DEC-TR-593

A Comparison of
Hashing Schemes for Address Lookup

in Computer Networks

Raj Jain

Digital Equipment Corporation
550 King St. (LKG1-2/A19)
Littleton, MA 01460

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/

Network Address: Jain%Erlang. DEC@DECWRL.DEC.COM

February 1989
This report has been released for external distribution.
Copyright (©1989 Digital Equipment Corporation. All rights Reserved

Raj Jain
Horizontal small

A Comparison of Hashing Schemes for Address Lookup in Computer
Networks

Raj Jain
Distributed Systems Architecture & Performance
Digital Equipment Corp.
550 King St. (LKG 1-2/A19)
Littleton, MA 01460
ARPAnet: Jain%Erlang. DEC@DECWRL.DEC.COM

DEC-TR-593
Copyright(©1989, Digital Equipment Corporation. All rights reserved.
Version: April 12, 1989

Abstract

The trend toward networks becoming larger and faster, and addresses increasing in size, has impelled a need to
explore alternatives for fast address recognition. Hashing is one such alternative which can help minimize the
address search time in adapters, bridges, routers, gateways, and name servers.

Using a trace of address references, we compared the efficiency of several different hashing functions and found
that the cyclic redundancy checking (CRC) polynomials provide excellent hashing functions. For software imple-
mentation, Fletcher checksum provides a good hashing function. Straightforward folding of address octets using
the exclusive-or operation is also a good hashing function. For some applications, bit extraction from the address
can be used. Guidelines are provided for determining the size of hash mask required to achieve a specified level

of performance.

1 INTRODUCTION

The trend toward networks becoming larger and
faster, addresses becoming larger, has impelled a need
to explore alternatives for fast address recognition.
DECnet Phase IV currently allows upto 64,000 nodes
and DEC’s internal network called EasyNet [21] al-
ready has more than 30,000 nodes. Such large net-
works obviously need more efficient address lookups.
The size of the addresses themselves is also grow-
ing. HDLC, a commonly used datalink protocol stan-
dard, was designed with 8-bit addresses. All IEEE
802 LAN protocols and Ethernets support 48-bit ad-
dresses while the ISO/OSI network layer requires 160-
bit (20 octets) addresses. This increased length of the
search key has also necessitated a need to find efficient
ways to look up addresses. Finally, because networks
are becoming faster, network routers, which previ-
ously handled a few hundred packets per second are
now expected to handle 8000 to 16,000 packets per
second. This fast handling requires squeezing every
cycle out of the frame forwarding code.

The organization of this paper is as follows. In the

next section, we describe a number of problems in
networking design that require searching through a
large database. In Section 3, we discuss a number
of possible solutions including caching and hashing.
In a companion paper [13], we compared the perfor-
mance of various cache replacement algorithms. One
of the unexpected results of this analysis was that in
some cases, caching could be harmful in the sense that
the performance would be better without caching.
We, therefore, tried hashing as a possible solution
to the problem of fast searching through the address
database. After a brief introduction to hashing con-
cepts, we develop a metric to compare various hash-
ing functions. We then use the trace data to compare
several different hashing functions.

2 A General Problem

One of the performance problems encountered repeat-
edly in computer systems design is that of search-
ing through a large information base. Simply stated,
the problem is that of finding the information asso-
ciated with a given key. High performance access to

information is particularly interesting if the number
of keys is large or if the time to access the main infor-
mation base is long as is the case if the information
is located remotely. Some of the areas in the design
and implementation of computer networks where this
problem is encountered are as follows:

Datalink adapters on local area networks (LAN) need
to recognize the destination addresses of frames on
the LAN. Most adapters have only one physical ad-
dress, which can be easily recognized. However, each
station also accepts a number of multicast addresses
and the adapter must quickly decide whether to re-
ceive a multicast frame. In some token ring networks,
e.g., Fiber Distributed Data Interface (FDDI) [6,22],
stations need to set an address recognized flag in the
frame. For the smallest size frames this means that
the address has to be recognized within 13 octets
(1.04 ws). This puts an upper bound on the time
within which end stations have to recognize the mul-
ticast addresses they want to listen to.

Bridges, used to interconnect two or more LANSs, have
to recognize the destination addresses of every frame
and decide quickly whether to receive the frame for
forwarding. In order to learn the relative locations
of stations, transparent learning bridges [7] need to
recognize source addresses also.

Routers in wide area networks (WAN) have to look
through a large forwarding database to decide the
output link for a given destination address.

Several high-speed networks simplify the problem of
address lookup by using a hierarchical address for-
mat that allows the forwarding path to be looked up
directly. Although it does make the routing fast, asso-
ciation of a destination’s unique identifier (generally a
48-bit physical address) to its hierarchical address at
the originating station still requires searching through
a large address database.

Name servers have the ultimate responsibility for as-
sociating names to characteristics. Among all the
applications listed here, name servers probably have
the largest information base and the problem is most
acute.

In all of the above applications, time to search
through a large information base has a significant
impact on the overall performance and an analysis
similar to that presented here would be helpful in im-
proving the performance.

3 Possible Solutions

The time to access information is a function of several
parameters, including the following:

1. Size of the information base
2. Usage pattern

3. Key structure

4. Storage structure

5. Storage location

6. Access method

To make the access more efficient we need to consider
changing each one of the above six parameters. The
first parameter, the size of the information base, is
really not under the control of the system designers.
In the future, the size is only going to grow and make
the problem worse. We, the system designers, have
only indirect control, if any, over the second param-
eter, the usage pattern. By rewarding certain usage
patterns, for example, by providing a faster response
to these patterns, we can encourage users to follow
certain patterns. The key to efficient access lies in
the remaining four parameters.

By properly organizing key structures, e.g., with hier-
archical addresses, we can partition the information
base into manageable chunks. Most large networks
have several levels of hierarchy. DECnet Phase IV,
for example, has two levels of hierarchy. The network
consists of several areas each with up to 1024 end
stations.

The second way to solve the problem is to organize
the storage into several levels of hierarchy. For exam-
ple, most frequently used addresses could be kept in
a cache. Addresses not found in the cache would be
looked up in the full database. This is a two-level hi-
erarchy. An obvious extension is an n-level hierarchi-
cal storage structure in which addresses not found in
ith level are then looked up in (i+1)th level. Caching
is particularly helpful if the reference pattern has a
locality property [11].

In some cases, the problem is solved by locating dif-
ferent levels of the storage hierarchy at successively
more remote locations. For example, the clients of a
name server could keep a local copy of the frequently
used names. This is also called caching. In this case,
the difference between access time to local copy and

remote database is so different that caching can be
justified even if there is very little locality in the us-
age pattern.

Finally, the time to access can be reduced by devising
efficient search strategies. Various searching meth-
ods, such as tree and trie search strategies, have been
developed to efficiently find a key in a table of keys
[25]. One method, which we analyze in this paper,
is hashing. If properly designed, a hashing algorithm
can allow a very large information base to be searched
in constant time. In fact, hashing is already being
used in an existing LAN adapter to recognize multi-
cast addresses.

