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Abstract

We study the performance of Selective Acknowledg-
ments with TCP over the ATM-UBR service category.
We examine various UBR drop policies, TCP mecha-
nisms and network configurations to recommend opti-
mal parameters for TCP over UBR. We discuss vari-
ous TCP congestion control mechanisms compare their
performance for LAN and WAN networks. We describe
the effect of satellite delays on TCP performance over
UBR and present simulation results for LAN, WAN
and satellite networks. SACK TCP improves the per-
formance of TCP over UBR, especially for large delay
networks. Intelligent drop policies at the switches are
an tmportant factor for good performance in local area
networks.

1 Introduction

The Unspecified Bit Rate (UBR) service in ATM
networks does not have any explicit congestion control
mechanisms [2]. In the simplest form of UBR, switches
drop cells whenever their buffers overflow. As a result,
TCP connections using ATM-UBR service with limited
switch buffers experience low throughput (3, 4, 5, 9, 13].
In our previous paper [9] we analyzed several enhance-
ments to the UBR drop policies, and showed that these
enhancements can improve the performance of TCP
over UBR. We also analyzed the performance of Reno
TCP (TCP with fast retransmit and recovery) over
UBR, and concluded that fast retransmit and recov-
ery hurts the performance of TCP in the presence of
congestion losses over wide area networks.

This paper discusses the performance of TCP with
selective acknowledgments (SACK TCP) over the UBR
service category. We compare the performance of
SACK TCP with vanilla TCP (TCP with slow start)
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and Reno TCP (TCP with slow start and fast retrans-
mit and recovery). Simulation results of the perfor-
mance the SACK TCP with several UBR drop policies
over terrestrial and satellite links are presented.

Section 2 describes the TCP congestion control
mechanisms including the Selective Acknowledgments
(SACK) option for TCP. Section 3 describes our imple-
mentation of SACK TCP and Section 4 analyzes the
features and retransmission properties of SACK TCP.
We also describe a change to TCP’s fast retransmit
and recovery, proposed in [18, 22] and named “New
Reno” in [18]. Section 7 discusses some issues rele-
vant to the performance of TCP over satellite networks.
The remainder of the paper presents simulation results
comparing the performance of various TCP congestion
avoidance methods.

2 TCP Congestion Control

TCP’s congestion control mechanisms are described
in detail in [15, 21]. TCP uses a window based flow
control policy. The variable RCVWND is used as a
measure of the receiver’s buffer capacity. When a des-
tination TCP host receives a segment, it sends an ac-
knowledgment (ACK) for the next expected segment.
TCP congestion control is built on this window based
flow control. The following subsections describe the
various TCP congestion control policies.

2.1 Slow Start and Congestion Avoidance

The sender TCP maintains a variable called conges-
tion window (CWND) to measure the network capac-
ity. The number of unacknowledged packets in the net-
work is limited to CWND or RCVWND whichever is
lower. Initially, CWND is set to one segment and it in-
creases by one segment on the receipt of each new ACK
until it reaches a maximum (typically 65536 bytes). It
can be shown that in this way, CWND doubles every



round trip time, and this corresponds to an exponential
increase in the CWND every round trip time [15].

The sender-maintaing a retransm1s31on timeout. for.

the last unacknowledged packet.® Congestion® is indi- ~
cated by the expiration of the. retransmission fime- .

otit.

“When the ‘timer expires, the sender saves half

the CWND in a variable called SSTHRESH, and sets

CWND to 1 segment. The sender then retransiits
segments starting from the lost segment. CWND is
increased by one segment on the receipt: ‘of each:new

ACK until it reaches SSTHRESH. This: i’ called. the.
slow start phase. After that, CWND increages by one.. - .

segment every round trip time. ‘This results in-a hn—;‘.‘;
ear increase of CWND every round trip time, and is

called the congestion avoidance phase. Figure'1 shows
the slow start and congestion avmdance phases for at - -+

typical TCP connection.
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2,2 - Fast Retransmit and-Recovery

Current TCP implementations use & coarse.grami-
larity (typically 500 ms) timer for the retransmission
timeout. As a result; during:eongestion, the. TCP con-
nection can lose much . time. waiting for, the timeout.
In-Figure 1, the horizontal CWND line: shows: the time
lost in waiting for a timeout to occur. During this time,
the TCP neither sends new. packets nor retransmits
lost. packets. Moreover, once the timeout-occurs, the
CWND is set to 1 segment, and-the connection takes
several round trips to efﬁc1ently utilize the network
TCP Reno implements. the fast: retransmit and recov-
ery algorithms that. enable the connection to quickly
recover from isolated segment losses [21].

