1570

| e

[EEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 10, OCTOBER 1992

A Comparison of Hashing Schemes for Address Lookup in Computer Networks

Raj Jain

Abstract— Using a trace of address references, we compared
the efficiency of several different hashing functions such as cyclic
redundancy checking (CRC) polynomials, Fletcher checksum,
folding of address octets using the exclusive- OR operation,
and bit extraction from the address. Guidelines are provided for
determining the size of hash masks required to achieve a specified
level of performance.

I. INTRODUCTION

HE trend toward networks becoming larger and faster
Tand addresses becoming larger has impelled a need to
explore alternatives for fast address recognition. This problem
is actually a special case of the general problem of searching
through a large database and finding the information associated
with a given key. For example, datalink adapters on local area
networks (LAN) need to recognize the multicast destination
addresses of frames on the LAN. Bridges, used to intercon-
nect two or more LAN’s, have to recognize the destination
addresses of every frame and decide quickly whether to receive
the frame for forwarding. Routers in wide-area networks have
to look through a large forwarding database to decide the
output link for a given destination address. Name servers
have the ultimate responsibility for associating names to
characteristics. In these applications, a hashing algorithm can
be used to search through a very large information base in
constant time. We also investigated caching as a possible
solution but found that it could be harmful in some cases in
the sense that the performance would be better without it [4].

To compare various hashing strategies, we used a trace of
destination addresses observed on an Ethernet LAN in use.
The trace consisted of 2.046 million frames observed over a
period of 1.09 h. A total of 495 distinct station addresses were
observed, of which 296 were seen in the destination field.

II. HASHING: CONCEPTS

Webster’s dictionary defines the word “hash” as a verb “fo
chop (as meat and potatoes) into small pieces”. Strange as
it may sound, this is correct. Basically, hashing allows us to
chop up a big table into several small subtables so that we
can quickly find the information once we have determined
the subtable to search for. This determination is made using
a mathematical function, which maps the given key to hash
cell i as shown in Fig. 1. The cell ¢ could then point us to the
subtable of size n;. Given a trace of R frames with N distinct

Paper approved by the Editor for Communication Protocols of the IEEE
Communications Society. Manuscript received June 30, 1989; revised June
10, 1991.

The author is with the Digital Equipment Corporation, Littleton, MA 01460.

IEEE Log Number 9201642.

A ni
1

1
2
/ i |
h(Addr)
n
M M M
Hash cells Subtables

Fig. 1. Hashing concepts.

addresses and a hash table of M cells, the goal is to minimize
the average number of lookups required per frame.

If we perform a regular binary search through all N ad-
dresses, we need to perform 1 + loga(V) or loga(2N) look-
ups per frame. Given an address that hashes to the ith cell, we
have to search through a subtable of n; entries, which requires
only log,(2n;) lookups. The total number of lookups saved is

Z 7;[logs(2N) — logy(2n;))]

K3

where r; is the number of frames that hash to the sth cell,
5S> r; = R. The net saving per frame is

Here, ¢; = r;/ R denotes the fraction of frames that hash to the
ith cell, and p; = n;/N is the fraction of addresses that hash
to the ith cell. The goal of a hashing function is to maximize
the quantity 5~ —g;log,(p;). Notice that p; and ¢; are not
related. In the special case of all addresses being equally
likely to be referenced, g; is equal to p; and the expression
3 —p; logy(p;) would be called the entropy of the hashing
function. It is because of this similarity that we will call the
quantityy" —g; logo(p;) the entropy or information content of
the hashing function. It is measured in units of “bits.”

III. HASHING USING ADDRESS BITS

The simplest hashing method is to use a certain number
of bits, say m, from the address. For example, we could
hash using bits 4,4 + 1,--+,7 + m — 1 of the address to 2™
subtables. The number of lookups saved, as we saw in the last
section, is equal to the information entropy of the bits. For
our trace, this is plotted in Fig. 2. Eight curves corresponding

0090-6778/92$03.00 © 1992 IEEE

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 10, OCTOBER 1992

8 -

6
z
R=
1]
L 4
s
E
g

2

0

0 12 24 36 48
First Bit of the Sequence
Fig. 2. Information in address bits.
to m consecutive bits with m = 1,2, ---,8 are plotted. From

Fig. 2, we observe that

1) All 8 bit sequences between bits 0 and 24 have less

than two bits of information.

2) The bits 32 through 39, in general, have a high infor-

mation content.