4 Measured Environment

In order to compare various hashing strategies, we
used a trace of destination addresses observed on
an extended local area network in use at Digital’s
King Street, Littleton facility. The network consists
of several Ethernet LANs interconnected via bridges.
The network is a part of Digital’s company-wide net-
work called EasyNet [21], which has more than 30,000
nodes. The building itself has approximately 1200
stations on several Ethernet LANs interconnected via
approximately 80 bridges. A number of routers con-
nect the extended LAN to the rest of the Easynet.
There are 30 Level 1 routers and 6 Level 2 routers
in the building. A promiscuous monitor attached to
one of the Ethernet LANs produced a time-stamped
reference string of 2.046 million frames observed over
a period of 1.09 hours. A total of 495 distinct sta-
tion addresses were observed in the trace, of which
296 were seen in the destination field. Due to bridge
filtering, only those frames whose desinations have a
short path through the monitored segment are seen
on the segment.

There are several advantages and disadvantages to
using a trace. A trace is more credible than refer-
ences generated randomly using a distribution. On
the other hand, traces taken on one system may not
be representative of the workload on another system.
We hope that others will find the methodology pre-
sented here useful and will apply it to traces taken in
environments relevant to their applications.

A n1
1

1
2
/ ’—{ N
/ i |
h(Addr)
_a s
Hash cells Subtables

Figure 1: Hashing concepts.

5 Hashing: Concepts

Webster’s dictionary defines the word ‘hash’ as a verb
“to chop (as meat and potatoes) into small pieces”
[31]. Strange as it may sound, this is correct. Basi-
cally, hashing allows us to chop up a big table into
several small subtables so that we can quickly find the
information once we have determined the subtable to
search for. This determination is made using a math-
ematical function, which maps the given key to hash
cell 7, as shown in Figure 1. The cell ¢ could then
point us to the subtable. We will use n; to denote the
size of the :th subtable and M to denote the number
of hash cells. Ideally, one would like to use a hashing
function so that each subtable has only one entry so
that no further searching or subtables are required.
For most hashing functions, the size of subtables n;
decreases as the size of the hash table M increases.
For an very large number of hash cells, one is almost
guaranteed to be able to find the desired key without
further search.

For finite hash tables, two or more keys may map to
the same hash table location leading to a collision.
Most of the hashing literature is about what to do
after a collision. If the hash table size is larger then
or equal to the total number of keys, one does not
need subtables and use the hash table itself to store
the keys and other information. Several techniques,
such as linear probing and double hashing, have been
devised to resolve the collisions in as few attempts
as possible. Dynamic hashing schemes allow the ta-
ble size to increase dynamically as the number of en-
tries grows [4,16]. Perfect hashing schemes also ex-
ist, which cause no collisions [3,30]. Minimal perfect
hashing functions not only avoid collisions, but also

leave no empty space in the hash table [1,2,10,23].
For surveys of various hashing schemes and issues see
[14,15,17,18,19,20,25,27].

If the hash table size is less than the total number
of keys, collisions are unavoidable. We would like
the hashing function to be such that the addresses
which are looked up more often are in smaller subta-
bles. It is desirable to minimize the average number
of lookups required for the trace. To compute this,
we define the following symbols:

R = Number of frames in the trace
N = Number of distinct addresses in the trace
M = Number of hash cells
= Number of subtables
n; = Number of addresses that hash to ith cell
dini=N
r; = Number of frames that hash to 7th cell
dimi =R
p; = Fraction of addresses that hash to ith cell
g = Flyraction of frames that hash to ith cell

5
= R

If we perform a regular binary search through all N
addresses, we need to perform 1+log,(N) orlog,(2N)
lookups per frame. Given an address that hashes to
ith cell, we have to search through a subtable of n;
entries. Using a binary search, we would need only
log,(2n;) lookups. The tot!l number of lookups is:

Number of lookups for the trace = Z ri(log,(2n4))

k3

1
Number of lookups per frame = 7 Z ri(log,(2n4))

Compared to log,(2N) lookups per frame, the net
saving due to hashing is:

Lookups saved per frame

= (logs(2)) = 3 7 (log, (2n:))

=g lem(y)
=D —giloga(m) (1)

Here, g; and p; are probabilities such that }°. ¢, =1
and), p; = 1. The goal of a hashing function is to
maximize the quantity) —g;log,(p;). Notice that
p; and g; are not related. In the special case of all
addresses being equally likely to be referenced, g; is

Table 1: Computing Information in the Last Two
Bits

Bits #of FHof ¢ pi —qilogypi
Frames Addr.

00 1252479 239 0.61 0.48 0.65

01 219989 71 0.11 0.14 0.31

10 148725 55 0.07 0.11 0.22

11 424807 130 0.21 0.26 0.41

E 2046000 496 1.00 1.00 1.59

equal to p; and the expression Y —p;log,(p;) would
be called the entropy of the hashing function. It is
because of this similarity that we will call the quantity
>~ —qilog,(pi) the entropy or information content
of the hashing function. It is measured in units of
‘bits.” We illustrate its computation using a simple
example.

Hashing is usually performed in two steps. In the
first step, an address A is converted to a hash value
f(4). In the second step, some m bits of f(A) are
extracted so that the total number of hash cells is 2™.
For example, one could take the last m bits of f(A):

h(4) = Mod{f(4),2"}

Here, f(A) is usually a complex operation. In the
simplest case, we could have f(4) = A and take
the last two bits, for instance, of the address as our
hashing function. This will break the address table
into four subtables. The number of address entries in
these four subtables and the corresponding number of
frames refering to these subtables using our measured
trace are shown in Table 1. The ratio of the number
of frames that refer a subtable and the total number
of frames gives the probability ¢;. Similarly, the ratio
of the number of addresses in a subtable to the total
number of addresses gives the probability p;. The in-
formation entropy for each subtable is then computed
and added to give the total entropy for this hashing
function. For our trace, we found that the last two
bits of the address have an entropy of 1.59 bits. In
other words, if we use the last two bits of the address
to decide which subtable to search, we would save
1.59 lookups per frame.

We do not have to limit ourselves to the last two
bits. We could use any two consecutive bits 7 and
i+ 1. The resulting information as a function of ¢ is
shown in Figure 2. Here, the most significant bit of
the address is denoted as the 0th bit, and the least

A
3.2+
24—
12]
o |
k=
5 16 n\,\
-% - I
I
S
E
0.8
| | | | | | o
0'OO 20 40 60 80

First Bit of the sequence

Figure 2: Information in two consecutive bits of ad-
dresses.

significant bit is the 47th bit. Notice that the best two
bits for this trace are bits 36 and 37. These provide
a full two bits of information, the maximum that one
could expect of two bits.