If a segment is dropped by the network, the sub-
sequent segments that- arrive at-the:receiver: are out-
of-order segments. For each out-of-order segment,
the TCP receiver immediately sends and ACK to the
sender indicating the sequence number of ‘the miss-
ing segment.- This ACK is called & duplicate ACK.
When the sender receives three duplicate ACKs, it-con-
cludes that the segment indicated by the: ACKs has
been lost, and. immediately retransmits the lost seg-
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‘cannot recover from multiple packet Tosses:

ment. The sender then reduces CWND to half (plus
3 segments) and also saves half the original CWND
value in SSTHRESH.. Now for each subsequent- dupli-

* ! ¢ate ACK, the sender inflates CWND by one and tries

to send a.new segment: Effectively, the sender waits

“ for half a round trip before sending one’ ‘segment for
-each subsequent duplicate ACK it receives.

As a re-
sult, the sender maintains the network pipe at half of
its c,apacﬂ:y at the time of fast retransmit.

- Approximately one round trip after the missing seg-

ment ‘is-retransmitted, its ACK is received (assuming
_the retransmitted segment was not lost). At this time,
,,1nstead of setting CWND to one segment and proceed-
.ing to do slow start until CWND reaches SSTHRESH,
the' TCP sets CWND to SSTHRESH, and then does
‘congestion aV01dance This is called the fast recovery

" -algorithm.
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2.3 A Modification to Fast Retransmlt
and Recovery: TCP ‘New Reno’

‘Tt has been known that fast retransmit anid recovery
‘ ‘Figure 2
shows a-case' when three consecutive packets-are lost
from ‘a window, the sender TCP incurs fast retransmit

twice and then times out: At that time; SSTHRESH

is 'set to fon‘e'—eigthth' of the original congestion window
value (CWND'in the figure). As a result, the expo-

nential phase lasts a very short time; and the linear in-

crease begins at a very small window. Thus, the TCP
sends at a very low rate and loses miuch throughput.
“The “fast-retransmit phase” was introduced in’[22],
in which the sender rémembers the highest sequence
number sent (RECOVER) when the fast retransmit
was first triggered. After the first unacknowledged

‘packet is retransmitted; the sender follows the usual
ifabst recovery algorithm “and ‘inflates the CWND' by
‘one for ‘each” duplicate ACK it receives.

When' the
sender receivés an acknowledgment for the retransmit-
ted packet, it checks if the ACK acknowledges all seg-
ments including RECOVER. If so, the ACK is anew
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Figure 3: TCP with the fast retransmit phase

ACK, and the sender exits the fast retransmit-recovery
phase, sets its CWND to SSTHRESH and starts a lin-
ear increase. If on the other hand, the ACK is a partial
ACK, i.e., it acknowledges the retransmitted segment,
and only a part of the segments before RECOVER,
then the sender immediately retransmits the next ex-
pected segment as indicated by the ACK. This con-
tinues until all segments including RECOVER are ac-
knowledged. This mechanism ensures that the
sender will recover from N segment losses in N
round trips.

As a result, the sender can recover from multi-
ple packet losses without having to timeout. In case
of small propagation delays, and coarse timer granu-
larities, this mechanism can effectively improve TCP
throughput over vanilla TCP. Figure 3 shows the con-
gestion window graph of a TCP connection for three
contiguous segment losses. The TCP retransmits one
segment every round trip time (shown by the CWND
going down to 1 segment) until a new ACK is received.
2.4 Selective Acknowledgments
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Figure 4: SACK TCP Recovery from packet loss

TCP with Selective Acknowledgments (SACK TCP)
has been proposed to efficiently recover from multiple
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segment losses [20]. In SACK TCP, acknowledgments
contain additional information about the segments that
have been received by the destination. When the des-
tination receives out-of-order segments, it sends dupli-
cate ACKs (SACKs) acknowledging the out-of-order
segments it has received. From these SACKs, the
sending TCP can reconstruct information about the
segments not received at the destination. When the
sender receives three duplicate ACKs, it retransmits
the first lost segment, and inflates its CWND by one
for each duplicate ACK it receives. This behavior is
the same as Reno TCP. However, when the sender is
allowed to send a segment, it uses the SACK infor-
mation to retransmit lost segments before sending new
segments. As a result, the sender can recover from mul-
tiple dropped segments in about one round trip. Figure
4 shows the congestion window graph of a SACK TCP
recovering from segment losses. During the time when
the congestion window is inflating (after fast retrans-
mit has incurred), the TCP is sending missing packets
before any new packets.

