, preventive maintenance is relied on to catch issues 
early. In the proposed framework, localization of impending 
faults consists of predicting the severity and location of the 
fault. An operational network produces data continuously. In a 
stable operational network, most of the examples would 

constitute normal data with markers indicating anomalous 
conditions interspersed sporadically. While our data has more 
than 800 features, any anomalous condition would present 
<5% of these! In other words, the data are quite sparse. 
Impending faults may also contain previously unseen faults. 

Thus, while manifested faults are manageable with shallow 
models, impending faults have been tackled with deep 

learning. We have used Stacked Sparse Autoencoder (SSAE) 
(a type of deep neural network). A single SAE contains an 
input, an output, and a hidden layer. With an under complete 
hidden layer, the autoencoder learns the most useful individual 
features as well as creates composite features. The advantage 
can be accentuated with stacking a number of autoencoders 
and carefully designing the hidden layers [75]. 

 Fig. 11 shows the stack of three sparse autoencoders used 
in this work: the input layer (x), an output layer (p) and three 
hidden layers consisting of paired encoders and decoders. The 
colored neurons show three corresponding pairs of encoders 
and decoders. By reducing the size of hidden layers, the output 
is made reliant on increasingly lesser but richer features. Such 
a network can be trained in an unsupervised mode to 
reconstruct input data at the output with good accuracy. These 

 
Fig. 10. The localization process 

Algorithm 2: Localization Layers 1 & 2 
 1: procedure manifested_localization (X) 
 2: # Coarse grain localization 
 3: {ps}  values of hyper-parameters for the chosen model 
 4: call localize_layer1( X,{ps}) 
 5: # fine grain localization with the appropriate model  
 6: if class_category ==1 
 7: {p1}  hyper-parameters class_category 1 
 8: call localize_layer2(X",{p1}) 

… 
 9: if class_category==7 
10: {p7}  hyper-parameters class_category 7 
11: call localize_layer2(X",{p7}) 
12: produce localization report 

13: procedure localize_layer1(X,{ps}) 
14: use trained model localize_layer1 with (X,{ps}) 
15: procedure localize_layer2(X'',{pn}) 
16: use trained model localize_layer2 with (X, {pn}) 
17: procedure impending_localization (X) 
18:{pi}  parameters neurons, sparsity parameters 
19: use deep_learning_model (X,{pd}) 
20: produce impending fault report 
 



networks can be tuned well for sparse data by using parameters 
like sparsity regularization and sparsity proportion as discussed 
in the evaluation section. 

 
Fig. 11. Stacked sparse autoencoders 

 

 We train our model to have a good reconstruction of the 
input at the output (decided by the L2-norm), with 
unsupervised data, in a layer-wise greedy method (one hidden 
layer at a time). A model that reconstructs well also gives good 
predictions [28]. During training, features (z) learned by each 
hidden layer are input to the next layer. Pairs of {weights, 
biases}, viz., (ω1, b1), (ω2, b2) and (ω3, b3), are learned in 
achieving good reconstruction. 

                                  argmin{L2_norm(x, x'), k=1 
{ωk, bk, ωk', bk’} =       
                                 argmin{L2_norm(zk-l, zk-l'}, k> 1     (1) 

z1 = f(ω1, x)                                                                 (2) 

 zk = f(ωk, zk-1), k>1                                                      (3) 

  After achieving good reconstruction of the input, the 
decoders are removed, and a prediction layer is added in 
tandem with the encoded representation layer (Fig. 12). 
Softmax assigns decimal probabilities to each class in a binary 
or multi-class problem. These decimal probabilities must add 
up to 1. This additional constraint helps training converge more 
quickly than it otherwise would. In simple terms, the Softmax 
function can be written as 

F(yi) = exp(yi)/∑j=1, k exp(yj),   i=1, 2, …, k                         (4) 

 Softmax uses the rich features from the encoded layer of the 
stacked autoencoder to learn its weights ω4 and biases b4. 
Training of Softmax is done in a supervised manner using the 
labeled examples available. ω4 are the weights for minimum 
prediction mean square error (MSE). It produces predictions y' 
for the given labels y. Thus, for labels y and its prediction y' we 
have, 

 {ω1, ω2, ω3, ω4}=argmin{L2_norm(y, y')}                      (4) 

After the Softmax classifier has been trained in a 
supervised manner, the whole model is fine-tuned using back-
propagation and simultaneous adjustment of weights of all the 
layers to minimize the mean square error in the labeled test 
datasets [20]. 