6 Hashing Using Address Bits

We can now generalize the concept of hashing using
address bits to m bits with m = 1, 2, In general,
we could hash using bits 4, ¢4+ 1, ..., i+ m — 1 of
the address to 2™ subtables. The number of lookups
saved, as we saw in the last section, is equal to the
information entropy of the bits. For our trace, this is
plotted in Figure 3. The starting position 7 of the bit
sequence is plotted along the horizontal axis and the
information in bits ¢ through 2+m—1 computed using
Equation 1 is plotted along the vertical axis. Eight
curves corresponding to m consecutive bits with m =
1, 2, ..., 8 are plotted.

From Figure 3, we observe that:

1. All 8-bit sequences between bits 0 and 24 have
less than two bits of information.

2. The bits 32 through 39, in general, have a high
information content.

Information in Bits

60 80
First Bit of the Sequence

Figure 3: Information in address bits.

The first observation is not surprizing considering
that the first three octets of the IEEE 802 addresses
used on IEEE 802 LANs are assigned by the IEEE
and, thus, most stations have the same first three
octets. The first two bits corresponding to the
global/local assignment and multicast/unicast ad-
dresses may be different in different addresses. Given
these two bits, other bits can be easily predicted. In
multivendor environments the first 3 octets may have
a little more information. However, in general, these
bits are not good for hashing purposes.

The second observation says that the fifth octet of
the address has the highest information in our enwvi-
ronment. This observation, if applicable, leads to the
following types of conclusions:

1. Use the fifth octet as the hashing function. If
one were hashing solely based upon the address
bits, the bits in this octet would provide a max-
imum savings in the number of lookups. If one
were using this hashing function to filter out
unwanted frames, these bits would provide the
least number of them.

2. When comparing two addresses, compare the
fifth octet first. If the addresses are not equal,
the very first comparison will fail more often
than when using other octets.

3. Use the fifth octet as the branching function at

the root of a tree database. If the addresses are
stored in a tree [28] or trie structure [25] and the
address bits are used to decide the branch to be
taken, using bits from this octet would provide
maximum discrimination. Compare this to us-
ing the bits from the first three octets. Most of
the bits in the first three octets are the same
in all addresses and we would end up following
the same first step for all searches.

4. Use the fifth octet as the load balancing func-
tion for different paths. Given several alterna-
tive paths to a set of destinations, one way to
balance the load on different paths is to select
a path randomly. This causes out-of-order ar-
rivals at the destination. A better alternative
is to decide the path based on a few bits of the
address. This ensures that all frames going to a
particular destination follow a single path and
load balancing is achieved by different destina-
tions using different paths.

It should be obvious that the fifth octet may not
be the most informative octet for all environments.
Nonetheless, the above recommendations are useful
providing that one uses the appropriate, most infor-
mative octet instead.

7 Correlation of Address Bits

In the last section we saw that many bits in the
address had much less than one bit of information.
Even though many bits may have one bit of infor-
mation each, the combined information of these bits
may not be much. This is due to a correlation among
bits. Statistically, the correlation between two ran-
dom variables z and y is computed as follows:

orrelation(z, y) = El(z —2)(y — 9)]
Conelation=:) = Uhle — 27180 - o7

Here, Z is the mean of z. The correlation always lies
between —1 and +1.

If two bits are independent, their correlation is zero
and the combined information of the two bits is equal
to the sum of their individual information. On the
other hand, if two bits are related such that one is
always identical to the other or one is always a com-
plement of the other, their correlation is +1, and the
combined information content of the two bits is the
same as that of one of the bits. Thus, when using
several bits from the address, one should choose bits
that have the least correlation.

47. 1250005050000000055450500141000001110213212652564
1500050500000000555505001500000011121211136542446
170007070000000077670700261000000101033115444445
440004040000000044640400552000002132310102234422
050005050000000055450500141000001111113115543445
060006060000000066560600042000000021113103452456
070007070000000077670700052000000110022124352532
40. (020002020000000022120200101000001110101242010111
120002020000000022120200121000002111011421111112
130003030000000033330300030000001001104112330313
330003030000000033230300121000002311040102111321
210001010000000011110100210000001111401010113012
310001010000000011010100211000000224111100112120
210001010000000011010100111000001042110111213011
310001010000000011010100200000003402130111011111
32. (200000000000000000100000110000004310121210012011
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
021012121111111122221211024111110011010112212101
180008080000000088980800442000001011123205445654

Bit # 24.(511011111111111122411111A40111111212210110015211

10A1A0AOAAAAAAAAQQOQQOAQAA101AAAAA0000000000000000
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
140004040000000044940400182000000111133227654755
10A0AOAOAAAAAAAAOOQOAOAA101AAAAA0000000000000000
140004040000000044940400182000000111133227654755
290009090000000099490900492000001000123116546654
140004040000000044940400282000000111133227654755
16. [1A000A040000000044940400282000000111133227654755
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
10A0A0AOAAAAAAAAQOQQOAQAA101AAAAA0000000000000000
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
8. [10AOACACAAAAAAAAOOOOAOAA101AAAAA0000000000000000
140004040000000044940400182000000111133227654755
10A0AOAOAAAAAAAAOOQOAOAA101AAAAA0000000000000000
1A0004040000000044940400182000000111133227654755
10A0AOAOAAAAAAAAOOOOAOAA101AAAAA0000000000000000
000400000000000000000001000000000000000000000000
10A0AOAOAAAAAAAAOOQOAOAA101AAAAA0000000000000000
140004040000000044940400182000000111133227654755
0. (411011111111111111211111510111112323231100004112

0 8 i8 24 32 40 a7
Bit #

Figure 4: Correlation among address bits.

Using our trace, we measured correlation between dif-
ferent bits. The results are shown schematically in
Figure 4. The figure shows a 48 x 48 matrix of corre-
lation. Only the first digit after the decimal point is
shown and the sign is omitted. For example, a corre-
lation of +0.6 is shown as 6. A correlation of +1 or
—1is shown by the letter ‘A.’ From this figure, we see
that bits 1 through 31 are highly correlated to each
other. The occurrence of ‘A’ is limited to these bits.
The diagonal of the correlation matrix is always ‘A’
since every bit is always fully correlated with itself.
This explains why combining the first 32 bits did not
improve the information.

8 Hashing Using CRC

So far, we assumed that the subtable to be looked up
be decided by extracting a few bits from the address.
Given that in many LANSs, the destination address is
the first part of the frame, and the frame is passed
through the cyclic redundancy check (CRC) circuit,
the bits of the CRC provide another alternative for
‘no cost’ hashing. This scheme is, in fact, employed
in American Micro Device’s LANCE chip, used in
many Ethernet adapters. Each station has a number
of multicast addresses that it wants to receive. The
adapter uses the CRC polynomial as a hash function
to quickly reject frames with undesired multicast ad-
dresses. The chip uses the most significant 6 bits in
the CRC shift register as an index into a 64-bit mask.
If the 6 bits constitute an index 7 and the ith bit in
the mask is set, the frame is accepted, otherwise it is
rejected.