3 SACK TCP Implementation

In this subsection, we describe our implementation
of SACK TCP and some properties of SACK. Our im-
plementation is based on the SACK implementation
described in [18, 19, 20].

The SACK option is negotiated in the SYN segments
during TCP connection establishment. The SACK in-
formation is sent with an ACK by the data receiver to
the data sender to inform the sender of out-of-sequence
segments received. The format of the SACK packet is
described in [20]. The SACK option is sent whenever
out of sequence data is received. All duplicate ACK’s
contain the SACK option. The option contains a list
of some of the contiguous blocks of data already re-
ceived by the receiver. Each data block is identified by
the sequence number of the first byte in the block (the
left edge of the block), and the sequence number of the
byte immediately after the last byte of the block. Be-
cause of the limit on the maximum TCP header size, at
most three SACK blocks can be specified in one SACK
packet.

The receiver keeps track of all the out-of-sequence
data. blocks received. When the receiver generates a
SACK, the first SACK block specifies the block of data
formed by the most recently received data segment.
This ensures that the receiver provides the most up-to-
date information to the sender. After the first SACK
block, the remaining blocks can be filled in any order.

The sender also keeps a table of all the segments
sent but not ACKed. When a segment is sent, it is
entered into the table. When the sender receives an
ACK with the SACK option, it marks in the table all
the segments specified in the SACK option blocks as
SACKed. The entries for each segment remain in the



table untll the segment is ACKed The remammg be-
havror of the sender is very similar to Reno implemen-
tatlons with the modlﬁcatmn suggested in Section 2.3

. When the sender receives three duplicate ACKS it

retransmlts the first unacknowledged packet. ‘During
the fast retransmit phase, when the sender is sendmg
one segment for each duplicate ACK received, it first
tries to retransmit the holes in the SACK blocks before
sendmg any. new segments When the sender retrans-
mits. a Segment it marks the segment as retransmitted
in the table. If a retransmitted segment -3 lost the
sender times out and performs slow start. When a
timeout occurs, the sender resets the table.
- During the fast retransmlt phase, ‘the sender main-
tains a variable PIPE that mdlcates how many bytes
are cutrently in the network pipe. When the third du-
plicate ACK is received, PIPE is set to the value of
CWND and CWND is reduced by half. For every sub-
sequent duplicate ACK received, PIPE is decremented
by one segment because the ACK denotes a packet leav-
ing the pipe. The sender sends data (new or retrans-
mitted) only when PIPE is less than CWND. This im-
plementation is equivalent to inflating the CWND by
one segment-for every duplicate ACK and ‘sending’seg-
ments"if the: number of unacknowledged bytes is less
than the congestion window value.

When a segment is sent, PIPE is incremented By
‘one.” When 4 partial ACK is received; PIPE is decre-
‘mented by two. The first decrement is because the
partial ACK represents a retransmitted segnient léav-
ing the pipe.  The second decrement is done becaiise
the original” segment that was lost, -and had ‘not been
accounted for is now actually’ con81dered to be lost.

4 TCP Analys1s of Recovery Behavmr

In this section, we discuss the behavior of SACK
TCP. We first analyze the properties of Reno TCP: and
then-lead into-the discussion of SACK TCP. Vanilla
TCP without fast retransmit and recovery (we refer
t6-TCP with only slow start-and ‘congestion avoidance
as vanilla TCOP), will be used as the basis for compari-
son. Every time congestion occurs; TCP:tries to reduce
its CWND window by half and then enters congestion
avoidance. In the:case of vanilla-TCP, when-a segment
is-lost, a timeout. occurs, and the congestion window
reduces to one-segment. From- there, it takes. about
logs{CWND /(2:x TCP: segment size)) round trip times
(RT'Ts) tor CWND to reach the target value. This be-
havior :is. unaffected by -the number of segments lost
from a particular window.