 
Fig. 12. The stacked encoder used for prediction 

7. Evaluation of the model  
In this section, we will discuss how the FP detection and 

localization framework, proposed in Section 6, has been 
evaluated. More specifically, we will see the training dataset 
used, curation of data, and the performance of the trained 
models for the unseen events. Curating may involve one or 
more of the following activities to improve the outcomes: 
feature pre-selection using some kind of technique to correlate 
features with the labels, cleansing of data, pruning or 
integration, synthesis or analysis of features. 

7.1 Training Datasets 
Having access to good quality datasets is important for 

proper training of the learning models and their predictive 
performances [75]. Records like fault dockets, switch room 
logs, outdoors logs, personal records of maintenance staff and 
fault closure reports contain a vast amount of information 
about complaints, faults, test results and restoration details of 
telecommunication networks. However, assembling a useful 
dataset from these primary data is not an easy task. Since 
network fault and performance datasets are not easily 
available, researchers commonly resort to either proprietary 
datasets that are not publicly available or generate synthetic 
datasets [50] [52]. We have used in our studies the real 
network FP dataset pertaining to faults and disruptions in 
telecommunication carrier Telstra’s network [77]. The dataset, 
as available, is split into a number of sub-datasets, each 
containing different information derived from the logs. These 
sub-datasets give event_type, log_feature, resource_type and 
severity_type. They are related through the “id” column that 
acts as the key field and also conveys the timing information. 
It can be used in innovative ways to improve predictions based 
on the dataset. The event_type is the type of fault or 
performance incident. Any anomalous situation may have up 
to 5 different events associated with it. The resource_type 
gives the affected virtual resources. The feature fault_severity 

TABLE 9A 
TRAINING DATASET 

TABLE 9B 
TEST DATASET 

id location fault_severity id location 
4757 location 508 0 13484 location 922 
1635
 

location 257 1 12392 location 184 
1181
 

location 116 0 2322 location 1019 
7274 location 830 1 567 location 734 
4311 location 704 2 4436 location 236 
1226
 

location 1089 2 12156 location 124 
1475
 

location 653 0 7508 location 858 
3304 location 1099 1 6184 location 707 
9012 location 975 0 12213 location 763 
9928 location 1019 2 6458 location 1100 
1001
 

location 696 0 13967 location 155 



is given in terms of the number of faults: many faults (2), a 
few faults (1) and no faults (0). The ‘log-feature’ file identifies 
features or markers like alarms and notifications by their 
numbers. There can be up to 386 features associated with an 
anomalous event. The severity_type rates the warning 
conditions in terms of their seriousness (on a scale 1 to 5 with 
5 being the most serious). 

 The training dataset contains “id,” the location of the 
incidence and the severity of the fault. The rest of the fields 
can be extracted from the other sub-datasets to make a 
complete dataset for training detection models. In the case of 
localization, the available sub-datasets as collated with the 
training dataset such that the localization model gives a good 
prediction of severity of faults. An extract from the training 
and test datasets are given in Table 9A and 9B respectively. 
The test dataset has “id” and the location for which severity 
has to be predicted.  

The Telstra log_feature sub-dataset contains 58,672 
examples, with events displaying the presence of different 
features. The event_type sub-dataset has 31,170 examples, the 
resource_type sub-dataset has 21,076 and severity_type sub-
dataset has 18,552 examples. The test and the training files 
have 11,171 and 7381 records respectively. They have not 
been split from a common dataset so the standard 80:20 or a 
similar ratio is not maintained. A dataset prepared by the 
consolidation of all sub-datasets has more than 800 features as 
shown in Table 10. Each fault (with a unique id) is associated 
with a location, up to 6 features and corresponding volumes, 
up to three affected resources, up to 5 events, and up to 5 
severity types indicating the intensity of the warning and 

fault_severity ranging from 0-2 as explained before. 

A part of the consolidated Telstra dataset is shown in Table 
11. Only feature1 (out of the complete set of features from 
feature1 to feature386) is shown for compactness. As part of 
preprocessing of the dataset, selection of features was carried 
out based on the degree of correlation of each feature with the 
labels using the Weka tool [78]. With the dataset used in this 
study, a correlation threshold of 23% was found to improve 
accuracy.  