Given an address {ag, a1, az, . . ., 247}, the 32-bit CRC
of the address can be computed by forming the fol-
lowing polynomial:

47
§ :aim47—z

1=32

a(z) = Z gzt 4 (2)

and computing the remainder when the above poly-
nomial is divided by the following CRC polynomial
(used in IEEE802 protocols):

m32_|_m26+m23+m22+m16+m12+m11+

m10+1:8+m7+m5+1:4+m2+m+1

g(z) =

The coeflicient of the remainder polynomial can be
used as a hashing function. Notice that in Equation
2, the first 32 bits of the address are complemented.
For details of this process see [12,8]. Although, an al-
gebraic description of CRC computation as presented
above sounds tedious, its hardware implementation
using shift registers is straightforward.

The LANCE chip uses the most significant 6 bits of
the CRC as a hashing function. We are interested
in finding out how well this hashing function works
and if we can extend it to more bits. To do this, we
computed the information content of m-bit sequences
consisting of bits ¢ through i+m—1 of the 32-bit CRC
form=1,2,...,8 and =0, 1, ..., 31. Again,
1 = 0 represents the most significant bit of the CRC.
The results are shown in Figure 5.

It is interesting to compare Figures 3 and 5. Notice
the following:

Information in Bits

31.

24.

Bit # 16.

8 16 24
First Bit of the Sequence

Figure 5: Information in CRC bits.

10002100111130011001110014122214
101012011101111101200021111121 41
00211211110110301312131100110412
11111202031123112201101101104022
01112112211110000111202011040112
12021111121121101011000221401111
00013200001131020010120104A111014
22012121220111221101021140210011
12111012112301000031111411201110
11100111100002202301004110021120
03221101302201521220140122000301
21330121102201101021410101021101
10110011000102011214101110111201
13212120013110100141220301110120
21002011222110322412023010012310
1213112011010211A201112010102101
21111010002013041201020022001011
10111101302120401310152020101310
13200001020124032002112111103010
11003020121042210110000013212113
11131311000A01101111220311111111
21120110124010220230220201111001
10200122142022001210000120213111
10111010A11010301200131120120111
0411120A020101100101111210122110
412110A0121120012121201120110100
22101402011300101010111012112221
11014111100130111220010123121112
00241011102300113011320111211100
22420121121102111021321100011210
14201214001113012130131220211000

. (A1201240112111121211201120101011

i6
Bit #

0 8 24 31

Figure 6: Correlation among CRC bits.

>
|

1. Almost all 32 bits have a high information con-
tent very close to one bit. Thus, it does not
matter which bit of the CRC we use.

2. All curves are (almost) horizontal straight lines.
Thus, the information content of all bit combi-
nations is identical. It does not matter which
m bits are chosen for m =1, 2, ...

3. The information content of m bits is approxi-
mately m. This means that CRC provides an
almost optimal hashing function.

4. The curve for m = 8 is not so straight, but
this is expected since we had only 296 dis-
tinct destination addresses and, thus, the to-
tal information content of the trace itself is
log,(296) = 8.21 bits.

We also computed the correlation among CRC bits.
The results are shown in Figure 6. As discussed ear-
lier, only the first decimal digit of the correlation is
shown. Notice that the correlation is very low and
that occurrence of ‘A’ is limited to the diagonal. This
once again confirms the conclusion that CRC is an
excellent hashing function.

We repeated the analysis with several other 8-bit and
16-bit CRC polynomials. In general, we found that
if a polynomial provides a good CRC, it can serve as
an excellent hash function.

9 Hashing Using Fletcher Checksum

One problem with CRC is that its computation in
software is complex (unless we use a tabular method,
for example, that described in [24]). The ISO/OSI
transport uses a checksum instead of CRC since it
is so easy to compute in software. Although the
checksum became widely known only after Fletcher
proposed and analyzed it [5], it was discussed earlier
by Samoylenko [26]. For a discussion on implement-
ing it efficiently see [29]. Given an n-octet message
b[1]...b[n], a two-octet checksum C[0] and C[1]is com-
puted as follows:

cfo]l = 0; c[1] =0;

For 2 = 1 step 1 until n do
clfo]l = cl[o] + blil;

c[1] = c[1] + c[o];
EndFor;

8‘
;_/8
P

21

o b ——

£

§ 4 4

5 4F—

S

S B 3

£

2= 2

1
0 | I | I | I | | o
0 4 8 12 16

First Bit of the Sequence

Figure 7: Information in Fletcher checksum bits.

Fletcher’s procedure is more general than that de-
scribed above in the sense that the checksum can be
more than two octets long. However, OSI transport
uses a two-octet checksum, which is what we analyze
here. We computed the the information in m con-
secutive bits of address checksums. The results are
shown in Figure 7.

From the figure we observe that each of the 16 bits
individually have one bit of information and that the
information content of m bits is approximately m.
This is, therefore, also a good hashing function.

The correlation among the bits of the Fletcher check-
sum is shown in Figure 8. Notice that the correlation
is small.

10 Hashing Using Another Checksum

Another popular checksum algorithm used to guard
against memory errors in network address databases
is [9]:

C = Mod (28(4b[1] + 2b[3] + b[5]))+

(4b[2] + 2b[4] + b[6]),2"6 — 1)
Here, b[i] is the ith octet of the address and C is
the 16-bit checksum. Since we are not aware of its

name, we will call it the ‘mod-checksum.’ The infor-
mation content of the bits of this checksum are shown

15.| 3200121111011024
2120012101220242
0143001001001420
1101231321114101
0011302201341021
0114000210A31020
. 2311001134A011111
Bit # 8.|1110121243102001
12100314A21223011
021100A111021121
1011140320003012
2112410010032001
0114211001411300
2141111111110420
2411102213101112
0.| A220210112001023

0 8 15
Bit #

»

Figure 8: Correlation among bits of the Fletcher
checksum.

in Figure 9. Comparing this figure with that for the
Fletcher checksum, we find that the mod-checksum is
not as good a hashing function as the Fletcher check-
sum even though it is more complex to compute. The
key lesson is that complezity does not necessarily get
us better performance.

The correlation among the bits of mod-checksum is
shown in Figure 10.

11 Hashing Using XOR Folding

The final alternative that we investigated is that of
the straightforward exclusive-or operation on the six
octets of the address to produce 8 bits.

C = b[1] @ b[2] @ b[3] ® b[4] @ b[5] @ b[6]

The information content and correlation of the bits
in the ‘XOR-fold’ so obtained are shown in Figures
11 and 12, respectively. To our surprise, this func-
tion, which is so simple to implement, is an excellent
hashing function. In software, the folding may be
preferable to Fletcher’s checksum if exclusive-or op-
erations take less time than additions. Implementing
folding in hardware is simpler than CRC.