4.1 "Reno TCP

When a single segment is lost from a window, Reno
TCP recovers within apprommately one RTT of know—

11t is not clear to us whether the SACK optlon provrdes better
performance with or.without New Reno. This is under further
study.
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ing about the loss or two RTTs after the lost packet
was first sent.” The sender receives three duplicate
ACKs about:one RTT after the dropped packet was
sent. It then retransmits the lost packet. For.the next
round trip, the sender receives duplicate ACKs for the
whole window of packets sent after the lost packet:-The
sender waits for half the window and then transmits a
half window worth of new packets. All of this takes
about. one RTT after which the sender receives a new
ACK acknowledging the retransmitted packet and the
entire window.sent. before the retransmission. CWND
is set to halfits original value and congestion avoidance
is performed.

When multiple packets are dropped, Reno TCP can-
not recover and may result in‘a timeout. The fast re-
transmit phase modification can recover from multiple
packet-losses. by retransmlttmg a smgle packet every
round- trip time. : ST : b b
4.2 SACK: TCP

In:this subsection we show that SACK TCP can re-
cover-from multiple packet:losses mere efﬁc1ently than
Reno-or vanilla: TCP:~

~Suppoése-that at: the instant when: the sender learns
of thefirst packet loss(from three duplicate' ACKs); the

value ‘of the congestion ‘window:-is: CWND:. Thus; the
Sender-has CWND:- bytes of data waiting toibeacknowl—

edged. Suppose also that the network dreps-a block .of
data which is:=CWND¢/n bytes:long (This will typically
result in several segments being 16st). After one:RTT of
sending the first-dropped segment, the sender receives

‘three duplicate ACKs for.this. segment. It retransmits

the segment; sets PIPE to CWND:— 3,:and sets’CWND
to CWND/2. For each duplicate- ACK received; PIPE
is‘decremented by 1. When PIPE reaches CWND; then

for -each subsequent. duplicate-ACK received, another

segment ‘can be sent. ‘All the ACKs from -the previ-
ous window take:1'RTT to return. -For:eone half RT'T
nothing is sent (since PIPE > CWND). For the next
half RTT, if CWND/n bytes were dropped, then only
CWND/2 — CWND/n bytes (of retransmitted or new
segments) can be sent. Thus, all the dropped segments
can be retransmitted in 1 RTT if

CWND/2 — CWND/n > CWND/n

i.e., n > 4. Therefore, for SACK TCP to be able to
retransmit all lost segmentsin one RTT,; the network
can drop at most CWND/4 bytes from a window of
CWND.

Now, we calculate the maximum amount of data,
that can be dropped for-SACK TCP: to be able to
retransmit everything in two RTTs. Suppose again
that CWND/n bytes are dropped from a window of
size CWND: Then, in the first RTT from receiving

the 3 duplicate ACKs the sender can retransmit upto

CWND/2 — CWND /n bytes. In the second RT'T, the
sender can retransmit 2(CWND/2 — CWND/n) bytes.



This is because for each retransmitted segment in the
first RTT, the sender receives a partial ACK that in-
dicates that the next segment is missing. As a result,
PIPE is decremented by 2, and the sender can send 2
more segments (both of which could be retransmitted
segments) for each partial ACK it receives. Thus, all
the dropped segments can be retransmitted in 2 RTTs
if

CWND CWND CWND CWND CWND

- +2( - ) >
2 n 2 n n

i.e. m > 8/3. This means that at most 3xCWND/8
bytes can be dropped from a window of size CWND
for SACK TCP to be able to recover in 2 RTTs.

Generalizing the above argument, we have the fol-
lowing result: The number of RTTs needed by
SACK TCP to recover from a loss of CWND/n
is at most [log (n/(n—2))] for n > 2. If more
than half the CWND is dropped, then there will not
be enough duplicate ACKs for PIPE to become large
enough to transmit any segments in the first RTT.
Only the first dropped segment will be retransmitted
on the receipt of the third duplicate ACK. In the sec-
ond RTT, the ACK for the retransmitted packet will
be received. This is a partial ACK and will result in
PIPE being decremented by 2 so that 2 packets can be
sent. As a result, PIPE will double every RTT, and
SACK will recover no slower than slow start
[18, 19]. SACK would still be advantageous because
timeout would be still avoided unless a retransmitted
packet were dropped.