The first observation is not surprising considering that the
first three octets of the IEEE 802 addresses used on IEEE
802 LAN’s are assigned by the IEEE and, thus, most stations
have the same first three octets. The first two bits corre-
sponding to the global/local assignment and multicast/unicast
addresses may be different in different addresses. Given these
two bits, other bits can be easily predicted. In multivendor
environments, the first three octets may have a little more
information. However, in general, these bits are not good for
hashing purposes.

The second observation says that the fifth octet of the
address has the highest information in our environment. This
observation, if applicable, leads to the following types of
conclusions.

1) Use the fifth octet as the hashing function. The bits in this
octet would provide a maximum savings in the number
of lookups.

When comparing two addresses, compare the fifth octet
first. If the addresses are not equal, the very first compar-
ison will fail more often than when using other octets.
Use the fifth octet as the branching function at the root
of a tree database. If the addresses are stored in a tree or
trie structure [5] and the address bits are used to decide
the branch to be taken, using bits from this octet would
provide maximum discrimination.

Use the fifth octet as the load balancing function for
different paths. Given several alternative paths to a set
of destinations, one way to balance the load on different
paths is to decide the path based on a few bits of
the address. This eliminates out-of-order arrivals since
all frames going to a particular destination follow a
single path and load balancing is achieved by different
destinations using different paths.

2)

3)

4)

ne

1571

Information in Bits
w

] | 1 | | l]
0 8 16 24
First Bit of the Sequence

Fig. 3. Information in CRC bits.

It should be obvious that the fifth octet may not be the
most informative octet for all environments. Nonetheless, the
above recommendations are useful providing that one uses
the appropriate, most informative octet instead.

IV. HASHING USING CRC

Another hashing function, already used in a few adapters,
is to use bits from the cyclic redundancy check (CRC) of
the address. Using the 32 bit CRC polynomial used on IEEE
802 LAN’s [2], we computed the information content of m-bit
sequences consisting of bits ¢ through ¢ + m — 1 of the CRC
for m 1,2,---,8 and ¢ = 0,1,---,31. Here, ¢ = 0
represents the most significant bit of the CRC. The results
are shown in Fig. 3.

It is interesting to compare Figs. 2 and 3. Notice the
following.

1) Almost all 32 bits have a high information content very
close to one bit. Thus, it does not matter which bit of
the CRC we use.

All curves are (almost) horizontal straight lines. Thus,
the information content of all bit combinations is iden-
tical. It does not matter which m bits are chosen for
m = 1,2,---.

The information content of m bits is approximately
m. This means that CRC provides an almost optimal
hashing function.

We repeated the analysis with several other 8 bit and 16 bit
CRC polynomials. In general, we found that if a polynomial
provides a good CRC, it can serve as an excellent hash
function.

2)

3)

V. HASHING USING FLETCHER CHECKSUM

This checksum is used in the ISO/OSI transport since it is
so easy to compute in software. Given an n-octet message
b[1] - - - b[n], a two-octet checksum C[0] and C[1] is computed

1572

FN

Information in Bits
(o8]

I | i | i | !
0 4 8 12
First Bit of the Sequence

16

Fig. 4. Information in Fletcher checksum bits.

as follows.

clo]=0; C[1]=0;

Fori = 1step 1 until ndo
clo] = ¢[0] + b[i];

c[1] = ¢[1] + cfo];

EndFor;

The information in m consecutive bits of address checksums
is shown in Fig. 4. This also is a good hashing function.

VI. HASHING USING ANOTHER CHECKSUM

Another popular checksum algorithm used to guard against
memory errors in network address databases is [2]:

C = Mod(28(4b[1] + 2b[3] + b[5])
+ (4b[2] + 2b[4] + b[6]), 2'¢ — 1).

Here, b[i] is the ith octet of the address and C' is the 16 bit
checksum. Since we are not aware of its name, we will call
it the “mod-checksum.” The information content of the bits
of this checksum are shown in Fig. 5. Notice that the mod-
checksum is not as good a hashing function as the Fletcher
checksum even though it is more complex to compute.

VII. HASHING USING XOR FOLDING

The final alternative that we investigated is that of the
straightforward exclusive-OR operation on the six octets of
the address to produce eight bits.

C = b[1] @ b[2] ® b[3] & b[4] & b[5] & b[6)

The information content of the bits in the “XOR-fold” so
obtained is shown in Fig. 6. To our surprise, this function,
which is so simple to implement, is an excellent hashing
function.

6
2 d
2] -
g
84 /_/5
b1 7—_\/
E L
E ’w:;
|
0) |] | J |) L,
0 4 8 12 16
First Bit of the Sequence
Fig. 5. Information in mod-checksum bits.
st
B
L7
6 e—6
a2 L
N
<
2 4= 4
£
S 3
=
2 2
1
0 I J] |] |] 1,
0 2 4 6 8

First Bit of the Sequence

Fig. 6. Information in XOR-fold bits.