TABLE 11 
CONSOLIDATED TRAINING DATASET 

id location fault_ 
severity resource1 resource

2 event1 event2 event3 event4 severity_type feature1 volume1 

8 location 243 0 resource_type 2   event_type 34 event_type 35   severity_type 2 232 3 

13 location 418 0 resource_type 2   event_type 35 event_type 34   severity_type 2 232 1 

19 location 644 1 resource_type 2   event_type 42 event_type 44   severity_type 1 368 2 

20 location 79 0 resource_type 2   event_type 54 event_type 11   severity_type 2 55 1 

23 location 257 0 resource_type 8 resource_
_type 2 event_type 35 event_type 34 event_type 10  severity_type 2 307 1 

24 location 367 0 resource_type 2   event_type 35    severity_type 4 312 2 

26 location 238 0 resource_type 2   event_type 35    severity_type 4 312 1 

27 location 793 0 resource_type 8   event_type 11    severity_type 1 73 3 

28 location 889 0 resource_type 8   event_type 11    severity_type 2 68 2 

 

7.2 Evaluation of the detection subsystem 
To prepare the data for Level-1 detection, the fault_severity 

has been curated to have binary values with 0 indicating ‘no-

fault’ and 1 indicating ‘fault.’ The detection classification of 
‘fault’/‘no-fault’ was implemented with a number of supervised 
learning techniques of which SVM, ADT, and RF have been 

TABLE 10 
LIST OF FEATURES FROM NETWORK FAULT DATASET 

No of 
Features 

Feature Name Explanation 

1 id Unique id for an anomaly situation. It 
contains a time-stamp. 

2 location Location of the event 

3-12 resource_type Up to 10 resources may be involved 

13-398 feature There are 386 types of markers of 
which usually a few will be present 

399-797 volume There is volume information for each 
feature present 

798-802 event_type Up to 5 event_types may be 
associated with an anomalous 
situation 

803 severity_type Indicates severity of warning for the 
situation. The scale is 1-5 with 5 
being the most severe 

804 fault_severity 0 indicates no fault, 1 indicates a few 
faults and 2 indicates many faults 



shown in Table 12. On the basis of accuracy, SVM and ADT 
perform comparatively better than RF. In each case, 10% cross-
validation was used.  

With this dataset, SVM, on the whole, performs better than 
ADT and RF giving ≥ 95.4% accuracy. Considering the 
definitions in Table 13, the true positive (TP) rate for ‘fault’ 
cases were the highest for SVM showing that these were 
correctly classified as ‘fault’ cases. Considering the nature of 
the dataset, this result indicates a good result. There were no 
faults and system said fault in 5.7% cases, while there were 
faults and system said no faults in 2.4% cases. The false 
positive and negative rates were the lowest in SVM and the 
highest in Random Forest. A desirable outcome is that besides 
classifying faults and faults and no faults as no faults with high 
accuracy, it classifies a very low percentage of faults as no-
faults, thus, helping to do what is intended to do – detect 
performance and fault issues. SVM and RF also gave high 
precision indicating that ‘no-fault’ cases were correctly 
classified by them. 

To get a sense of the performance of our detection model, 
using SVM with RBF Kernel, we compared the results with 
baseline results obtained by Zero-R model. The Zero-R model 
predicts the majority class. Running on our datasets, the 
baseline result was about 63%, which indicates that our chosen 
model gives a substantial improvement over the naïve baseline. 

At Level-2, the detection module classifies the fault cases as 
‘manifested’ or ‘impending.’ For the Level-2 classification into 
manifested/impending classes again a tuned SVM with RBF 
Kernel works well as can be seen from Table 14. 

 

 
TABLE 14  

LEVEL-2 DELTECTION MODEL PERFORMANCE 
Metric Value 

Correctly detected manifested faults 89.7% 
Correctly detected impending faults 95.1% 
Impending fault classified as a manifested fault 4.9% 
Manifested fault classified as an impending fault 10.3% 

For Level-2 detection, we have chosen One-R as the 
baseline algorithm. One-R is a simple but accurate 
classification algorithm, which generates one rule for each 
predictor and then selects the one with the smallest error. The 
accuracy of our framework is 13.03% better for ‘impending’ 
faults and 5.97% better for ‘manifested’ faults, which is a 
significant improvement (Fig. 13.)  

 Fig. 13. Detection Level 2 effectiveness compared to baseline 

7.3 Evaluation of Localization Subsystem 

As discussed in Subsection 6.5, for handling manifested FP 
issues, the localization subsystem was implemented in two 
layers with multi-level classification carried out at both the 

levels. For the multi-class classification with SVM, we chose to 
work with One vs. One (OvO) [47]. In the OvO approach, for 
the ith classifier fi, the examples can be classified with 
f(x) = arg maxi fi(x), i.e., choose the class that classifies the 
example with the maximum margin.  