5 The ATM-UBR Service

The basic UBR service can be enhanced by imple-
menting intelligent drop policies at the switches. A
comparative analysis of various drop policies on the
performance of Vanilla and Reno TCP over UBR is
presented in [9]. Section 5.3 briefly summarizes the re-
sults of our earlier work. This section briefly describes
the drop policies.

5.1 Early Packet Discard

The Early Packet Discard policy [1] maintains a
threshold R, in the switch buffer. When the buffer
occupancy exceeds R, then all new incoming packets
are dropped. Partially received packets are accepted
if possible. It has been shown [9] that EPD improves
the efficiency of TCP over UBR but does not improve
fairness. The effect of EPD is less pronounced for large
delay-bandwidth networks. In satellite networks, EPD
has little or no effect in the performance of TCP over
UBR.

5.2 Selective Packet Drop and Fair Buffer
Allocation

These schemes use per-VC accounting to maintain
the current buffer utilization of each UBR VC. A fair
allocation is calculated for each VC, and if the VC’s
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buffer occupancy exceeds its fair allocation, its subse-
quent incoming packet is dropped. Both schemes main-
tain a threshold R, as a fraction of the buffer capacity
K. When the total buffer occupancy exceeds RxK, new
packets are dropped depending on the V C;’s buffer oc-
cupancy (Y;). In the Selective Drop scheme, a VC’s
entire packet is dropped if

(X > R) AND (Y; x N,/ X > Z)

where N, is the number of active VCs (VCs with at
least one cell the buffer), and Z is another threshold
parameter (0 < Z < 1) used to scale the effective drop
threshold.

The Fair Buffer Allocation proposed in [8] is similar
to Selective Drop and uses the following formula:

(X > R) AND (Y; x No./X > Z x ((K — R)/(X — R)))

5.3 Performance of TCP over UBR: Sum-
mary of Earlier Results
In our earlier work [9, 10] we discussed the following
results:
¢ For multiple TCP connections, the switch requires
a buffer size of the sum of the receiver windows of
the TCP connections.

e With limited buffers, TCP over plain UBR results
in poor performance.

e TCP performance over UBR can be improved by
intelligent drop policies like Early Packet Discard,
Selective Drop and Fair Buffer Allocation.

o TCP fast retransmit and recovery improves TCP
performance over LANs, and actually degrades
performance over WANs in the presence of con-
gestion losses.

6 Simulation Results with SACK TCP
over UBR

This section presents the simulation results of the
various enhancements of TCP and UBR presented in
the previous sections.

6.1 The Simulation Model

All simulations use the N source configuration shown
in Figure 5. All sources are identical and persistent
TCP sources i.e., the sources always send a segment as
long as it is permitted by the TCP window. Moreover,
traffic is unidirectional so that only the sources send
data. The destinations only send ACKs. The perfor-
mance of TCP over UBR with bidirectional traffic is
a topic of further study. The delayed acknowledgment
timer is deactivated, i.e., the receiver sends an ACK as
soon as it receives a segment.

Link delays are 5 microseconds for LAN configura-
tions and 5 milliseconds for WAN configurations. This
results in a round trip propagation delay of 30 microsec-
onds for LANs and 30 milliseconds for WANs respec-
tively. The TCP segment size is set to 512 bytes. For
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‘Figure 5:"The-N source TCP configuration-

the LAN configurations, the. TCP maximum window
size is limited by a receiver window of 64K bytes. This
is the default value specified for TCP implementations.
For WAN configurations, a window of 64K bytes is not
sufficient to achieve 100% utilization:  We therefore use
the window scaling option to specify a maximum win-
dow size of 600,000 Bytes. This window is sufficient to
provide full utilization with each TCP- source.

Al link bandwidths are 155.52 Mbps; afid Peak Cell
Rate at the ATM layer is 155.52 Mbps. The duration
of the simulation is 10 seconds for LANS and 20 sec-
onds for WANs:"This allows enough round trrps for the
simulation to give stable results. "

~The configurations for satellite networks are «dis-
cussed in Section 7. :
6.2 . Performance: Metrxcs \

The performance: of the srmulatlon is measured at
the TCP layer by the Efficiency and Fairness as defined
below.

Eﬁic1enc _ (Sum!bf TCP-throughputs) -
y = (deunum possible TCP throughput)

- TCP throughput is measured at. the destination
TCP layer as the total number of bytes delivered to the
application divided by the simulation ‘time. “This is di-
vided by the maximum possible throughput-attainable
by TCP. With-512 bytes of TCP data‘in each segment,
20 bytes of TCP header, 20 bytes of IP-header,; 8 bytes
of LLC header; and ‘8 bytes of :AAL5 trailer-are added.
This results in: a: net possible throughput of :80:5% of
the - ATM layer-data rate or.125.2 Mbps on-a:155.52
Mbps link.