It should be pointed out that XOR-folding can be
done with any number of bits. For example, a 11-bit
fold can be obtained by dividing each 48-bit address
in to five segments of which four are 11-bit long and

Information in Bits
N
| 8

3
2 —/—wz
— ——— 1
0 | I | I | I | | o
0 4 8 12 16

First Bit of the Sequence

Figure 9: Information in mod-checksum bits.

15.12011120221211014
42220121211132A1
2101010122102420
0211011054234231
02210112112A3011
0111101044A22112
. 131120216A414211
Bit # 8.|1111101046415222
2110202401020112
1002014212111020
1001041000011112
1110400212100001
1104012011111121
1340100111121021
1A31100113122120
0.(A111111211000242

0 8 15
Bit #

>
|

Figure 10: Correlation among bits of mod-checksum.

/
8_
8
7
6_—————6
12]
o L =
[to)
.é ,
= 4
I
S 3
£
2 2
1
| | | | | | | | o
OO 2 4 6 8

First Bit of the Sequence

Figure 11: Information in XOR-fold bits.

7./11011304
10101140
11100413
00104011
00140001
00411110
34000101
0.| A3000111
e ——
0 7

Bit #

Bit #

Figure 12: Correlation among bits of XOR-fold.

the fifth one is 7-bit long. The exclusive-or of these
five segments will produce a 11-bit fold.

12 Mask Size for an Address Filter

In this section, we address the problem of finding the
size of the hash mask required to get a desired level
of performance. We assume that the filter consists
of a simple M x 1 bit mask, that is, each hash table
cell is only one bit wide. A hash function is used to
map the address to an index value ¢ in the range 0
through M —1, and if the ¢th bit in the mask is set, the
frame is accepted for further processing; otherwise,
the frame is rejected. This is how hashing is used

10

in several commercial media access controller (MAC)
chips. Such a hash filter is a perfect rejection filter
in the sense that if the mask bit is zero, we can be
certain that the address is not wanted, and there is no
need to search the address table. On the other hand,
such a hash filter is an imperfect acceptance filter
in the sense that when the mask bit is one, there is
some probability that the address is not one of those
wanted by the station. This is because more than one
addresses can hash to the same mask location.

The performance of the filter is measured by the
probability of an unwanted address being rejected by
the filter. We call this probability the unwanted-
rejection rate. A larger mask will provide a better
unwanted-rejection rate. For an infinitely large mask,
the probability of an unwanted frame being rejected is
100%. For other size masks, the unwanted-rejection
rate depends on several factors including the indi-
vidual addresses that are wanted, their probability
of being seen on the network, the addresses that are
not wanted, and their probability of being seen on
the network, etc. If we assume that all addresses are
equally likely to be seen and that all mask cells are
equally likely to be referred, then using the proce-
dure described in Appendix A, we can compute the
unwanted-rejection rate as a function of &k — the num-
ber of addresses wanted, and M — the mask size. The
final results are shown in Figure 13. In the figure,
the number of addresses k that a station may want
to receive is plotted along the horizontal axis, and the
probability of rejecting an unwanted frame is plotted
along the vertical axis. Eight curves corresponding to
mask size M = 2, 4, 8, ..., 128, 512 bits are shown.

From figure 13, we observe the following:

1. There is some filtering even with small masks.
For example, if one wants to receive 10 ad-
dresses, an 8-bit mask is expected to reject 26%
of the unwanted frames without further search-
ing. Although this rate is low, the point is that
it is non-zero even though the mask size is less
than the number of addresses.

2. In general, it is better to have as large a mask
as possible. For example, if one wants to re-
ceive 10 addresses with a 512-bit mask, 98% of
the unwanted frames will be rejected without
further searching.

3. If the mask size is large compared to the num-
ber of addresses to receive, that is, if M > k,
the curves are linear and the unwanted-rejection
rate is approximately 1 — k/M.

1.00

0.75

0.50

P(Rej ection|Unwanted)

0.25

0.00

12
Number of Addresses Wanted

Figure 13: Probability of rejecting unwanted frames
as a function of number of address wanted and the
mask size M

The last observation is helpful in deciding the mask
size. Thus, if one wants to reject 80% of the unwanted
frames, the mask size should be 5 times the number
of addresses desired.

The measurements on our extended LAN show that
an average station currently listens to approximately
10 multicast addresses, i.e., k &~ 10. In the future, the
number is expected to increase as more protocols with
new multicast addresses are introduced. Thus, a good
hash function with a 64-bit mask used to filter mul-
ticast addresses is currently expected to help avoid
further searching for 85% of the unwanted frames.

13 SUMMARY

Since the size of computer networks continues to
grow, we need to find ways to efficiently and quickly
recognize destination addresses. In this paper, we in-
vestigated hashing as a possible solution to this prob-
lem. We showed that the number of lookups saved is
equal to the information content of the bits of the
hashed value.

We compared the performance of several hashing
functions. First, simple bit extraction from the ad-
dress itself provides a hashing function that is easy to

11

implement in hardware as well as software. Second,
bits extracted from the CRC of the address can be
used as a hashing function that is easy to implement
in hardware. Third, bits extracted from the Fletcher
checksum can be used as a hashing function that is
easy to implement in software. Finally, exclusive-or
folding of the address octets provides another hashing
alternative that is easy to implement both in software
as well as hardware.

We concluded that CRC polynomials are excellent
hashing functions. Fletcher’s checksum and folding
are also good hashing functions. The mod-checksum,
which is more complex to compute than Fletcher’s
checksum, is not as good as the latter. Although bit
extraction is not as good as other alternatives, it is the
simplest. The choice between bit extraction and other
alternatives is basically that of computing vs storage.
If we can use excess memory, bit extraction with (a
few more bits) may provide the same information as
the checksum or folding with a few less bits.

It is interesting to find out which bits or octets of the
address have high information. For example, for our
trace we found that the fifth octet of the address had
the highest information content. Therefore, this octet
should be used first to hash addresses, to compare
two addresses, to balance load among parallel routes,
and as the branching function at the root of a tree
structure.

We showed that for a station wanting to receive k ad-
dresses, the probability of rejecting unwanted frames
using a simple M x 1 bit mask is 1—k/M. This allows
us to decide the mask size required for a desired level
of performance.

Some of the observations presented in this paper are
limited to the environment that we measured. How-
ever, the methodology is general and can be applied
to other environments and problems. In particular,
it would be interesting to apply it to study the ref-
erence pattern of the 20-octet addresses used in the
ISO network layer and the name reference patterns
in various name servers and distributed systems.

14 Acknowledgments

We would like to thank Ruei-Hsin Hsiao of DEC for
helping to gather the trace data. Thanks are also
owed to Bill Hawe, Tony Lauck, Henry Yang, and
Paul Koning of the Digital’s networking architecture
group for their valuable comments on earlier versions

of this paper.