TABLE 12  
STAGE-1 DETECTION RESULTS 

Benchmark Algorithm SVM ADT Random 
Forest 

Time taken 0.01 
seconds 

< 0.01 
seconds 

0.1 
seconds 

Correctly classified 
instances 

95.42% 95.00% 86.67% 

Precision (Average) 95.7% 95.2% 86.9% 
Mean absolute error 0.0458 0.0859 0.2509 
Root mean squared error 0.2141 0.2092 0.3261 
True positive for class 0 94.3% 94.3% 95.5% 
False positive for class 0 2.4% 3.6% 30.1% 
True positive for class 1 97.6% 96.4% 69.9% 
False positive for class 1 5.7% 5.7% 4.5% 

TABLE 13 
METRIC USED 

Metric Interpretation 
Accuracy (TP+TN)/(TP+TN+FP+FN) 
Precision TP/(TP+FP) 
Recall TP/(TP+FN) 
TP=True Positive, TN=True Negative, FP=False Positive,  
FN=False Negative TABLE 15 

LOCALIZATION LAYER 1 BASELINE PERFORMANCE 
=== Stratified cross-validation === 
=== Summary === 
Correctly Classified Instances 86.14% 
Root Mean Squared Error 0.26 
=== Detailed Accuracy By Class === 
Weighted 
Average of 
all classes 

TP 
Rate 

FP 
Rate 

Precision Recall PRC Area 

0.861 0.048 0.947 0.861 0.806 



At Layer-1, the model classifies the faults into one of 
several broad categories of FP issues as was shown in Table 8. 
We set up the baseline performance with OneR as shown in 
Table 15. 

At Layer-1, we chose the sequential minimal optimization 
(SMO) multi-class support vector classifier. With SMO and 
RBF Kernel and parameters C = 12, gamma = 0.01 
epsilon = 1×10-12, the accuracy of Layer-1 localization is 97%, 
which is a substantial improvement over the baseline 
performance of 86.14%. The performance of the model is 
given in Table 16. 

TABLE 16  
LOCALIZATION LAYER 1 MODEL PERFORMANCE 

=== Stratified cross-validation === 
=== Summary === 

Correctly Classified Instances 97.03% 

Root Mean Squared Error 0.32 

=== Detailed Accuracy By Class === 

Weighted 
Average of 
all classes 

TP 
Rate 

FP 
Rate 

Precision Recall PRC Area 

0.970 0.029 0.971 0.970 0.967 

Fig. 14 gives a comparison of the performance of our Multi-
Class Multi-Layer (MCML) model with the baseline. It can be 
seen that the accuracy of the classification of MCML is 
97.03% against the baseline accuracy of 86.14%. A useful 
metric for comparison of classifiers is Precision-Recall Area 
(PRC Area), which gives the tradeoff between precision and 
recall. A high value indicates high precision (i.e., low false 
positives) and high recall (i.e., low false negatives). We can 
see that MCML Level 1 gives a high PRC Area of 0.967 
compared to 0.806 of the baseline. 

Once a broad category has been identified, the Layer 2 
model does fine grain localization for each category of 
manifested fault. In a dataset containing Network Performance 
Faults at Layer 1 and 5 different faults at layer 2, we have the 
results in Table 17: 

A seen from Table 18, when compared with the baseline 
algorithm result, we see that multi-class classification with 
SMO and OvO has a much superior performance, indicating 
the efficacy of the model. The localization accuracy of the 
model is 96.04% compared to 90.1% of baseline. The PRC 
Area of the MCML Level 2 classification is 0.955 against 
0.846 of the baseline.  

TABLE 18 
LOCALIZATION LAYER 2 BASELINE PERFORMANCE 

=== Stratified cross-validation === 
=== Summary === 

Correctly Classified Instances 90.099% 

Root Mean Squared Error 0.1573 

=== Detailed Accuracy By Class === 

Weighted 
Average of 
all sub-
classes 

TP 
Rate 

FP Rate Precision Recall PRC 
Area 

0.901 0.008 0.935 0.901 0.846 

Fig. 15 gives the graphical comparison of Level 2 
performance of the implemented model (MCML: Multi-class, 
Multi-layer, in our case SMO) and the baseline. It is seen that 
the implemented model gives a higher percentage of correctly 
classified and lower percentage of wrongly classified 

examples. 

7.4 Localization of Impending FP Issues 

One of the main concerns handled in the framework is to 
localize impending faults and predict their severity levels. We 

TABLE 17  
LOCALIZATION LAYER 2 MODEL PERFORMANCE 

=== Stratified cross-validation === 
=== Summary === 

Correctly Classified Instances 96.04% 

Root Mean Squared Error 0.294 

=== Detailed Accuracy By Class === 

Weighted 
Average of 
all sub-
classes 

TP 
Rate 

FP 
Rate 

Precision Recall PRC Area 

0.960 0.002 0.976 0.96 0.955 

 Fig. 14. Localization Layer 1 effectiveness compared to baseline 

  Fig. 15. Localization Layer 2 effectiveness compared to baseline 



have seen in Section 6.5 that the localization sub-system uses 
stacked sparse autoencoder (SSAE) for faults detected as 
impending faults. While at the preprocessing stage a total of 
353 features were selected, further condensation was left to the 
SSAE used.  