Fairness Index = (Exz) /(N xEx %)

Where z; is the ratio of the achieved throughput to
the expected throughput of the ith TCP source, and N
is the number of TCP sources. Fairness values close to
0.99 indicate near perfect fairness.

6.3  Simulation Results = ..

- We .performed simulations for the LAN and WAN
configurations for. three drop- policies — vanilla UBR
(switches drop-incoming cells when their buffers over-
flow), Early Packet Discard (EPD) and Selective Drop.
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:For LANs, -we used.buffer-sizes of 1000 and--3000:cells.

These are vepresentative-of -the .typical: buffer sizes in
current switches: For WANs, .we chose buffer sizes of
approximately one-and- three times the bandwidth —

round trip delay produet. Tablesl and-2show.the effi-
ciency and-fairness values of SACK TCP:with various

UBR drop policies.. Several-observations-can be made
from these tables:

o For most cases, for a given drop policy, SACK
“TCP prov1des higher efficiency than either
the corresponding drop policy in vanilla or

.- Reno TCP. This confirms the intuition prov1ded

by the analy31s of SACK that SACK recovers at
least.as fast as slow start when rnultlple packets are
1ost. In fact, for most cases, SACK recovers faster

; ,than both. fast retransmit / recovery and slow start
“algorithms. :

e For LANS the eﬂ'ect of drop p011c1es is'very
important-and- can dorninate the effect of
=" SACK:. For UBR with tail drop,-SACK .provides
" - assignificant improvement over Vanilla: and Reno
TCPs. However, as the:drop policies:get more so-
-« -phisticated, the effect of- TCP ‘congestion mecha-
-nism-is:less:pronounced: Thisis'because; the typi-
cal LAN:switch buffer sizes-are small compared:to
-the-default "FCP maximum window of 64K bytes,
and:so bufler managemernit:bécomes: a-very impor-
~tant factor: “Moreover, the degraded ‘performance
~:of SACK: in few cases can-be attributed to-ex-
cessive-timeout -due to-the retransmitted packets
being lost. In this case SACK loses several round
trips in retransmitting parts.of the lost data and
then times out. After timeout, much of the data
is transmitted again, and ‘this results ‘in wasted
throughput This' result reinforces the need for a
“good drop policy for TCP over UBR.

_e.The- throughput 1mpr0vement provrded by
-SACK is more significant. for-wide area net-
works. When propagation delay is large, a:time-
out results in. the loss of a significant. amount of
. .-time during slow start from a window .of one seg-
~ ment. With Reno TCP (with fast retransmit and
recovery), performance is further degraded (for
multiple packet losses) because timeout occurs at
a much lower window than vanilla- TCP. With
SACK TCP, a timeout is avoided at- ‘many- times,
and recovery is complete within a short-number of
roundtrips Even if timeout occurs, the recovery
is-as fast as slow start but a little time may be lost

~ in the earlier retransmission.

-#:The. performance of SACK TCP:can beim-
proved by intelligent drop policies:like EPD
and Selective Drop. This is consistent with our

. earlier results:in {9], Thus, we tecommend that

_ intelligent. drop policies be used in UBR:service.



Table 1: SACK TCP over UBR : Efficiency

Table 2: SACK TCP over UBR : Fairness

Config- Num of Buffer UBR EPD  Sel Config- Num of - Buffer UBR EPD.  Sel
uration Srcs  (cells) Drop uration Srcs  (cells) Drop
LAN 5 10000 0.76 0.85 0.94 LAN 5 10000 0.22 0.88 0.98
LAN 5 3000 0.98 0.97 0.98 LAN 5 3000 0.92 097 0.96
LAN 15 1000 0.57 0.78 091 LAN 15 10000 0.29 0.63  0.95
LAN 15 3000 0.86 0.94 0.97 LAN 15 3000 0.74 0.88 0.98
SACK Column Average 0.79 0.89 0.95 SACK Column Average 0.54 0.84 0.97
Vanilla TCP Average 0.34 0.67 0.84 Vanilla TCP Average. 069 069 0.92
Reno TCP Average 0.69 097 0.97 Reno TCP Average 071 098 0.9
WAN 5 12,000 090 0.88 0.95 WAN 5 12,000 096 098 0.95
WAN 5 36,000 097 099 1.00 WAN 5 36,000 100 094 0.99
WAN 15 12,000 093 0.80 0.88 WAN 15 12,000 099 099 0.99
WAN 15 36000 095 095 0.98 WAN 15 36,000 0.98 0.98 0.96
SACK Column Average 0.94 091 095 Column Average 098 097 097
Vanilla TCP Average 0.91 0.9 0091 Vanilla TCP Average 0.76 095 0.94
Reno TCP Average 0.78 086 0.81 Reno TCP Average 090 0.97 0.99