VIII. MASK SIZE FOR AN ADDRESS FILTER

In this section, we briefly address the problem of finding
the size of the hash mask required to get a desired level of
performance. We assume that the filter consists of a simple
M x 1 bit mask; that is, each hash table cell is only one bit
wide. A hash function is used to map the address to an index
value 4 in the range O through M — 1, and if the ith bit in
the mask is set, the frame is accepted for further processing;
otherwise, the frame is rejected. This is how hashing is used
in several commercial media access controller (MAC) chips.
Such a hash filter is a perfect rejection filter in the sense that
if the mask bit is zero, we can be certain that the address is
not wanted, and there is no need to search the address table.

The performance of the filter is measured by the probability
of an unwanted address being rejected by the filter. We call
this probability the unwanted-rejection rate. If we assume that
all addresses are equally likely to be seen and that all mask
cells are equally likely to be referred, then using the procedure
described in [3], we can compute the unwanted-rejection rate
as shown in Fig. 7. In the figure, the number of addresses k that

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 10, OCTOBER 1992

P(Rejection/Unwanted)

H o
8 12 16
Number of Addresses Wanted

0.00

Fig. 7. Probability of rejecting unwanted frames as a function of number

of addresses wanted and the mask size M.

a station may want to receive is plotted along the horizontal
axis, and the probability of rejecting an unwanted frame is
plotted along the vertical axis. Eight curves corresponding to
mask size M = 2,4,8,---,128,512 bits are shown. From
Fig. 7, we observe the following.

1) There is some filtering even with small masks. For
example, if one wants to receive 10 addresses, an 8 bit
mask is expected to reject 26% of the unwanted frames
without further searching. Although this rate is low, the
point is that it is nonzero even though the mask size is
less than the number of addresses.

2) In general, it is better to have as large a mask as possible.
For example, if one wants to receive 10 addresses with
a 512 bit mask, 98% of the unwanted frames will be
rejected without further searching.

3) If the mask size is large compared to the number of
addresses to receive, that is if M > k, the curves are
linear and the unwanted-rejection rate is approximately
1-k/M.

The last observation is helpful in deciding the mask size.

Thus, if one wants to reject 80% of the unwanted frames,

1573

the mask size should by five times the number of addresses
desired.

IX. SUMMARY

We showed that the number of lookups saved using hashing
is equal to the information content of the bits of the hashed
value and compared several hashing functions. First, simple bit
extraction from the address itself provides a hashing function
that is easy to implement in hardware as well as software.
Second, bits extracted from the CRC of the address can be
used as a hashing function that is easy to implement in
hardware. Third, bits extracted from the Fletcher checksum
can be used as a hashing function that is easy to implement
in software. Finally, exclusive-OR folding of the the address
octets provides another hashing alternative that is easy to
implement both in software as well as hardware.

We concluded that CRC polynomials are excellent hashing
functions. Fletcher’s checksum and folding are also good hash-
ing functions. The mod-checksum, which is more complex to
compute than Fletcher’s checksum, is not as good as the latter.
Although bit extraction is not as good as other alternatives, it
is the simplest. The choice between bit extraction and other
alternatives is basically that of computing versus storage. If
we can use excess memory, bit extraction with a few more
bits may provide the same information as the checksum or
folding with a few less bits.

We pointed out that for a station wanting to receive k
addresses, the probability of rejecting unwanted frames using
a simple M x 1 bit mask is 1 — k/M. This allows us to decide
the mask size required for a desired level of performance.

REFERENCES

[1] J. G. Fletcher, "An arithmetic checksum for serial transmissions,” IEEE
Trans. Commun., vol. COM-30, no. 1, pp. 247-252, Jan. 1982.

[2] The Ethernet—A Local Area Network: Data Link Layer and Physical
Layer Specifications, Published jointly by Digital, Intel, and Xerox
Corp., Version 2.0, Nov. 1982, pp. 95-96.

[3] R. Jain, “A comparison of hashing schemes for address lookup in
computer networks,” DEC Tech. Rep., DEC-TR-593, Feb,, 1989.

4] , “Characteristics of destination address locality in computer net-
works: A comparison of caching schemes,” Comput. Netw. and ISDN
Syst., vol. 18, pp. 243-254, 1989/1990.

[5] R. Sedgewick, Algorithms. Reading, MA: Addison-Wesley, 1988.