 To make the deep learning model predict with high 
accuracy, the first step is to train the stacked autoencoders such 
that the output is as close a replica of the input as possible. To 
achieve optimum performance, the stacked autoencoder 
parameters like the number of hidden layers, the size of the 
layers, sparsity regulation (SR) and sparsity proportion need to 
be judiciously arrived at. An example of comparative 
reconstruction performance is given in Figures 16(a) through 
16(d). It is seen that the model with 3 hidden layers of 
200/150/100 neurons, respectively, converges quite fast to a 
low mean-square error. Reconstruction accuracy is important as 
it affects the prediction based on the trained encoders, which 
the model is eventually used for [22]. 

   (a) Single AE (b) 2-layer SSAE 

  (c) 3-layer SSAE (d) 4-layer SSAE 

Fig. 16. Mean square error for reconstruction of the input 

Sparsity in data is handled by using the Autoencoder 
parameters sparsity regulation (SR) and sparsity proportion 
(SP). SP gives the proportion of training examples a neuron 
reacts to. A low value of SP encourages sparsity. 

Having achieved good reconstruction results with stacked 
autoencoders, the model was tested for prediction of the 
severity of impending fault and performance issues. As 
discussed in Section 6.5, a Softmax layer is added as a 
prediction layer. The graph in Fig. 17 shows that the model has 
good generalization characteristics as MSE for the test dataset 
is close to that of the training dataset.  

Fine tuning of the model was done using backpropagation. 
The accuracy ranges between 72 and 85% with the abridged 
dataset (~1000 examples) and ~92% with the enhanced dataset 
(~5000 examples). Experiments were carried out for SR = 1 and 
SP = 0.4. 

 Fig. 17. MSE in training and test dataset 

We baselined the above results with those obtained with a 
shallow model, viz., SVM with RBF kernel which worked very 
well for detection and could only obtain 73.1% accuracy in 
localizing impending faults. A comparison between SSAE and 
SVM models is shown in Fig. 18. The deep structure thus 
provided a substantial improvement in terms of accuracy of 
prediction of the severity level of the impending faults. 

8. Summary 
This tutorial introduces the issue of availability and 

performance management of carrier services using NFV over a 
multi-cloud in a way that achieves the goals established in 
Subsection 1.2. Briefly recapitulating the following goals were 
set: a) Discuss the architecture, creation and management of 
VNS, b) Elucidate FP problem, c) Usefulness of AI techniques 
in the cloud-based NFV environments, d) Describe the AI 
based FP management framework and e) Discuss the use of 
hybrid machine and deep learning techniques with a real-life 
case study. To enable a holistic understanding of the fault and 
performance issues, the tutorial describes the design of VNSs 
like carrier mobile or broadband services that are designed 
using SFCs. All the management platforms (MANO, 

 Fig. 18. Localization of impending fault stacked autoencoder and 
SVM (baseline) 



OSS/BSS, and MMCP) that play important roles in fault and 
performance management of VNSs and their interactions have 
been discussed. MANO is the main component of NFV life 
cycle and fault management. Our tutorial appropriately 
discusses its constitution and functions in detail. 
Responsibilities of each of the sub-systems of the MANO 
towards monitoring and management of fault and performance 
issues have been described. Interfaces that have been defined 
between the MANO and the multi-cloud manager (MMCP) 
and between the MANO and the OSS have been discussed. All 
these aspects cover goal a). Towards achieving goal b), a full 
section has been devoted to the description of the fault and 
performance issues wherein we also discuss the criticality of 
faults and the shared FP responsibilities of the management 
platforms. To meet goal c), explanation has been given for the 
importance of considering AI for achieving the goals of the FP 
problem. Towards achieving goal d), a generic framework for 
detection and localization of the FP issues has been proposed 
and described in detail. It has been brought out how the AI 
based framework would be able to go beyond the traditional 
models in predicting impending failures and their severity. 
Markers and metrics are important ingredients of any FP 
management system and have been given a fitting treatment. 
To accomplish goal e), we have discussed the results of a case 
study involving the implementation and evaluation of the 
detection and localization functionalities using the machine 
and deep learning respectively. Using an actual network fault 
data, we have shown how manifested and impending FP issues 
can be effectively handled by the detection and localization 
sub-systems of the FP management framework based on 
machine and deep learning models.  
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