o The fairness values for selective drop are
comparable to the values with the other
TCP versions. Thus, SACK TCP does not hurt
the fairness in TCP connections with an intelli-
gent drop policy like selective drop. The fairness
of tail drop and EPD are sometimes a little lower
for SACK TCP. This is again because retransmit-
ted packets are lost and some connections timeout.
Connections which do not timeout do not have to
go through slow start, and thus can utilize more
of the link capacity. The fairness among a set of
hybrid TCP connections is a topic of further study.

7 Effects of Satellite Delays on TCP
over UBR

Since TCP congestion control is inherently limited
by the round trip time, long delay paths have signifi-
cant effects on the performance of TCP over ATM. A
large delay-bandwidth link must be utilized efficiently
to be cost effective. This section discusses some of the
issues that arise in the congestion control of large delay-
bandwidth links. Simulation results of TCP over UBR
with satellite delays are also presented. Related results
in TCP performance over satellite are available in {23].

7.1 Window Scale‘ Factor

The default TCP maximum window size is 65535
bytes. For a 155.52 Mbps ATM satellite link (with a
propagation RTT of about 550 ms), a congestion win-
dow of about 8.7M bytes is needed to fill the whole
pipe. As a result, the TCP window scale factor must
be used to provide high link utilization. In our simula-
tions, we use a receiver window of 34,000 and a window
scale factor of 8 to achieve the desired window size.
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7.2 Large Congestion Window and the
congestion avoidance phase

During the congestion avoidance phase, CWND is
incremented by 1 segment every RTT. Most TCP im-
plementations follow the recommendations in [15], and
increment by CWND by 1/CWND segments for each
ACK received during the congestion avoidance. Since
CWND is maintained in bytes, this increment trans-
lates to an increment of MSSxMSS/CWND bytes on
the receipt of each new ACK. All operations are done
on integers, and this expression avoids the need for
floating point calculations. However, in the case of
large delay-bandwidth paths where the window scale
factor is used, MSSxMSS may be less than CWND.
For example, with MSS = 512 bytes, MSSxMSS =
262144, and when CWND is larger than this value, the
expression MSSxMSS/CWND yields zero. As a result,
CWND is never increases during the congestion avoid-
ance phase. ‘

There are several solutions to this problem. The
most intuitive is to use floating point calculations. This
increases the processing overhead of the TCP layer and
is thus undesirable. A second option is to not incre-
ment CWND for each ACK, but to wait for N ACKs
such that NxMSSxMSS > CWND and then incre-
ment CWND by NxMSSxMSS/CWND. We call this
the ACK counting option.

Another option would be to increase MSS to a larger
value so that MSSxMSS would be larger than CWND
at all times. The MSS size of the connection is limited
by the smallest MTU of the connection. Most future
TCPs are expected to use Path-MTU discovery to find
out the largest possible MSS that can be used. This
value of MSS may or may not be sufficient to ensure



Table 3: T CP over UBR w1th Satellite Delays Effi-
ciency e e

Table'4:-SACK TCP over UBR with Satellite Delays:
Fairness ... ...