References

[1] C.C. Chang, “The Study of an Ordered Minimal
Perfect Hashing Scheme,” Comm. of ACM, Vol.
27, No. 4, April 1984, pp. 384-387.

[2] R. J. Cichelli, “Minimal Perfect Hash Functions
Made Simple,” Comm. of ACM, Vol. 23, No. 1,
January 1980, pp. 17-19.

[3] G. V. Cormack, R. N. S. Horspool, and M.
Kaiserwerth, “Practical Perfect Hashing,” The
Computer Journal, Vol. 28, No. 1, 1985, pp. 54-
58.

[4] R. J. Enbody and H. C. Du “Dynamic Hash-
ing Schemes,” ACM Computing Surveys, Vol.
20, No. 2, June 1988, pp. 85-112.

[5] J. G. Fletcher, “An Arithmetic Checksum for Se-
rial Transmissions,” IEEE Trans. on Communi-
cations, Vol. COM-30, No. 1, January 1982, pp.
247-252.

[6] J. Hamstra, “FDDI Design Tradeoffs,” Proc.
13th Conf. on Local Computer Networks, Min-
neapolis, MN, October 10-12, 1988, pp. 297-300.

[7] W. Hawe, A. Kirby, and B. Stewart, “Trans-
parent Interconnection of Local Networks with
Bridges,” Journal of Telecommunications Net-
works, Vol. 2, No. 2, September 1984, pp. 117-
130.

[8] Carrier Sense Muliiple Access with Collision
Detection (CSMA/CD), IEEE Standard 802.3-
1985, 143 pp.

[9] The Ethernet - A Local Area Network: Data Link
Layer and Physical Layer Specifications, Pub-
lished jointly by Digital, Intel, and Xerox Corp,
Version 2.0, November 1982, pp. 95-96.

[10] G. Jaeschke, “Reciprocal Hashing: A Method

for Generating Minimal Perfect Hashing Func-
tions,” Comm. of ACM, Vol. 24, No. 12, Decem-
ber 1981, pp. 829-833.

[11] R. Jain and S. Routhier, “Packet Trains: Mea-
surements and New Model for Computer Net-
work Traffic,” IEEE Journal on Special Areas in
Communications, Vol. SAC-4, No. 6, September

1986, pp. 986-994.

12

[12] R. Jain, “Error Characteristics of FDDI,” DEC
Technical Report DEC-TR-553, June 1988,
(Available from the author).

[13] R. Jain, “Characteristics of Destination Address
Locality in Computer Networks: A Comparison
of Caching Schemes,” DEC Technical Report,
DEC-TR-592, January 1989, (Available from the

author).

G. D. Knott, “Hashing Functions,” The Com-
puter Journal, Vol. 18, No. 3, August 1975, pp.
265-278.

D. E. Knuth, The Art of Computer Pro-
gramming, Volume 3: Sorting and Searching,
Addison-Wesley, Reading, MA, 1973, pp. 506-
507.

[16] P. A. Larson, “Dynamic Hash Tables,” Comm.

of ACM, Vol. 31, No. 4, April 1988, pp. 446-457.

[17] T. G. Lewis and C. R. Cook, “Hashing for Dy-
namic and Static Internal Tables,” IEEE Com-
puter, October 1988, pp. 45-56.

[18] W. D. Maurer and T. G. Lewis, “Hash Table
Methods,” Computing Surveys, Vol. 7, No. 1,

March 1975, pp. 5-19.

[19] R. Morris, “Scatter Storage Techniques,” Comm.
of ACM, Vol. 11, No. 1, January 1968, pp. 38-44.
Reprinted in 25th anniversary issue of Comm. of

ACM, Vol. 26, No. 1, January 1983, pp. 39-42.

C. E. Price, “Table Lookup Techniques,” Com-
puting Surveys, Vol. 3, No. 2, June 1971, pp.
49-65.

J. S. Quarterman and J. C. Hoskins, “Notable
Computer Networks,” Communications of the
ACM, Vol. 29, No. 10, October 1986, pp. 932-
971.

F. E. Ross, “FDDI-A Tutorial,” IEEE Commu-
nications Magazine, Vol. 24, No. 5, May 1986,
pp- 10-17.

T. J. Sager, “A Polynomial Time Generator
for Minimal Perfect Hash Function,” Comm. of
ACM, Vol. 28, No. 5, May 1985, pp. 523-532.

[24] D. Sarvate, “Computation of Cyclic Redundancy
Checks via Table Look-up,” Comm. of ACM,

Vol. 31, No. 8, August 1988, pp. 1008-1013.

[25] R. Sedgewick, Algorithms,
Reading, MA, 1988.

Addison-Wesley,

[26] S. I. Samoylenko, “Binoid Error-Correcting
Codes,” IEEE Trans. Inf. Theory, January 1973,
pp- 95-101.

D. G. Severance, “Identifier Search Mechanisms:
A Survey and Generalized Model,” Computing
Surveys, Vol. 6, No. 3, September 1974, pp. 175-
194.

B. A. Sheil, “Median Split Trees: A Fast
Lookup Technique for Frequently Occurring
Keys,” Comm. of ACM, Vol. 21, No. 11, Novem-
ber 1978, pp. 947-958.

K. Sklower, “Improving the Efficiency of the ISO
Checksum Calculation,” Report No. UCB/CSD
88/427, September 1988, 9 pp.

R. Sprugnoli, “Perfect Hashing Function: A Sin-
gle Probe Retrieving Method for Static Sets,”
Comm. of ACM, Vol. 20, No. 11, November 1977,
pp- 841-850.

Webster’s Ninth New Collegiate Dictionary,
Merriam-Webster Inc., Springfield, MA, 1983.

15 Appendix A: Computation of the
Unwanted-Rejection Rate

In this appendix, we derive an expression for the
probability of rejecting unwanted frames using an
M x 1 bit hash mask and explain the procedure used
to obtain Figure 13 presented earlier.

Let ! be the number of bits set in an M-bit mask at a
station that wants to receive k addresses. It is clear
that ! is less than or equal to k since a few addresses
may collide, i.e., hash to the same cell. Let p(l) be
the probability that ! bits in the mask are set. Since
! must be between 1 and k, we have:

If we assume that all addresses are equally likely to
be seen and that all mask cells are equally likely to
be referred, I/ M of the frames will be accepted by the
filter. For any given value of I, the probability of an
unwanted address being accepted is I/M, that is:

=~

P(Rejection | Unwanted, I) =1 —

13

Averaging over all values of [, we have:

l
P(Rejection | Unwanted) = Zp(l) (1 - M)
=1
k
— 1 =1 lp(l)
M
]
= 1- —
M

Here, [is the mean value of I. If we hash k& addresses
on M mask cells, there are M* possible combinations.
Each of these combinations is equally likely, and if
we know the number of combinations N(k, I, M) that
result in ! distinct bits being set, we can compute p(!)
as follows:

p(l) = 7N(IZ",_,I;M)

For example, if we have a 4-bit mask (M = 4), and
want to receive three addresses (k = 3), there are
43 = 64 combinations as shown in Figure 14. Of
these, four combinations involve only one distinct
bit, 36 combinations involve two distinct bits, and 24
combinations involve three distinct bits. Thus, the
probabilities p(!) of I being 1, 2, or 3 are 4/64, 36/64,
and 24/64, respectively. The mean value of [is:

24 148

=— =231
64 64

T=1x +2><36—|—3><
-7 64 64

The expected probability of an unwanted address be-

ing rejected is:

2.31
P(Rejection | Unwanted) = 1 — = 0.4225

Thus, a 4-bit mask is only 42% effective for a station
that wants to receive three addresses.