‘ sél

TCP Num of Buffer UBR EPD

: Srcs: - (cells) ~ Drop
SACK -5..200,000  0.86 0.6 . 0.72
SACK 5. .600,000 0.99 1.00 .1.00
Reno 5 .200,000 084  0.12 . 0.12

Reno -5 600,000 -. 0.30.. - 0:19.- 0.22
Vanilla 5 200,000 0.70 073 - 0.73
Vanilla 5 600,000~ 0.88 0.82

0.81

the correct functioning of congestion avordance without
ACK counting. Moreover, if TCP is running over a con-
nectionless network layer like IP, the MTU may change
during the lifetime of a connection and segments-may
be fragmented. In-a cell based network:like ATM, TCP
could used arbitrary sized segments without worrying
about fragmentation. The value of MSS can also have
an effect on the TCP throughput, and larger MSS val-
ues'can produce higher throughput. The effect ‘of MSS
on TCP over satellite is a-topic of current: 'research

8 Simulation Results of TCP over UBR
~in Satelhte networks

" The satellite simulation model is- very snmlar to the
model described in section 6.1. The dlfferences are
listed below:

o. The link between the two switches in Flgure 5 is

oW & satelhte link with a one-way propagatmn de-

lay of 275.ms. The links between the TCP sources

- and the switches are 1 km long: This results ina

round trip propagation delay of eabout 550 ms

o The maximum value of the TCP réceiver window is
now 8,704,000:bytes. This w1ndow size is' suﬁic1ent
to fill the 155 52 Mbps pipe:: »

e The TCP maximum segment size is 9180 bytes A

" larger value is used because most TCP connections
over ATM with satellite delays are expected to use
larger segment sizes.

e The buffer sizes used in the switch .are 200 000 cells
and 600,000 cells. These buffer sizes reflect buffers
- of about 1 RTT and 3. RTTs-respectively.

¢ The duration of simulation is 40 seconds:

Tables 3 and 4 show the éfficiency ‘and’ fairness val-
ues for Satellite TCP over UBR with 5 TCP sources
and buffer sizes of 200,000 and 600;000 ccells.- Several
observations can be made from the tables:

e Selective acknowledgments significantly im-

prove the performance of TCP:over UBR

- for satellite networks. The efficiency and fair-

ness values are typically-higher for SACK than for
Reno andvanilla TCP. This'is because SACK: of-
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Config. Num of  Bufier UBR EPD . Sa
uration Srcs  (cells) ~~ - Drop
SACK ’ 5 200,000 1.00 0.83  0.94
SACK - 5 600,000 1.00 1.00- ~1.00

Reno 5 200,000 096 0.97 097

Reno - 5 7600,000 1.00 1.00 1.00
Vanilla 5+ 200,000- - 1.00.-- 0.87 = 0:89
Vanilla '5 <2 600,000 1.00

- 1:00-

1.00

ten prevents the need for atimeout and ¢an recover
quickly frommultiple: packet losses. -

o Fast retransmit and recovery: is detrimen-
tal to the performance of TCP ‘over large

- * delay-bandwidth links.- The efficiency numbers
for Reno TCP in table 3 are much lower than those
of either SACK or Vanilla TCP. This reinforces the
WAN results in table 1 for Reno TCP. Both the
tables are alse eonsistent with analysisin Figure 2,
and show that fast retransmit.and recovery:eannot
recover from multiple losses in'thersame iwindow.

. Intelhgent drop policies have httle effect on the
~ performance of TCP over UBR satellite networks.
Again, these results are consistent with the WAN
~results in tables 1 and 2. The effect of intelligent
drop policies is most significant in LANs, and the
effect decreases in WANs and satellite networks
“This is because LAN buffer sizes (1000 to- 3000
cells) are much smaller compared to the default
TCP maximum window size of 65535 bytes. For
WANSs and satellite networks, the switch buffer
sizes and -the TCP maximum congestlon window
sizes are both of the order of the round trip delays.
As-a result; efficient buffer manageinent becomes
- more important for LANs than WANS :and-satellite
networks. - , ,

9 Summary

This paper describes the performance of SACK TCP
over the ATM UBR service category: -SACK TCP is
seen to:improve. the -performance of TCP over UBR.
UBR-drep policies-are'also essential to improving the
performance of TCP over UBR. ‘As a result, TCP per-
formance over UBR can be improved by either improv-
ing: TCP ‘using- selective acknowledgments, or by in-
troducing intelligént buffer management policies at the
switches. Efficient buffer management has a more sig-

nificant influence on LANS because of the limited -buffér

sizes in LAN switches compared to the TCP. maximum
window-size: In WANs and satellite netwoiks; thedrop
policies have a smaller impact because both the switech
buffersizes and the TCP windows-aré 6f the order of



the bandwidth-delay product of the network. SACK
TCP is especially helpful in satellite networks, and pro-
vides a large gain in performance over fast retransmit
and recovery and slow start algorithms.
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