The unwanted-rejection rate of a hash filter can be
computed similarly for other values of k¥ and M by
enumerating all M* combinations. For large values of
M, the enumeration of all M* combinations is rather
cumbersome. Therefore, we have developed a recur-
sive procedure to compute N(k,!, M) as follows.

Imagine that we have k& addresses which we want to
hash on to M cells. We take the first address, it
can hash to any one of the M cells. This results
in M combinations denoted by {0,1,2,...,M — 1}.
This is similar to that shown in Figure 14. We
now hash the second address, this results into M2
combinations denoted by {(0,0),(0,1),...,(0,M —
1),(0,1),(1,1),...,(1, M = 1),...,(M —1,M — 1)}
Some of these combinations, e.g., (0,0),(1,1),... in-
volve only one distinct bit, while others involve two

Hash Hash Hash # of
Fimet Soem s Thivd Bits distinct bits. We need to continue this process for k&

Address Address Address Set addresses. Consider the situation when we have com-
l l l pleted hashing k—1 addresses. At this point, we know
the number of combinations N(k—1, !, M) involving

0,0) distinct bits for all values of I. At the next step, there

are only two possibilities for each of the current M*~?!
combinations: either the kth address hashes to one of
the cells already occupied or it hashes to a cell not
occupied. The first possibility results in I-bit combi-
nations from existing l-bit combinations, the second
possibility leads to I-bit combinations from existing
(!—1)-bit combinations. This reasoning results in the
following recursive formula for computing N (k,1, M):

-—

0,1)

072)

0,3)
N(k,!,M)=IN(k—1,1, M)+(M—I+1)N(k—1,1-1, M)

(3)

W O WN O WN HO WN O WN =O WN RO W O WN O W O W O WN RO WN =HO WN =O WN RO WN =O WN =O

A A oA A A A A A oA A oA A A A A A A A A A A A A A A A At A A A e A

1,0) The boundary conditions are:

N(0,0,M) = 0 VM
Nk, 1L, M) = 0 Vi>k

[N
[
~

AAAAAANANNNANN NN

FNEN A A e e s A e A A A s A A A AN A A A AR A AN A AN A A A A A e A A

In general, N(k,I, M) has the following form:

[N
N
~

N(k, 1, M) = g(k,)M(M —1)---(M —1+1) (4)

Here, the coefficient g(k,!) does not depend upon M.
It can be precomputed and used for all values of M.
Combining Equations 3 and 4, we get the following
formula for computing g(k, {):

1,3)

2,0)

gk,) =gk —1,1— 1) +1g(k —1,1) (5)

2,1) The boundary conditions are:
2 2, g(k,1) = 1 Vk (6)
272) 14 g(k, l) = 1 Vl = k
" Equations 5 and 6 allow us to compute g(k,!) in a
2.3) 3, recursive manner. The computed values of g(k,) for
13, some values of k and [are listed in Table 2. Any en-
” try in Table 2 can be computed from the two entries
3,0) 0, in the previous row — one directly above it and the
10, second diagonally above to the left of it. Thus, this
” table can be easily extended row by row. For exam-
3.1) L ple, as shown in the table, g(8,4) can be computed
)1 as follows:
3

22 9(8,4) = g(7,3) + 4g(7,4) = 301+ 350 x 4 = 1701

The following non-recursive formula for computing
g(k,1) can be obtained after some algebraic manipu-
lation from Equations 5 and 6:

ok, 1) = 112 (1)eva-a

3,3)

WW WW WW WW WW WW WW WW NN NN NN NN NN NN NN NN e e e e e e =2 == OO0 OO0 OO0 OO0 OO0 OO0 OO0 OO0
WW WW NN NN R HE OO0 CO WW WW NN NN e HE OO0 OO WW WW NN NN HE e OO0 OO0 WW WW NN NN HE =eH OO0 OO0
N NN NN WW NDW NDW NDW W NN WW N NN W DWW W NW NW W DWW NN =N WW NN DWW W W WW NN NN N

Figure 14: An example showing all possibilities if we
hash three addresses on a four-bit mask. 14

Table 2: Coefficient g(k, !)

E 1 2 3 4 5 6 7 8

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15

7 1 63 301 350 140 21 1 Table 3: Information in Address Bits
Nl x4

8 1 127 966 1701 1050 266 273 1

Starting # of Bits

at Bit 1 2 3 4 5 6 7 8

F 0 04 14 14 14 14 14 14 14
or example,

1 1.0 1.0 10 10 1.0 1.0 1.0 1.0

4 4 4 4 2 00 00 00 1.0 1.0 1.0 1.0 1.0

9(8,4) =g L(0)48 - il) 3%+ (5) 2° - (3) 18] 3 00 00 1.0 1.0 1.0 1.0 1.0 1.0

_ 65536-4x65614+6x256—4x1 4 00 1.0 1.0 10 1.0 1.0 1.0 1.0

_ 40824 _ 1701 5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

6 00 10 10 1.0 1.0 1.0 1.0 1.0

7 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0

16 Appendix B: Numerical Results 8§ 0.0 00 00 00 00 00 0.0 00

9 0.0 00 0.0 00 00 0.0 0.0 1.0

10 0.0 00 00 00 0.0 0.0 1.0 1.0

In this paper, we have presented results graphically 11 0.0 0.0 0.0 0.0 00 1.0 1.0 1.3

wherever possible. To allow easy reading of the values 12 0.0 0.0 0.0 00 1.0 1.0 1.3 1.3

plotted, the same results are now presented in tabular 13 0.0 0.0 00 1.0 1.0 1.3 13 1.3

form in this appendix. 14 0.0 00 1.0 1.0 1.3 1.3 1.3 1.3

15 00 10 10 13 13 13 13 1.3

16 1.0 10 13 13 1.3 13 1.3 1.3

7 1.0 13 13 1.3 1.3 13 1.3 1.7

18 1.0 1.2 12 1.2 1.2 13 1.6 1.9

19 1.0 10 10 10 1.0 1.5 1.8 1.9

20 00 1.0 10 10 15 1.8 1.9 1.9

21 1.0 1.0 10 15 1.8 1.9 19 1.9

22 00 00 05 14 16 16 16 1.6

23 00 05 14 16 16 1.6 1.6 1.6

15

Table 3: Information in Address Bits (Continued)

Starting
at Bit

of Bits

1

2

3

4

5

6

7

8

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

0.5
1.0
0.2
0.0
0.0
0.0
0.0
0.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.8
1.0
0.8
0.9
0.9
0.8
0.8
0.9
0.9

1.4
1.2
0.2
0.0
0.0
0.0
0.0
1.0
2.0
2.0
2.0
2.0
2.0
2.0
1.8
1.8
1.8
1.7
1.6
1.6
1.5
1.7
1.6

1.6
1.2
0.2
0.0
0.0
0.0
1.0
2.0
3.0
3.0
3.0
3.0
3.0
2.8
2.8
2.7
2.7
2.4
2.3
2.3
2.3
2.2

1.6
1.2
0.2
0.0
0.0
1.0
2.0
3.0
4.0
3.9
3.9
4.0
3.8
3.8
3.6
3.6
3.3
3.0
2.9
3.0
2.9

1.6
1.2
0.2
0.0
1.0
2.0
3.0
4.0
4.8
4.8
4.9
4.8
4.8
4.6
4.4
4.2
4.0
3.5
3.5
3.5

1.6
1.2
0.2
1.0
2.0
3.0
4.0
4.8
5.8
5.8
5.7
5.8
5.6
5.4
5.0
4.9
4.4
4.0
3.9

1.6
1.2
1.2
2.0
3.0
4.0
4.9
5.8
6.6
6.5
6.6
6.4
6.3
5.9
5.7
5.3
4.8
4.3

1.6
2.2
2.2
3.0
4.0
4.9
5.8
6.6
7.3
7.3
7.2
7.0
6.7
6.4
5.9
5.6
5.1

16

Table 4: Information in CRC Bits

Starting
at Bit

of Bits

1

2

3

4

5

7

8

o

0~ O Ok WK =

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0

4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
3.9
3.9
4.0
3.9
4.0
4.0
4.0

5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
4.9
4.9
5.0
4.9
4.9
5.0
5.0
5.0
5.0
5.0
5.0
4.9
4.9
4.9
5.0
4.9
4.9
4.9
4.9

6.0
6.0
6.0
6.0
6.0
5.9
6.0
5.7
6.0
5.9
6.0
5.9
5.9
5.9
5.9
6.0
6.0
6.0
5.9
5.9
5.9
5.8
5.8
5.9
5.9
5.9
5.9

6.9
6.9
7.0
6.9
6.9
6.8
6.6
6.6
6.8
6.7
6.5
6.7
6.9
6.9
6.8
6.9
6.9
6.8
6.8
6.8
6.8
6.8
6.7
6.8
6.8
6.7

7.7
7.8
7.7
7.7
7.7
7.4
7.4
7.4
7.6
7.1
7.2
7.6
7.7
7.7
7.5
7.7
7.5
7.6
7.6
7.7
7.7
7.5
7.5
7.6
7.6

Table 5: Information in Fletcher Checksum Bits

Starting 7t of Bits
at Bit 1 2 3 4 5 6 7 8
0 1.0 19 29 39 49 58 6.7 7.6
1 1.0 19 29 39 49 58 6.8 7.5
2 1.0 20 3.0 40 49 59 6.8 7.5
3 1.0 20 3.0 4.0 5.0 6.0 6.7 7.5
4 1.0 20 3.0 40 50 59 6.9 7.6
5 1.0 2.0 3.0 4.0 50 6.0 6.8 7.6
6 1.0 2.0 3.0 40 50 6.0 6.9 7.6
7 1.0 20 3.0 4.0 50 59 6.8 1.7
8 1.0 20 3.0 4.0 49 59 6.9 1.7
9 1.0 20 3.0 39 50 6.0 6.9
10 1.0 2.0 3.0 39 50 5.9
1 1.0 2.0 3.0 4.0 5.0
12 1.0 2.0 3.0 4.0
13 1.0 2.0 3.0
14 1.0 2.0
15 1.0
Table 6: Information in Mod-Checksum Bits
Starting 7t of Bits
at Bit 1 2 3 4 5 6 7 8
0 09 19 28 38 47 56 65 7.3
1 1.0 2.0 3.0 40 49 58 6.7 74
2 1.0 20 3.0 40 50 59 6.6 7.1
3 1.0 20 3.0 40 49 5.8 6.3 6.8
4 1.0 2.0 3.0 40 48 55 6.1 6.6
5 1.0 2.0 3.0 3.8 45 52 59 6.2
6 1.0 20 28 35 42 49 53 6.0
7 1.0 1.8 25 32 40 44 52 5.6
8 09 15 22 3.0 35 43 4.7 5.7
9 09 1.7 24 3.0 3.8 44 5.5
10 0.8 16 24 33 3.9 5.0
1 0.8 1.6 25 3.1 4.3
12 0.9 1.8 24 3.5
13 0.9 1.8 2.8
14 0.9 2.0
15 1.0

17

Table 7: Information in XOR-Fold Bits

Starting # of Bits
at Bit 1 2 3 4 5 6 7 8
0 1.0 20 3.0 39 49 58 6.7 7.5
1 1.0 20 29 39 49 58 6.7
2 1.0 20 29 39 49 5.9
3 1.0 2.0 3.0 3.9 4.9
4 1.0 2.0 3.0 3.9
5 1.0 2.0 3.0
6 1.0 2.0
7 1.0
Table 8: Percent Unwanted-Rejection Rate
Mask Size M
k 2 4 8 16 32 64 128 512
1 50.0 75.0 87.5 93.8 96.9 98.4 99.2 99.8
2 25.0 56.3 76.6 87.9 93.8 96.9 984 99.6
3 125 422 67.0 824 90.9 954 97.7 994
4 6.3 31.6 58.6 77.2 88.1 93.9 96.9 99.2
5 3.1 23.7 51.3 724 853 924 96.2 99.0
6 1.6 17.8 44.9 67.9 82.7 91.0 954 98.8
7 0.8 13.3 39.3 63.7 80.1 89.6 94.7 98.6
8 0.4 10.0 34.4 59.7 77.6 88.2 93.9 98.4
9 0.2 7.5 30.1 559 75.1 86.8 93.2 983
10 0.1 5.6 26.3 524 728 854 925 98.1
11 0.0 42 23.0 49.2 70.5 84.1 91.7 97.9
12 0.0 3.2 20.1 46.1 68.3 82.8 91.0 97.7
13 0.0 24 17.6 43.2 66.2 81.5 90.3 97.5
14 0.0 1.8 154 405 64.1 80.2 89.6 97.3
15 0.0 1.3 13.5 38.0 62.1 79.0 88.9 97.1

